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Abstract:

This paper examines single-mode and two-mode Gaussian pure states (GPS), quantum mechanical pure states with Gaussian wave functions.
These states are produced when harmonic oscillators in their ground states are exposed to potentials, or interaction Hamiltonians, that are linear or
quadratic in the position and momentum variables (i.e., annihilation and creation operators) of the oscillators. The physical and group theoretical
properties of these Hamiltonians and the unitary operators they generate are discussed. These properties lead to a natural classification scheme for
GPS. Important properties of single-mode and two-mode GPS are discussed. An efficient vector notation is introduced, and used to derive many of
the important properties of GPS and of the Hamiltonians and unitary operators associated with them.

1. Introduction and overview

This paper considers Gaussian pure states (GPS), quantum mechanical pure states that have
Gaussian wave functions (i.e., wave functions that are exponentials of complex-valued linear and
quadratic forms in “position” or “momentum” variables). These states are particularly relevant to the
description of a harmonic oscillator with a nearly classical, coherent excitation whose intrinsic quantum
mechanical fluctuations are important. Such a description arises, for example, in connection with the
transmission or detection of coherent optical signals [1,2], or high-precision measurements of a
macroscopic oscillator’s displacement, as in the detection of gravitational waves [3, 4]. Gaussian pure
states are familiar in quantum optics, where they describe the coherent output from a laser and the
predicted ‘“‘squeezed-state” light [5,6] from an optical parametric amplifier. For the theorist, these
states have the satisfying feature that the Hamiltonians for the physical processes that produce them are
known and have simple, easily interpreted forms.

Gaussian pure states are produced when harmonic oscillators in their ground states are subjected to
particular kinds of time-dependent potentials, or interaction Hamiltonians. The oscillators might be
mechanical or electrical, or they might be the normal (bosonic) modes of a quantized field such as the
electromagnetic field; for purpose of illustration, I shall have the last of these examples in mind
throughout this paper. The interaction Hamiltonians that produce GPS are polynomials that are linear
and/or quadratic in the oscillators’ position and momentum variables. Hence, although they may affect
N oscillators (N =1), thus producing an N-mode GPS, the interaction Hamiltonians are sums of
Hamiltonians that either involve a single oscillator or couple two oscillators. This has the important
consequence that one need look only at single-mode and two-mode GPS in order to understand the
fundamental features of all N-mode GPS. Single-mode GPS and their subsets have been studied by
many people during the last six decades [7-16]. The goal of this paper is to help make the less widely
known and understood two-mode GPS as familiar as their single-mode counterparts.

This first section, composed of nine subsections (1.1 through 1.9), provides an introduction to and
overview of the results derived in the remainder of the paper. Subsection 1.1 establishes the logical
connection between the Gaussian nature of the wave functions and the Hamiltonians for the physical
processes that produce GPS. The nature of these Hamiltonians, and of the unitary (“evolution”)
operators they generate, is described briefly. Subsection 1.2 describes in detail the interaction Hamil-
tonians, and classifies them according to their important physical properties. Subsection 1.3 goes on to
describe the unitary operators associated with the different interaction Hamiltonians. Subsection 1.4
begins a discussion of Gaussian pure states. The notion of the “total noise” of a state is defined, and a
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general classification scheme for GPS, based on their total noise, is introduced. Subsection 1.5 reviews
briefly the definition of coherent states [10, 11]. Subsection 1.6 introduces the reader to “‘single-mode
squeezed states” [12, 13,17} (or “two-photon coherent states” [16]), the most general kind of single-
mode GPS. Subsection 1.7 defines the most general kind of two-mode GPS. Subsection 1.8 discusses
squeezing in the context of two-mode GPS, with emphasis on a special set of two-mode GPS —the
“two-mode squeezed states” [18-21]. The natural physical variables for characterizing squeezing in
two-mode states —the ‘“‘quadrature-phase amplitudes” [18-21]-are motivated and defined briefly.
Subsection 1.9 provides a brief outline of the remainder of the paper.

1.1. Introduction

Associated with any oscillator is a real, positive, constant frequency (2. The quantum mechanical free
Hamiltonian for the oscillator is

H®=0d'a, 0=0*, (1.1a)

where a and @' are annihilation and creation operators for the mode ({4, a’] = 1). (Here and throughout
this paper I use units with # = ¢ = 1.) The expectation value of a’q, the photon-number operator for the
mode, is the number of photons in the mode. The free Hamiltonian for N oscillators is the sum of N
single-mode free Hamiltonians:

N
HMN = 2 Qa'a;, 0, =0, (1.1b)

ji=1

The stationary states for each oscillator (eigenstates of Hy") are the number states |n),
’n> = (n!)—1/2(a)f)nlo> ) (123)
Hy"|n) = nin), (1.2b)

where the state vector |0) represents the ground state. Throughout this paper the state vector |0), or the
term ‘“‘vacuum state”, means the tensor product of the ground states of N oscillators, for any N =1.
The vacuum state, unlike the other number states, is an eigenstate of the annihilation operators for all
the modes. Its wave function is Gaussian, whereas the wave functions for the other number states |n),
n=1, are not [22].

The forms of the interaction Hamiltonians that produce (or preserve) Gaussian pure states are
derived in this paper by considering the most general single-mode and two-mode Gaussian wave
functions, in which all parameters are arbitrary, subject to normalization. The wave functions imply that
Gaussian pure states are eigenstates of certain kinds of linear combinations of creation and annihilation
operators. These linear combinations in turn determine the general form of the unitary operators that
relate Gaussian pure states to the vacuum state, in the following way. Let the most general (normalized)
N-mode GPS be expressed formally as the state vector U,™|0), where U™’ = exp[—-iH,"’1] is a unitary
operator with Hermitian (self-adjoint) generator H,™. (Physically, H,’ represents a Hamiltonian and
therefore has dimensions of energy; ¢ has dimensions of (energy)™, or time, in units with # = ¢ = 1.) Since
the vacuum state is an eigenstate (with zero eigenvalue) of the annihilation operators a;, j = 1,2,..., N, an
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N-mode GPS is an eigenstate (with zero eigenvalue) of the transformed annihilation operators
g =UDqU™". The Gaussian nature of the wave functions implies that the operators g; are linear
combinations of annihilation and creation operators plus constants, which in turn implies that the
Hermitian generator H,"™’ consists only of linear and bilinear combinations of annihilation and creation
operators. There are no further restrictions on the generator H,™’, so H,™*’ consists, in general, of all
possible Hermitian linear and bilinear combinations of annihilation and creation operators.

The unitary operators U™ = exp[~i(H,™t)] that relate N-mode GPS to the vacuum state factor
naturally into unitary operators whose generators are (Hermitian) linear combinations of creation and
annihilation operators, and unitary operators whose generators are (Hermitian) bilinear combinations of
creation and annihilation operators. There are N unitary operators whose generators are linear in
creation and annihilation operators, one for each mode, and they are identical to each other in form.
They are called “displacement operators” [10]. In contrast, the unitary operators whose generators are
bilinear combinations of creation and annihilation operators divide into four basic types, which differ
fundamentally from each other in both their physical and group theoretical significance. In this paper
they are referred to as rotation, mixing, single-mode squeeze, and two-mode squeeze operators. This
division reflects the underlying structure of the N(2N + 1)-dimensional Lie algebra associated with all
bilinear combinations of N creation and anmihilation operators. These unitary operators and their
generators are described below.

The proof (for N = 1 and N = 2) that the unitary operator U,™’, whose generator H,"" is a sum of
all linear and bilinear combinations of creation and annihilation operators, factors into a product of
displacement, rotation, mixing, and squeeze operators is subsumed by more general proofs given in
subsections 2.3, 3.3, and appendix A. There each term in the generators H, and H,® is allowed to
have an arbitrary time dependence (subject to overall Hermiticity), and the unitary evolution operator
U®™)(¢), the solution to the Schrodinger equation i,U™(£) = H™()U™N(r), U™(0)=1, (N=1,2),
is shown to factor into a product of these unitary operators. The Hermitian forms associated with the
displacement, rotation, mixing and squeeze operators thus take on a physical meaning, in addition to
their group theoretical roles. When allowed to take on time dependences, they become the Hamil-
tonians for all the physical processes that produce (or preserve) Gaussian pure states. Their properties
are now described.

1.2. Interaction Hamiltonians

The interaction Hamiltonians that produce Gaussian pure states divide naturally into two broad
categories: those that conserve the total number of photons in the mode(s), and those that do not.
Those that conserve total photon number leave the vacuum state unchanged, and their effect on other
GPS is merely to redistribute the photons among the different modes. Of greater interest here are those
interactions that do not conserve the total photon number, but that do preserve the Gaussian nature of
a state. As stated above, all interaction Hamiltonians that produce or preserve GPS are polynomials
that are linear and/or quadratic in creation and annihilation operators (i.e., in position and momentum
variables). Conversely, all such interaction Hamiltonians describe physical processes that produce or
preserve Gaussian states. Those that conserve the total photon number must consist of products of
equal numbers of creation and annihilation operators. The requirement that they also preserve
Gaussians implies that they have the (normally-ordered) forms

N
Hy™(1)= E Hij(t)aifaj ) II, = IT} (1.3)

Jis
ij=1
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where the II;(t) are arbitrary complex-valued functions of time ¢ In contrast, the Hamiltonians that
produce or preserve GPS but do not conserve the total number of photons have the forms

N
H,™M(0) = iA*(Da —ix(Da) (1.4a)
j=1
N
H" 0= diZi(aa —3i;(0a a (1.4b)

i j=1

where A;(¢) and {;(f) [=£;:(¢)] are arbitrary complex-valued functions of time.
The photon number-conserving interactions defined in eq. (1.3) divide naturally into two types. The
first is made up of the terms for which i = j; for each mode i these Hamiltonians have the form

HR(l)(t) :wi(t)aifaia w;(H) = 0% (1), (1.5)

which looks like the free Hamiltonian for the mode but with a time-dependent real function (not
restricted to positive values) in place of the frequency. These Hamiltonians conserve the number of
photons in each mode; hence they conserve the total energy, as well as the total number of photons.
They are referred to in this paper as rotation Hamiltonians. Like the free Hamiltonian, they cause a
time-dependent exchange of kinetic and potential energy within each mode, but unlike the free
Hamiltonian, the time dependence need not be harmonic.

The second type of photon number-conserving interaction is made up of the terms in eq. (1.3) for
which i # j. For each pair of modes i and j, these Hamiltonians have the form

Hypy ()= I (t)a"a; + 115(1)a)"a; I#]. (1.6)

These interactions conserve the total number of photons in each pair of modes, but not the number in
each mode separately; i.e., the Hamiltonians Hg;(#) commute with the sum, but not the difference, of
the photon-number operators for the two modes. Physically, they describe “ideal” frequency-converting
interactions, in which a photon of frequency (2, < (2, and a “pump” photon of (or photons of total)
frequency (2, — () are destroyed simultaneously to produce a photon of frequency {2, and vice-versa.
The interaction is “ideal” if the pump(s) can be assumed to have an unlimited supply of photons, and so
be described by a classical function I7;(r).

The interactions defined in eq. (1.4), which do not conserve photon number, are of three types. The
first consists of the linear Hamiltonians H{"(¢), each of which describes the interaction of an oscillator
with a classical force characterized by a function A(f) (e.g., a classical current) [10, 11]. These will be
seen to conserve quantities that describe the quantum noise (uncertainties) associated with GPS. The
second type of interaction consists of those quadratic Hamiltonians H$(¢) that couple two different modes
(i # ). For a pair of modes i, j these Hamiltonians have the form

Hyy(1)=i{*(ag; —i{(Daja’,  i#]. 1.7)
These interactions conserve the difference in the number of photons in the two modes, but not the total

number; i.e., the Hamiltonians H,;(f) commute with the difference, but not the sum, of the photon-
number operators for the two modes [23]. Physically, they describe “ideal” nondegenerate two-photon
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interactions, in which two photons of frequencies 2; and (2, are destroyed simultaneously to produce a
pump photon of (or photons of total) frequency {2, + {2, and vice-versa. The simplest example of a
device that operates by such an interaction is a nondegenerate parametric amplifier [23-25], which uses
a single pump at frequency {2, + {2;; the two modes are called the signal and the idler. Another
example is a four-wave mixer [26, 27], which uses two pumps, the sum of whose frequencies is {2, + (2.
The interaction is “ideal” if the pump(s) can be described by a classical function {(¢).

The third type of interaction that does not conserve photon number consists of the quadratic
Hamiltonians H{"(¢) that involve single modes (i = j). For each mode these Hamiltonians have the form

HP(t)=31{*(0)a* - 3i{(H)a™. (1.8)

Physically, these interactions describe ideal degenerate two-photon interactions in which two photons of
frequency 2 from the same mode are destroyed simultaneously to produce a pump photon of (or
photons of total) frequency 242, and vice-versa. Such an interaction is used, for example, in a
degenerate parametric amplifier. For specificity throughout the remainder of this paper, whenever I
need an example of a device that operates by a two-photon interaction (degenerate or nondegenerate),
I shall have in mind the simplest example — an ideal parametric amplifier.

1.3. Unitary operators

The unitary operators that relate one GPS to other GPS with the same total number of photons are
generated by the photon number-conserving Hermitian forms Hx™. They are of two types: rotation
operators, which act on one mode at a time, and “‘mixing” operators, which couple two modes. For each
mode a rotation operator R(8) is defined by

R(6)=exp(~iba’a), 0=6* (1.9)

feq. (1.5)]. Formally, R(6) rotates the real and imaginary parts of a (i.e., position and momentum) into
each other. For each pair of modes i, j a mixing operator T(g, y) is defined by

T(g x)=explg(e™aa,—e™a'a)], i#] (1.10a)
[eq. (1.6)], where ¢ and y are real numbers defined on the intervals

. (1.10b)

N|=

T<Y=

N[

T, -

NI=

0=g=<

Formally, T(g, x) unitarily transforms 4; and g; into linear combinations of each other.

The unitary operators that relate one GPS to other GPS with different total photon number are
generated by the (non-photon-number-conserving) Hermitian forms H;™> and H,™. Again, they are of
two types: those that act on one mode at a time, and those that couple two modes. For each mode a
displacement operator [10, 11] and a single-mode squeeze operator [12, 13, 17] are defined by

D(a’ ,u)Eexp[,u,aJ'—p,*a] ’ (111)

Si(r, ¢) = exp[3r(e #¢a*— e¥*a'™)) (1.12a)
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[egs. (1.4a), (1.8)]. Here u is a complex number, and r and ¢, known as the squeeze factor and squeeze
angle, are real numbers defined on the intervals

. (1.12b)

N=

0=r<ow, —%Tr<(p5

Formally, the displacement operator adds a constant (u) to a, thus changing the mean values of the
position and momentum variables. The single-mode squeeze operator mixes a with a'. Consequently, it
induces a correlation between the position and momentum variables that is independent of their mean
values. This correlation can result, for example, in a narrowing of the coordinate-space wave function,
with corresponding broadening of the momentum-space wave function.

For each pair of modes i, j a two-mode squeeze operator [18-21] S(r, ¢) is defined by

S(r, o) =exp[rie **aa;— e**a’ah)], i#j (1.13)

[eq. (1.7)], where r and ¢ are defined as above [eq. (1.12b)]. The two-mode squeeze operator mixes a;
with a;, and a; with a;". Consequently, it induces correlations between the positions and momenta of
the two modes (but not of each mode, as the single-mode squeeze operator would do); i.e., it causes a;
and a; to become correlated.

1.4. Gaussian pure states (GPS)

Turn now from discussion of the interaction Hamiltonians and unitary operators associated with
GPS to the states themselves. Although it is useful to classify the interaction Hamiltonians and unitary
operators according to whether they conserve the total number of photons, it is not so useful to classify
the states according to their total number of photons. More useful for classifying GPS is a quantity that
ignores the mean excitation of each mode ((@;), j=1,2,..., N) and focuses exclusively on the total
(second-moment) noise associated with the state. The total noise of a single-mode GPS is defined as the
mean-square uncertainty in a, the sum (hence the adjective “‘total”) of the squared uncertainties (variances)
in the real and imaginary parts of a. The minimum total noise allowed by quantum mechanics (i.e., by the
commutator [a, a'] = 1) for each mode is one half quantum (“‘zero-point noise”). This minimum is realized
if and only if the state is an eigenstate of the annihilation operator for that mode. The total noise of an
N-mode GPS is defined as the sum of the contributions from (“total noises” of) each mode. The total noise
of a GPS can be thought of as the noise content of the state in units of photon number; it is the number of
photons, including a half quantum from each mode due to zero-point noise, that would be left in the state if
the mean excitations were removed. The total noise of a state is a more fundamental quantity than the total
number of photons. It is conserved if the total number of photons is conserved, but the converse is not true.
[For example, a classical force interacting with an oscillator(s) changes the total number of photons, but not
the total noise; see subsection 2.1.3.]

When considering two or more modes one should note the distinction between the total noise and
another quantity, the total noise energy. The total noise energy of a GPS is the noise content of the
state in units of energy; it is the energy, including zero-point energy, that would be left in the state if the
mean excitations were removed. For a single mode the distinction is not important, since the total noise
energy is equal to the product of the total noise and the mode’s frequency. But for two or more modes
with different frequencies, the total noise and the total noise energy need not be proportional to each
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other. (They are proportional to each other only when the total noises of all the modes are identical.)
Just as photon number is a more convenient quantity than energy for classifying the potentials that
produce GPS, so total noise is a more convenient quantity than total noise energy for classifying GPS.

It is shown below that all linear interaction Hamiltonians H,"’(f), as well as all photon number-
conserving interaction Hamiltonians Hr™(f), conserve the total noise of an N-mode state. Further,
these are the only interaction Hamiltonians that conserve both the total noise and the Gaussian nature
of a state. This means that states unitarily related to each other by products of rotation, mixing, or
displacement operators all have the same total noise. Conversely, all GPS with the same total noise are
related to each other by (products of) rotation, mixing, and displacement operators. Only the quadratic,
non-photon-number-conserving potentials H,"(¢) can change the total noise of a state. There are,
therefore, two broad classes of GPS. The first class consists of all states unitarily related to the vacuum
state by products of displacement, rotation, and mixing operators. These states have a total noise equal
to that of the vacuum state, the minimum allowed by quantum mechanics (3N, for an N-mode state).
Put another way, the first class consists of all (normalized) eigenstates of annihilation operators. The
second class consists of all states unitarily related to states in the first class by products of single-mode
and/or two-mode squeeze operators. The total noise of these states is necessarily greater than that of
the vacuum state.

1.5. Coherent states

The single-mode GPS produced when an oscillator in its ground state is acted on by a classical force,
i.e., subjected to the linear interaction Hamiltonian H,®(¢), is called a single-mode coherent state
[10, 11]. Formally, a single-mode coherent state, symbolized by the state vector |u )eo, is defined as that
state unitarily related to the vacuum state by the single-mode displacement operator,

|1 )eon = D(a, p)|0) . (1.14)

It is an eigenstate of the annihilation operator a with eigenvalue u. An N-mode coherent state is simply
a tensor product of N single-mode coherent states. For example, a two-mode coherent state, sym-
bolized by the state vector |gt).on (OF |+, fi_)con), is defined by

l”’)coh = l/‘l’+a :u'—>coh = l/“+>coh’lu’—>coh
=D(a., p.)D(a-, p-)0) = D(a, p)|0) (1.15)

(the two modes are labeled here and henceforth by “+” and “~). It is an eigenstate of the annihilation
operators a, and a._ for the two modes, with eigenvalues u, and u _, respectively. All normalized N-mode
states that are eigenstates of the annihilation operators for their modes can be described as N-mode
coherent states. That is, all states unitarily related to a coherent state by products of rotation, displacement,
and mixing operators can be described as another coherent state, with different eigenvalues. Glauber
[10, 11] and others [23, 28-32] beginning in the early 1960s have used coherent states to build a powerful
description of the electromagnetic field. Today these states are at the heart of quantum optics, providing the
basis for a sophisticated theory of the laser, for example.
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1.6. Single-mode squeezed states

For a single mode, there is only one interaction Hamiltonian, H,®(f), that can produce a GPS whose
total noise differs from (i.e., is greater than) that of a coherent state. The state produced when an
oscillator in a coherent state is subjected to an interaction described by H,™(¢) is called a “single-mode
squeezed state” [12, 13, 16, 17] (SMSS). Formally, a SMSS, symbolized by the state vector g, ), o), is
defined as that state unitarily related to the single-mode coherent state |u,).n by the single-mode
squeeze operator,

’/"’a)(r,qp) = Sl(ra ¢)|/‘La>00h . (116)

The SMSS |u.)(, ) is an eigenstate of the “single-mode squeezed annihilation operator” [18-20]

a(r, @)= 5:(r, ¢)aS,'(r, @), (1.17)

with complex eigenvalue u,. Any state unitarily related to the SMSS |x.).. ., by products of
single-mode rotation, displacement, and squeeze operators can be expressed as another SMSS |1', )¢ o1
(multiplied by an unobservable overall phase factor), with different squeeze factor, squeeze angle, and
eigenvalue. Any unitary operator U whose generator is a linear combination H," of the Hermitian
forms Hg®, H,", and H,"® (or, more generally, the solution U(f) to the Schrodinger equation
10,U (1) = H,P(1)U(¢), U(0) = 1) can be written as the product of a single-mode rotation, displacement and
squeeze operator, and an overall phase factor (see subsection 2.3 and appendix A). Since these Hermitian
forms, or time-dependent Hamiltonians, describe all physical processes that produce single-mode GPS
(provedin subsection 2.2, by considering the most general single-mode Gaussian wave functions), the SMSS
|ta)i. ) Of €q. (1.16), with r and ¢ defined over the ranges (1.12b), represents the most general
(normalized) single-mode GPS.

Single-mode squeezed states were introduced independently by Stoler [12] (“minimum-uncertainty
packets”) and Lu [13] (“new coherent states”). They have been discussed in detail by Yuen [16] in the
context of quantum optics under the name “two-photon coherent states” or “TCS”. Their properties
and possible application to back-action evading techniques [4] for gravitational-wave detection were
first considered by Hollenhorst [17], who coined the adjective “squeezed”. For more recent discussions
see, e.g., refs. [5] and [6]. Single-mode squeezed states, described in the context of ‘‘generalizations” of
coherent states, have also been discussed from group theoretical viewpoints by Barut and Girardello
[14], Perelomov [15], Milburn [33], and others [34]. The properties of single-mode squeezed states are
summarized briefly here and below in subsections 2.1.5 and 2.2.

Recall that the total noise of a single-mode GPS is the sum of the variances of the real and imaginary
parts (mean-square uncertainty) of the annihilation operator a, or, equivalently, of e'®a, where § is any real
number. The total noise of a single-mode coherent state is equal to 3, the smallest value allowed by quantum
mechanics (the half quantum of zero-point noise). This implies that, for all choices of 8, the two variances
are equal to each other, and their product is equal to the minimum value allowed by quantum mechanics.
Contrast this with single-mode squeezed states. For certain ranges of the squeeze angle ¢ (or, equivalently,
for those conjugate observables defined by certain ranges of 8), one of the variances is smaller than it would
be in a coherent state. The other variance is greater than it would be in a coherent state, since the total noise
of a SMSS is greater, but this does not alter the potential practical advantages offered by the reduced
uncertainty in the one observable. These advantages are the impetus for the current experimental effort to
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produce squeezed states [35-37]; applications have been proposed in low-noise optical communications
[1,2] and high-precision interferometric experiments [38-40], for example. For a single-mode squeezed
state the variance of the real part of e ~%a is minimized and is a factor e ™" smaller than its coherent-state
value, while the variance of the imaginary part of ¢ s is maximized and is a factor e¢*’ larger than its
coherent-state value. The product of these variances is equal to its minimum allowed value, as in a coherent
state.

The important parameter of a squeezed state is its squeeze factor r, not its squeeze angle ¢. There
are a number of equivalent ways to see this. First, as conjugate observables the real and
imaginary parts of a deserve no special status relative to the real and imaginary parts of €®a. In actual
experiments one would tune the apparatus to respond to whichever observable has the smallest
uncertainty. Second, as the SMSS |u. ). ., evolves freely, its squeeze angle changes, but its squeeze
factor r does not. The uncertainties oscillate between the conjugate observables (as does the energy
between potential and kinetic), but the total noise, which depends only on r, is constant. Even if an
oscillator in a SMSS is acted on by a classical force (i.e., multiplied by a displacement operator), its
squeeze factor remains constant, and only its squeeze angle and eigenvalue (as well as its complex amplitude
(a)) change. If, however, an oscillator in a SMSS is subjected to a new degenerate two-photon interaction
[HM(£)] -i.e., multiplied by another single-mode squeeze operator —it will go into another SMSS, with
different squeeze factor, squeeze angle, and eigenvalue.

1.7. Two-mode Gaussian pure states

For two modes, there are three interaction Hamiltonians in H,®(¢) that can produce a GPS whose
total noise is greater than that of a coherent state. Two of these are the degenerate two-photon
interaction Hamiltonians H,’(f) of eq. (1.8), one for each mode. The third is the nondegenerate
two-photon interaction Hamiltonian H,,_(¢) defined in eq. (1.7). The most general kind of (normalized)
two-mode GPS is produced when two oscillators, each in a coherent state, are exposed to all three of
these quadratic interaction Hamiltonians. Formally, this state, symbolized by the state vector |u,) (or
|g+s He-)), 1s Telated to a two-mode coherent state by a product of the three squeeze operators:

,”g> = Sl+(r+’ (P+)Sl—(r—’ ¢—)S(r’ qo)]#g)coh = Slﬂg>coh . (118)

It is an eigenstate of the transformed annihilation operators g. = Sa.S’, with complex eigenvalues u,..
The order of the three squeeze operators in the operator § of eq. (1.18) has been chosen for
convenience only. All states unitarily related to the GPS |u,) of eq. (1.18) by a product of rotation,
displacement, mixing, and squeeze operators can be expressed as another two-mode GPS |u',)
(multiplied by an unobservable phase factor), with new values for r., r, ¢., ¢, ., and u,_. Any unitary
operator U = exp[-iH,®t] whose generator H,® is a linear combination of the Hermitian forms Hz®,
H,?, and H,® can be written as the product (in any order) of two single-mode rotation and
displacement operators, a mixing operator, an operator like S, and an overall phase factor (see subsection
3.3 and appendix A). Since these Hermitian forms, or time-dependent Hamiltonians, describe all physical
processes that produce two-mode GPS (proved in subsection 3.3, by considering the most general
two-mode Gaussian wave function), the state {u,) defined by eq. (1.18) represents the most general
normalized two-mode GPS.

When two oscillators, each in a coherent state, are subjected only to degenerate two-photon
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interactions [H,"(¢)], the resulting two-mode state is simply a tensor product of two single-mode
squeezed states (no correlations between the modes). If, however, they are subjected only to a
nondegenerate two-photon interaction [H,, ()], the resulting state is called a “two-mode squeezed
state” [18-21] (TMSS). Formally, a TMSS, symbolized by the state vector |g, ), . 1 defined as that
state unitarily related to the two-mode coherent state |u, )eon by the two-mode squeeze operator,

|I‘l‘a>(r, 0= |:ua+a ,u'a7>(r, )= S(r, ¢)|“a>coh . (119)

The TMSS |, ). ) is an eigenstate of the “two-mode squeezed annihilation operators” [18-20]
a.(r, ¢)=S(r, ¢)a.S'(r, ¢) . (1.20)

with complex eigenvalues u,.. The properties and importance of two-mode squeezed states in the
context of quantum optics are the subject of a recent series of papers by Caves and me [19, 20]. They
are discussed further in subsection 1.8 below and in section 3.

How might one produce light in the general two-mode GPS |u,) of eq. (1.18)? The simplest answer for
purpose of illustration is to use three parametric amplifiers. One could first shine coherent-state light on a
nonlinear medium pumped at frequency 242 that is phase-matched out (at least) to frequencies (2 + ¢; this
produces the desired “broadband squeezing”. Next, this light would be used as input to another nonlinear
medium(s) pumped at frequencies 2({2 + £) and 2({2 — ¢), with negligible phase matching between the two
frequencies. This produces the desired additional degenerate squeezing at the two sideband frequencies.

1.8. Two-mode squeezed states

The two-mode squeezed states (1.19) are the natural two-mode analogs of single-mode squeezed
states [eq. (1.16)]. Formally, this is because they are unitarily related to two-mode coherent states in the
same functional way that single-mode squeezed states are related to single-mode coherent states. This is
a consequence of the fact that the three operators a,a_, a_'a,', and (a.a.”+ a_a_")ym have the same
commutator algebra [that of the noncompact, pseudo-unitary Lie group SU(1, 1)] as the operators 3a’,
2a", and (acf)sym (see subsections 2.3, 3.1.5b,c, and 3.3) [15, 41]. Physically, a two-mode squeezed state
can be produced in a parametric amplifier by using a single pump whose photons have energy (2, + (2_,
just as a single-mode squeezed state can be produced in the degenerate limit of a parametric amplifier
by using a single pump with photons of energy 2(2. Thus, a two-mode squeezed state is produced
automatically in a degenerate parametric amplifier if one looks slightly away from degeneracy. In
contrast, production of the general two-mode GPS (1.18) would require three separate parametric
amplifiers - i.e., three different pumps, with photon energies 242, 202_, and 2, + 2_.

Like a single-mode squeezed state, a two-mode squeezed state is a state in which the variance of one of
two conjugate observables is smaller than it would be in a coherent state. For a single-mode squeezed state
the natural conjugate observables are the real and imaginary parts of a (or €'°a). But what are they for
two-mode squeezed states? Analyses of optical heterodyning [1,42], together with the properties of
two-mode squeezed states, indicate that natural choices for these observables are the quadrature-phase
operators E; and E, of the electric field E (or similarly defined quantities if the oscillators are not modes of
the electromagnetic field). The following qualitative remarks give a general idea of the nature and
significance of the quadrature phases. For further discussion, the reader is referred to appendix D and refs.
[1,2, 18-21] and [42-46].
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In optical heterodyning an input electric field E(t) « E;(t) cos {2t + E5(t) sin {2, composed of upper and
lower sidebands of a carrier frequency {2, is combined at a beam splitter with a strong local-oscillator (LO)
field at the carrier frequency; for illustration here let the LO field have time dependence cos {2z. One or both
of the beam-splitter output ports is then monitored with a photodetector(s). The preferred method
monitors both output ports, with identical photodetectors, and coherently subtracts their outputs
(“balanced heterodyning”’; see refs. [45, 46} and [42]). The relative strength of the LO field guarantees that
(i) the dominant contribution to the output intensity is proportional to the mean field of the in-phase
quadrature phase, (E,) in this example, and (ii) the dominant contribution to the noise in the out-
put intensity is proportional to the noise in (variance of) that quadrature phase. A reduction in the noise in
one quadrature phase relative toits coherent-state value (squeezing) is therefore manifested in heterodyning
as an improved signal-to-noise ratio.

The upper and lower sidebands of the input field consist of modes with frequencies £2 + ¢ and 2 - ¢,
respectively, where the “modulation frequencies” & take on all positive values in some bandwidth Ae
(0=Ae < 12). The quadrature phases have no time dependence at the carrier frequency {2; they carry
only the time dependences at frequencies e. Thus, the signal observed at the output of a heterodyne
detector is a modulation of the local-oscillator mean field, with modulation frequencies &. Typically, one
filters this signal to pick out the contribution from a single modulation frequency ¢, i.e., from one pair of
modes, with frequencies {2 + . The noise properties of this filtered output modulation signal thus reflect the
noise properties of a two-mode state.

When measured in units of energy, the minimum contribution that two modes with frequencies 2 + ¢
can make to the time-averaged noise in (variance of ) the electric field is the sum of their individual minimum
total noise energies, 3(£2 + &)+ 3(£2 — £) = £2. This minimum is realized only if both modes are in coherent
states; together they contribute a zero-point noise energy of 2 to each quadrature phase. As shown below,
the minimum contribution that two modes of frequencies {2 = ¢ can make to the time-averaged noise in
either quadrature phase is &, much smaller than that realized by a two-mode coherent state [egs. (1.22),
appendix D, or refs. [18-20]]. For the time-averaged noise in one quadrature phase to be smaller than its
coherent -state value of 3/2, the two modes must be specially correlated with each other, in the way produced
by a nondegenerate two-photon interaction like (1.7); that is, the two modes must be in a state whose
unitary relation to a two-mode coherent state includes a two-mode squeeze operator S(r, ¢ ). The reduction
is greatest when the two modes are in a two-mode squeezed state (see appendix D).

The obvious advantage squeezing offers is that one can transmit a signal at frequencies £ + ¢ as
amplitude or phase modulation of a carrier wave at frequency (2 (modulation frequency 0 < ¢ < {2), and
have a time-averaged (zero-point) noise associated with that signal that is much smaller than the zero-point
noises 3({2 = ¢) that would accompany the same signal if it were sent directly at the frequencies 2 + ¢. The
quadrature-phase zero-point noise energy ze is very small, and with real photodetectors essentially
unobservable. That it is in principle nonzero (for nonzero ¢), however, is consistent with what one might
expect physically; it says that the zero-point noise of 3¢ associated with any signal transmitted directly at
frequency & cannot be made to vanish by ““disguising” the signal as amplitude or phase modulation of a
carrier wave at frequency 2> ¢.

The properties of two-mode GPS can be described in terms of the annihilation and creation
operators (a.. and a..") of the two modes; this is the approach taken in section 3 of this paper. Alternatively,
they can be described in terms of the “quadrature-phase amplitudes” a; and a, for the two modes
[18-21]. The latter are dimensionless complex operators, proportional to the Fourier components at
frequency & of the electric field quadrature phases E; and E, (see appendix D). They are defined as the
following linear combinations of @, and a_":



330 B.L. Schumaker, Quantum mechanical pure states with Gaussian wave functions

= (20)—1/2[(0 + 8)1/2a+ + (_Q _ t’3)1/2‘1_1‘] , (1‘213)
= Q20) -2 + £)Pa, +i(2 - £)7a"] . (1.21b)

In units of energy, the time-averaged noise in (variance of) the quadrature phase E; (j = 1 or 2) at frequency
¢ is proportional to the product of {2 and the mean-square uncertainty in o; (the sum of the variances of its
real and imaginary parts). The quadrature-phase zero-point noise energy 3¢ is a consequence of the
commutation relations of the quadrature-phase amplitudes:

[ala 0111] = [az, azf] =¢/M); [011, 0‘2*] = [a1T7 C!z] =13 [ah aZ] =0. (1-22)

These imply that the minimum mean-square uncertainty in a; is 3¢/£2; it is realized in a special kind of
two-mode squeezed state (a “squashed state”, for which ¢ = § cosh™' /e [19]). They also imply that the
minimum value for the product of the total noises in @, and a, is 3; it is realized by two-mode coherent states
([19] and [20]).

For a two-mode squeezed state the only nonvanishing noise moments of «; and a, (moments of
Aa;, = a,— (@) and Aa, = a, — (a,)) are those that contain equal numbers of quadrature-phase amplitudes
and their Hermitian conjugates, e.g., (Aa Aa,"), (Aa;"Aa;), etc. This has two important consequences:
First, all time-dependent noise moments of the quadrature phases E; and E, vanish. Fields with this
property are said to have “time-stationary quadrature-phase” (TSQP) noise [18-21]. Second, the
description of the properties of two-mode squeezed states is formally identical to that for single-mode
squeezed states (see the discussions in subsections 3.1.5b,c and 3.3).

States that do not exhibit TSQP noise — e.g., products of two single-mode squeezed states, or the general
two-mode GPS |p, ) - always have a mean-square uncertainty in «; (hence a time-averaged noise in E;) that
is greater than the coherent-state value. However, such states can exhibit squeezing of another sort, i.e.,
squeezing in a pair of conjugate observables other than the quadrature phases E, and E, [56]. The operator
for the modulation signal at the output of a heterodyne detector [the frequency ¢ component of E,(¢), say]
has the form a;; cos et + @, sin &f, where @, (aj) is 2* times the real (imaginary) part of the
quadrature-phase amplitude «; (see appendix D). For a two-mode squeezed state the vanishing of the noise
moments ((Aa;)?) means that the variances of the observables a;; and ), are equal. But for other two-mode
GPS these variances can be unequal, with one smaller than its coherent-state value. Such states exhibit
squeezing in a;; and a;, - i.e., in the quadrature phases of the (monochromatic) modulation signal. There is
in principle no limit to this kind of squeezing: the variance of the observable «;; or a;, can be arbitrarily
small. For a two-mode coherent state, the variances of «;; and a;, (in energy units) are both 10 for a
two-mode squeezed state, they are again equal and hence can be made only as small as 3¢ [see eq. (D.7a)
below]. But for a product of two single-mode squeezed states with ¢, = ¢_ and r, — r_ = /42 [eq. (D.8)
below], the variance of a;; or e, can be a factor (1 - 10" ? exp[—(r, + r_)] smaller than 3£2, i.e., it
can be arbitrarily small. And, for a two-mode GPS like| s, )[eq. (1.18)] with ¢, = ¢_ =@ and r. — r_= ¢/4),
the variance of either a;, or a;, can be still smaller — a factor (1 - £%/2%)"? exp[~(r, + r_)] exp(~2r) smaller
than 362. This kind of squeezing can be detected by mixing the modulation signal at the output of a
heterodyne detector with a wave cos(et + 8). The resulting zero-frequency output is proportional to (a;) (if
8 =0) or {a;,) (if § = 3m). (For more details see appendix D.).

1.9. Owutline of this paper

Section 2 of this paper is a review of single-mode Gaussian pure states. Subsection 2.1 looks at the
unitary operators associated with single-mode GPS and reviews some of the properties of coherent



B.L. Schumaker, Quantum mechanical pure states with Gaussian wave functions 331

states and single-mode squeezed states. Subsection 2.2 considers the most general single-mode Gaussian
wave function and from it shows that the most general single-mode GPS is a single-mode squeezed
state. Subsection 2.3 uses a two-component vector notation to provide a compact and powerful way to
express the properties of single-mode GPS and their associated unitary operators. Section 3 is a detailed
discussion of two-mode Gaussian pure states which parallels closely in structure but is necessarily more
complicated than that of section 2.

Some useful details are relegated to appendices. Appendix A outlines the procedure and gives
supporting details for writing the unitary evolution operator associated with the most general (time-
dependent) linear combination of interaction Hamiltonians that can produce single-mode and two-mode
GPS as a product of squeeze, rotation, mixing, and displacement operators. Appendix B calculates the
(amplitude-independent) phase factor in the coordinate-space wave functions for single-mode and
two-mode squeezed states, and suggests its form for the most general two-mode GPS. Appendix C
elaborates on a point made in subsection 3.2 concerning the criterion for two complex operators,
defined as linear combinations of creation and annihilation operators, to have a complete (or overcom-
plete) set of simultaneous, normalizable eigenstates. Appendix D gives some supporting details for the
discussion in subsection 1.8 of the kinds of squeezing exhibited by general two-mode GPS.

2. Single-mode Gaussian pure states
2.1. Introduction and review

This section, composed of five subsections, serves both as an introduction to and a review of
single-mode GPS. Subsection 2.1.1 defines dimensionless position and momentum variables, and the
second-order “noise moments” that characterize single-mode GPS. Subsections 2.2.2-2.2.4 look closely
at the unitary operators — rotation, displacement, and squeeze operators —that relate single-mode GPS
to the vacuum state. Subsection 2.2.5 derives the second-order noise moments of a single-mode
squeezed state, and discusses two special kinds of single-mode states: single-mode “minimum-un-
certainty states”” (MUS), and single-mode states with “time-stationary” (TS), or “random-phase”, noise.

2.1.1. Notation and definitions

The quantum mechanical operators naturally associated with a harmonic oscillator are the
Schrodinger-picture (SP) annihilation operator a and its adjoint a', the creation operator. Equivalent
operators are the dimensionless position and momentum X and p; these are Hermitian operators,
constant in the SP and related to a and a' by

£=2""a+a"), p=2""-ia+ia"); (2.1.1a)

a=2"*%+ip). (2.1.1b)
The position and momentum are equal to 2" times the real and imaginary parts of a, respectively. The
creation and annihilation operators and the dimensionless position and momentum obey the standard
commutation relations:

[a,a')=1, [£p]=i. (2.1.2)

The complex amplitude of a single-mode state, always denoted in this paper by the symbol u, is the
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expectation value of a; it is related to the mean position and momentum x, and p, by
p=(a)=2""((H)+(p)=2""(x+ipo). (2.1.3)

The noise moments of the operators a and a” or £ and p provide a useful way to characterize states
associated with harmonic oscillators. Noise moments of any operator B are moments of AB = B —(B),
the operator minus its mean. Note that an operator AB is defined only with reference to a particular
state, which defines (B). All noise moments of a and a' (or £ and p) for Gaussian states are expressible
in terms of the second-order noise moments. There are three real second-order noise moments of the
annihilation operator a. Two of these make up the complex number

(Aa)y=(a®)—(a) = (Aa"))*, (2.1.4a)
and the third is the positive real number
(AaPy=(Aa Aa")ym=3{Aa Aa"+ Aa' Aa), (2.1.4b)

the mean-square uncertainty in a (the subscript “sym” denotes a symmetrized product). These
second-order noise moments of a are related to the three real second-order noise moments of X and p by

(Aay)=3(A2F)— (ApY) + (A% Ap)gym, (2.1.5)
(1Aa?) =2(((A2)) + (AP (2.1.5b)

[egs. (2.1.1)]. The total (second-moment) noise of a single-mode GPS is the mean-square uncertainty
{|Aal?), the sum of the variances (squared uncertainties) of the real and imaginary parts of a.

The commutation relations (2.1.2) enforce the following lower limits on the product and sum of the
variances of £ and p [47]:

(AZPNAPY) =3+ (A% Ap)om =4, (2.1.6a)
QIR +(APP) = (AaPP =5+ (b)) =5, (2.1.6b)
Equalities hold in the first of each of these inequalities if and only if the state is an eigenstate of a
certain kind of linear combination of £ and p (or a and a')-i.e., if and only if the state is a Gaussian
pure state (see subsection 2.2). Hence for a single-mode GPS only two of the three real second-order
noise moments are independent; i.e., there are two independent real numbers associated with the

second-order noise moments.

2.1.2. Single-mode rotation operator
Consider now the single-mode rotation operator R(6), defined by

R(6) =exp(~ifa’a) = exp(}i0) exp[— }i8(¢” + p°)] (2.1.72)

[eq. (1.9)]. It satisfies
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R™'(8)= R'(6)= R(-9). (2.1.7b)

For an oscillator characterized by frequency (2, R({2) is the evolution operator associated with the

free Hamiltonian H,™,

H®=0a"a=10(+p-1), (2.1.8a)
exp(—iH,"t)= R({%). (2.1.8b)

~iné

The rotation operator acting on any number eigenstate |n) simply multiplies it by the phase factor e
[egs. (1.2)]; in particular, it leaves the vacuum state unchanged:

R(6)[0)= [0} . 2.1.9)

The rotation operator unitarily transforms the annihilation operator a into €'’a —i.e., it rotates £ and
p into each other:

R(#)aR'(8)=€"a=a(h), (2.1.10a)
R(6)£R"(6) = £ cos 6 — j sin 0= 3(0), (2.1.10b)
R(8)PR'(8) = £ sin @+ p cos 8 = p(6). (2.1.10¢c)

The unitarity of R(6) ensures that £(#) and p(6) are conjugate observables, [£(8), p(6)] =i. The
transformation (2.1.10a) shows that an eigenstate of a remains an eigenstate of a when operated on by
a rotation operator, i.e., as it evolves freely. The rotation operator clearly preserves the total number of
photons in the mode,

R'(0)a'aR(6)=a'a (2.1.11)

(hence also the total energy). The effect of the rotation operator is merely to transfer energy between
kinetic (5%) and potential (£?). It therefore also preserves the total noise,

(RY(0)|AalR(8)) = (AaP), (2.1.12a)

its effect on a state being merely to redistribute the noise between the position and momentum
variables,

(R(9)(AayR(6)) = (Aa(-0)F) = e **((Aa)’) . (2.1.12b)

Note in egs. (2.1.12) that the operator Aa on the left-hand side of the equations is Aa = a — (R"(8)aR(6)),
whereas on the right-hand side it is Aa = a — (a). A similar remark holds throughout this paper wherever
the moments or noise moments of operators in a state |¥) are compared with those in a state U|W¥).

Finally, note that the simple form of R(#) implies that the product of an arbitrary number of rotation
operators can be expressed trivially as a single rotation operator, using the rule

R(O)R(0)=R(6+9). (2.1.13)
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2.1.3. Single-mode displacement operator
The single-mode displacement operator [10, 11] is defined by

D(a, u)=exp(na’ - pu*a)=expli(pof — xop)} = exp(—3ipoxo) exp(ipox) exp(—ixop) (2.1.14)
[eq. (1.11)]. 1t satisfies the following equalities:
D7Ya, u)=D'(a, p)= D(a,~p)= D(~a,p). (2.1.15)

Properties of D(a, ) are discussed in refs. {10, 11, 31, 20]. Most important is the way it unitarily
transforms the annihilation operator:

D(a, p)aD (a, p)=a—p. (2.1.16)

The additive nature of this transformation implies that when the displacement operator acts on a state it
changes all moments of a and a’ (e.g., the complex amplitude (a), and the photon number {a’a)).
However, since the transformation merely adds a complex number to a4, the noise moments of a and a*
are left unchanged. Thus, when the displacement operator acts on a state, it displaces the wave
function, but does not modify its shape. In particular, an eigenstate of a remains an eigenstate of a
when operated on by a displacement operator. Hence the single-mode coherent state |u )., defined as
D(a, ) acting on the vacuum state [eq. (1.14)], is an eigenstate of a with eigenvalue u.

Two other properties of the displacement operator are useful here. First, it is unitarily transformed
by the rotation operator in the following way:

R(6)D(a, #)R"(6) = Dla(8), u] = Dla, n(-0)], (2.1.17a)
MOEL (2.1.17b)

[egs. (2.1.10), (2.1.14)]. This transformation shows that the form of the displacement operator is
invariant under a unitary transformation of a generated by the rotation operator:

D(a, u)= D[a(8), n(6)]. (2.1.18)

It also shows that D(a, ) does not commute with the rotation operator and hence does not preserve
photon number. Second, the product of two displacement operators is another displacement operator,
multiplied by a phase factor:

D(a, n")D(a, ) = expli Im(up*)]D(a, p + ") . (2.1.19)

These properties, like the transformations (2.1.10a) and (2.1.16), show that any eigenstate of a remains
an eigenstate of a when displaced and/or allowed to evolve freely. For example, as a coherent state [eq.
(1.14)] evolves freely, it changes in the following way:

R(£20)] t)eon = |4(—28))con =17t Yeon - (2.1.20)

All single-mode states that are eigenstates of a are unitarily related to the vacuum state by products
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of rotation and displacement operators. Conversely, all such states are eigenstates of a. These states
comprise the entire class of single-mode states whose total noise is equal to that of the vacuum state.
The special properties of the rotation operator —that it preserves the total number of photons, that it
preserves the total noise, and that it preserves coherent states—are a consequence of one essential
property: the unitary transformation it induces on a merely multiplies a by a phase factor; i.e., it never
mixes a with a’. To find unitary operators that do not conserve the total noise and that generate new
states from coherent states (states with a total noise greater than that of the vacuum state), one must
consider operators - single-mode squeeze operators — that mix a with a'.

2.1.4. Single-mode squeeze operator
The single-mode squeeze operator [12, 13, 17] is defined by

Si(r, o) = exp[5r(e **a* - e**a™)], (2.1.21a)

™ (2.1.21b)

W=

0<r<w, —s7<¢p=<

[egs. (1.12)]; it is denoted simply by S; when lack of reference to a particular r and ¢ does not lead to
confusion. It satisfies the following equalities:

SN e)=8"(r @)= Si(-r,0)= Si(r, o +57). (2.1.22)

Properties of S,(r, ¢) are discussed in refs. [17, 19] and [20]. Most important is the way it unitarily
transforms the annihilation operator:

S.(r, )aS;'(r, )= acosh r+ a" €*¢ sinh r=a(r, ¢) (2.1.23a)

feq. (1.17)]. A state unitarily related to an eigenstate of a by a single-mode squeeze operator is an
eigenstate of the single-mode squeezed annihilation operator a(r, ¢) (denoted simply by @ when lack of
reference to r and ¢ does not lead to confusion). Inverting eq. (2.1.23a) gives a in terms of & and a™:

a=8(r, ¢)a(r, )Si(r, o) = a cosh r —a" €** sinh r. (2.1.23b)

The unitarity of S, ensures that [a, @] =[a, a'] = 1.

The transformation (2.1.23a) tells one that when the squeeze operator acts on a state it changes the
noise moments of a and a'. That is, it modifies the shape of the wave function (and, if the mean
position or momentum are nonzero, displaces it as well). In particular, it preserves neither the total
number of photons nor the total noise of a state,

(S:'a"aS;) = sinh? r + cosh 2r(a’a) — sinh 2r Re(e"%*(a?)), (2.1.24a)
(8,"|Aal’S,) = cosh 2r(|Aaf?) - sinh 2r Re(e 2*{(Aa)?)) . (2.1.24b)
Equation (2.1.24b) shows explicitly that any state whose unitary relation to the vacuum state (or to any
eigenstate of a) includes a single-mode squeeze operator has a total noise greater than that of the

vacuum state.
A few other properties of the single-mode squeeze operator are useful here. First, it is unitarily



336 B.L. Schumaker, Quantum mechanical pure states with Gaussian wave functions
transformed by the rotation operator in the following way:
R(8)Sy(r, 9)R'(8) = Si(r, ¢ — 6) (2.1.25)

fegs. (2.1.10a), (2.1.21)]. That S,(r, ¢) does not commute with the rotation operator reveals why it does
not preserve photon number [eq. (2.1.24a)).
Second, it unitarily transforms the displacement operator in the following way:

Slf(n GD)D(a’ :u‘)sl(r’ ¢) = D(a’ ,LL,,) ’ (2126)

fo = cosh r+ p* e* sinh r (2.1.27)
[egs. (2.1.14), (2.1.23a)]. This relation reflects the fact that the form of the displacement operator is
invariant under unitary transformations of a that are linear in @ and a* (and that do not add to a a
constant). Such unitary transformations are generated only by (products of) rotation and single-mode
squeeze operators. The invariance under rotations was noted in eq. (2.1.18). The invariance under
transformations generated by the single-mode squeeze operator says that

D(a, n)= D(a, p,) . (2.1.28)

This equality implies that the SMSS |u.). ., defined by eq. (1.16) as the squeeze operator S(r, ¢)
acting on the coherent state |u, ).on, can as well be defined as the displacement operator D(a, u) acting
on the squeezed vacuum:

|Kadr, o) = S1( @)l ttaeon = D{(@, 1)S1(7; 9)|0) . (2.1.29)

The complex number u is equal to {(a), the state’s complex amplitude. It is related to the eigenvalue u,,
by

W= o cOsh r— u,* €3¢ sinh r (2.1.30)

[eq. (2.1.23b)]. With this definition one can easily verify the statement made in the Introduction: any
state unitarily related to the SMSS |, ). ») by a product of rotation and displacement operators is equal
to another SMSS (multiplied by an unobservable overall phase factor) with the same squeeze factor 7,
but with different squeeze angle and eigenvalue. For example,

R(0)D(a, )| ta)r, oy = € ™ “* " D(a, £)Sy(r, ¢ — 6)|0)

= ei Im(##'*)lﬂa>(” o—0) >

g=e(u+p) (2.1.31)

[egs. (2.1.17), (2.1.19), (2.1.25)].

Finally, the product of two different single-mode squeeze operators is another single-mode squeeze
operator, multiplied by a phase factor and a rotation operator {see eqgs. (2.3.16) and appendix B of ref.
[20]]. For the case ¢ = ¢’ the relation simplifies to

Si(r, @)S1(r, @)= Si(r+ 1, ¢). (2.1.32)
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It is proved in the next section, by considering the most general single-mode Gaussian wave function,
that the Hermitian generator H, of the unitary operator U,'" = exp[—iH,"¢] that relates a single-
mode GPS to the vacuum state is a sum of linear and bilinear combinations of @ and a. In other words,
the most general single-mode GPS is produced when a harmonic oscillator in its ground state is exposed
to the interaction Hamiltonians Hg(¢), H,‘"(¢), and H,™(¢) described in the Introduction [egs. (1.3)
and (1.4)]. The unitary operator U, factors into a product of single-mode displacement, squeeze, and
rotation operators (in any order), and an overall phase factor (proved in subsection 2.3 and appendix
A). The properties described in this subsection ensure that any product of single-mode rotation,
displacement, and squeeze operators can be expressed as the product of a displacement operator and a
single-mode squeeze operator (in either order), multiplied on the right by a rotation operator (and an
overall phase factor). Since the rotation operator has no effect on the vacuum state, this shows that the
most general single-mode GPS can be described as a single-mode squeezed state, defined by eq.
(2.1.29).

2.1.5. Single-mode GPS and minimum-uncertainty states (MUS)
The second-order noise moments for a single-mode coherent state follow directly from the fact that it
is an eigenstate of the annihilation operator a:

<(Aa)2> = <A-£ Aﬁ)sym =0 5 (21333)
(AaP)=(A%))=(Ap))=1. (2.1.33b)

A coherent state has the minimum total noise allowed by quantum mechanics [eq. (2.1.6b)]. The
second-order noise moments for the most general single-mode GPS, a single-mode squeezed state, can
be obtained from the transformation (2.1.23a) and those for a coherent state, or from egs. (2.2.32) and
(2.2.35) below. For the SMSS |1, ). ») [€q. (2.1.29)] they are

((Aay?) = —3€¥¢ sinh 2r, (2.1.34a)
(|Aaf?) = 3cosh 2r ; (2.1.34b)
((A%)*) = 3(cosh 2r — sinh 2r cos 2¢), (2.1.35a)
{(ApY*) = 3(cosh 2r + sinh 2r cos 2¢), (2.1.35b)
(A% Ap)yym = —3sinh 2r sin 2¢. (2.1.35¢)

Much of the interest in single-mode GPS has centered around the so-called “‘minimum-uncertainty
states” [12] (MUS) - states that minimize the product of the uncertainties in £ and p:

(A2PXApY) =3 (MUS) (2.1.36)
[eq. (2.1.6a)]. These are (single-mode) GPS that satisfy

Im{(Aa)?) = (A% Ap)ym =0 (2.1.37)
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[egs. (2.1.5)]. The condition (2.1.36) implies that there is only one independent real parameter
associated with the second-order noise moments of a single-mode MUS. Comparison with eqs. (2.1.34)
or (2.1.35) shows that the set of single-mode MUS consists of single-mode squeezed states with ¢ =0, a
set which includes all coherent states (r=0). It is shown below [see eqs. (2.2.5) or (2.2.6)] that a
single-mode state is a MUS if and only if it is an eigenstate of a linear combination £+iy, 'p,
y1=y3>0. A single-mode squeezed state with ¢ = 0 satisfies this condition with y; = e*. By com-
parison, a single-mode state is a Gaussian pure state if and only if it is an eigenstate of a linear
combination £+iy~'p, Re(y)>0 (see section 2.2). All states unitarily related to MUS by a rotation
operator R(0) are eigenstates of just such a general linear combination:

R(O)(E+iy1 P)R'(6)= #(8) +iyi'p() x i+iy™'p,  Re(y)>0,

where Im(y) is independent of Re(y) and, in general, nonzero [Im(y)=0 if and only if y,=1, i.e., a
rotated coherent state is still a coherent state]. Conversely, all states that are eigenstates of a linear
combination £+iy”'p, Re(y)>0 (ie., all single-mode GPS) are related to single-mode MUS by
rotation operators. Thus, by extending the definition (2.2.36) of single-mode MUS to include all states
related to MUS by the rotation operator R(#), one obtains all single-mode GPS. Another way to see
this is to note that the condition (2.2.37) can always be satisfied for some rotated annihilation operator
a(6)= R(6)aR"(#) = e°a [eq. (2.1.10a)], with # chosen so that Im(JAa(8)]*)=0. For example, the
SMSS |ga) e o) is @ MUS for the rotated conjugate variables £(—¢) and p(—¢):

(Af-e)P) =3,  (Ap(-@)])=3¢e". (2.1.38a)
(A2(-¢)AP(—¢)sm = 0. (2.1.38b)

Another important set of single-mode states consists of those that have “random-phase noise”, i.e.,
whose noise moments are invariant under rotations. States with random-phase noise satisfy the
condition

(Aa))=0, n=1,23,.... (2.1.39a)

For states (pure or mixed) with Gaussian noise statistics, this condition reduces to ((Aa)®) = 0, which is
equivalent to the conditions

(AZ(O) = ([AP(B)) = ([A£(9")]*) forall 6,6". (2.1.39b)
If all the modes present in an electric field have random-phase noise, the field is said to have
“time-stationary” [18-21] (TS) noise, because the condition (2.1.39a) implies that all time-dependent

noise moments of the electric field vanish. The intersection between single-mode Gaussian pure states
and states with random-phase noise is the set of single-mode coherent states [egs. (2.1.33)].

2.2. Single-mode Gaussian wave functions

This section begins with the most general single-mode Gaussian coordinate-space wave function,
with all parameters arbitrary, subject to normalization. Subsection 2.2.1 explores the relation of the
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parameters in the wave function to the noise properties of a single-mode GPS, and derives general
relations between the different noise moments. Subsection 2.2.2 examines the operators of which
single-mode GPS are eigenstates, these being determined by the wave function. It establishes thereby
the logical connection between the wave function and the formal definition of a single-mode GPS as a
unitary operator acting on the vacuum state. Subsection 2.2.3 derives the unitary operator that relates
the most general single-mode GPS to the vacuum state, and shows that the most general single-mode
GPS is a single-mode squeezed state. The parameters in the wave function for a single-mode squeezed
state are given explicitly in terms of the two real parameters of the single-mode squeeze operator.
Subsection 2.2.4 considers the most general single-mode Gaussian momentum-space wave function, and
relates its parameters to those of the coordinate-space wave function for a single-mode squeezed state.

2.2.1. The wave function

Consider now the coordinate-space wave function for the most general single-mode Gaussian pure
state, symbolized here by the state vector |u.). The GPS |u,) is an eigenstate of an operator g, whose
general form is discussed below, with complex eigenvalue .. [It will be seen below that g has the form
of the single-mode squeezed annihilation operators a(r, ¢).] The wave function is written in terms of the
dimensionless position variable x, the eigenvalue of the Hermitian operator £. The most general
(normalized) single-mode Gaussian coordinate-space wave function has the form

(x|pe) = N, exp(3i8.) exp(zipoXo) exp(ipox) exp[~37 (x — xo)’] . 221
Here

xo=(0)= [ dextaluP, (22.20)

po=(p) =i [ dx(unn)aaluy), (2.2.20)

—o

are the mean values of the position and momentum, y is a complex number related to the second-order
noise moments of £ and p, 8, is an unobservable phase angle (separated out for reasons discussed
below), and N, is a (real) normalization constant determined by the condition (u,|x,)=1. The
subscript “x”’ on the phase angle 8, serves only to distinguish 8, from the phase angle 8, which appears
in the momentum-space wave function [egs. (2.2.38)-(2.2.41) below] d, has no dependence on x.
Normalizability dictates that

Re(y)=v,>0, (2.2.3)
and the normalization constant N, is equal to
N, = (aly) . (2.2.4)

The most important parameter in the wave function (2.2.1) is the complex number y. The form of the
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wave function tells one that the state |u,.) is an eigenstate of the linear combination £ +1iy™'p, and hence
that y is related to the second-order noise moments of £ and p by

~1((A£ AP)gym + 31 —K(ApY

Y=yt iy = <(A§>)2y> - o¥: Aiﬁ>p: ' Iy (22.52)
The real and imaginary parts of y are therefore equal to

v:=Re(y)= 2((A1)2)2) , y.=Im(y) = :—QA-(—AL%%_# , (2.2.5b)
and the absolute square is

[y = (QPYIA%Y) . (2.2.5¢)
Inverting these expressions gives the second-order noise moments of X and p in terms of y:

(@)= 2y, {@pP)=[RRe(y NI =1y2y) ",

QX AP)ym = —(2v1) 72 (2.2.6)
The normalization constant N, can thus be rewritten as

N, = (mly) ™" = Qu(@2y) ™. (2.2.7)

That the state |x,) is an eigenstate of £+iy~'p means that it is also an eigenstate of the operator
a+(y+1)'(y—-1a'. The second-order noise moments of a and a’ are therefore more naturally
expressed in terms of the complex number

,y_lz _(“ 1)2'\‘ :(ﬁ 12}_1
y+1 (AaP)+3 —((Aaa"y)’

Ir'= (2.2.8)

Inverting these expressions gives the second-order noise moments of a in terms of both /" and y:
(Aay=-A-IPY' M ==(y*+ Dédy) (v - 1), (2.2.9a)
(aaP)=3(1+|FP)A- TP = 1+ |yP)dy) ™. (2.2.9b)

Note also that
1= TP =d4yly+172; (2.2.10)

hence normalizability dictates that |I'] < 1.
From the above relations one can see that only two of the three real pieces of information in the
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second-order noise moments for a single-mode GPS are independent, since
(ARPXAPY) =3+ (A% Ap)ym = (A% APXAP A%), (2.2.11a)
(AaPy =3+ K@aP)f (2.2.11b)

[cf. egs. (2.1.6)]. These relations are made more obvious below [egs. (2.2.31), (2.2.32)].

The remaining parameter in the wave function (2.2.1) is the phase angle §,; in general it can be any
real number. The phase angle 8, is unobservable, but for a state defined as a particular unitary operator
acting on the vacuum state it has a well-defined value, provided one assigns a phase angle to the
vacuum-state wave function. The reason that the phase factor exp(3id,) separates naturally from the
rest of the overall phase factor in the wave function lies with the definition (2.1.14) of the single-mode
displacement operator. That definition, together with the correspondence p—~ —id, [eq. (2.1.2)], implies
that if one “displaces” any single-mode pure state |¥), by operating on it with the single-mode
displacement operator D{(a, 1), the resulting wave function is related to the original wave function
(x| ¥) in the following way:

(x|D(a, )| W)= exp(~—3ipoXo) exp(ixpo)x — xo| ¥) . (2.2.12)

Formally, therefore, one way to obtain an arbitrary single-mode pure state | ¥, ) with complex amplitude
w is to operate with the displacement operator D(a, u) on a state | ¥o) = Uq|0) that has the desired noise
properties but has zero complex amplitude ({0| U, alU,|0) = 0):

|%,.) = D(a, u)Usl0) (2.2.13)
The property (2.1.16) of the displacement operator then ensures that |¥, ) has complex amplitude g,
(P la|V.)=n. (2.2.14)

Any normalized single-mode pure state with complex amplitude x4 can be defined by an expression
like (2.2.13). The advantage of this definition is that the state’s mean values x, and p, (or the complex
amplitude w) are determined solely by the displacement operator D(a, u), and its noise moments of a
and a' are determined solely by the unitary operator U,. Any normalized single-mode GPS |u,) with
complex amplitude u can therefore be formally defined by

) = D(a, 1)U, 0). (22.15)

Note the following three properties of U,: First, it is uniquely defined only up to (right-hand)
multiplication by a rotation operator R(6) and an overall phase factor. Second, since it defines the noise
moments of a and a' (or £ and p) for the GPS |u,), it has associated with it two independent real
parameters (over and above that of a rotation operator and phase factor). Third, since the state |u,) has
complex amplitude u, the expectation value (0| U, aU,|0) must vanish.

The phase factor exp(3i8,) in the wave function (x|u,) is given, from egs. (2.2.1) and (2.2.12), by

exp(3id,) = (x = 0|U, 0)/|x = 0| U, [0) . (2.2.16)
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The phase angle 8, has no dependence on the complex amplitude u, provided U, does not; any
dependence of U, on p is artificial, however, in the sense that it does not affect the state’s complex
amplitude (a). Consider, for illustration, the coherent state | )., = D(a, )|0) [eq. (1.14)], for which the
operator U, is the identity operator. Equation (2.2.12) says that the wave function for the coherent state
|4 )eon 1s related to the vacuum-state wave function (x|0) by

(x| & )eon = €XP(—3ipoXo) EXP(ixpo)x — Xo|0), (2.2.17)

so the phase angle &, for a coherent-state wave function is just equal to the phase angle §, assigned to the
vacuum-state coordinate-space wave function; conventionally, §, is set equal to zero.

2.2.2. Operators of which single-mode GPS are eigenstates

The form of its wave function shows that a single-mode GPS |u,) is an eigenstate of an operator g
that is proportional to the linear combinations £+iy~'p or a + I'a’. The label g, for the GPS |u,) is
chosen to be the eigenvalue of g. Thus, one can write the following relations:

glug) = pely) (2.2.18a)
gxit+iypxa+rla’, (2.2.18b)
Bg & Xo+iy pooc u+ ™. (2.2.18¢)

It is instructive to consider the general form for the operators g of which the single-mode GPS |, ) is an
eigenstate:

g=patpa’=pla+rla’)
=p,Xt+ipp=p,(X+iy'p). (2.2.19a)
Here p,, p., p., and p, are complex numbers, related to each other by

p.=2"(p,xtp), p,=27"ptp). (2.2.19b)

The eigenvalue u, is related to the complex amplitude x and the mean position and momentum by
similar relations,

Kg = Poft + Pspt™ = ppXo T ippo . (2.2.20)

Inverting egs. (2.2.19a,b) leads to the following expressions for a and the complex amplitude x in terms
of g and the eigenvalue u,:

a=g g (ptg—pg"), (2.2.21a)

p=(ay=g g1 (ptps — p3) . (2.2.21b)
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These relations imply the important equality

D(a, p)=D(g g 8" ' ue) . (2222)

The equality (2.2.22) enables one to see explicitly how the form of the unitary operator U,, which
defines a single-mode GPS |u,) through eq. (2.2.15), is determined by the form of the operators g. To
see this, begin with an alternative definition for the GPS |u,). First, assume that |u,) is related to the
vacuum state by some unitary operator U:

gy = U|0). ' (2.2.23a)
It is then convenient to define another unitary operator U, by

U= U,D(a, u,), (2.2.23b)
so that the state |, ) is equal to the operator U, acting on the coherent state |, )con,

ltte) = UgD(a, 11)|0) = Ug|itg)eon - (2.2.24)

[The equality (2.2.22) will be seen to ensure that the operator U, defined here is the same as that in eq.
(2.2.15).] It is then consistent with the eigenvalue equation (2.2.18a) that the operator g be unitarily
related to the annihilation operator a through the operator U,:

g= UgaUgT . (2225)

The form of U, is thus determined by the form of the operators g. The unitarity of U, ensures that
[g,g']1=[a, a'] = 1. This, together with the form (2.2.19a) of g, implies the equality

D(a, p) = D(g, p,) (2.2.26)

[eq. (2.2.22)], which in turn proves the equivalence of the definitions (2.2.15) and (2.2.24) for |, ). Thus,
any single-mode GPS |u,) has the following two equivalent definitions:

lue) = D(a, w)Ug0) = UpD(a, p)|0) = Up|ttg)eon - (2.2.27)

An equivalent line of reasoning has been used by Stoler [12] in a discussion of single-mode MUS
(single-mode squeezed states with ¢ = 0).

Return now to the general forms (2.2.19a) for the operators g of which single-mode GPS are
eigenstates. Two of the four real parameters in the expressions (2.2.19a) for g are determined by the
wave function (x| u,), which specifies the ratios

plpx=7v, pdp.=T. (2.2.28)

[It will be seen that these parameters specify the squeeze factor r and squeeze angle ¢.] The third real
parameter in g is partially determined by the requirement that g have a complete (or overcomplete) set
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of normalizable eigenstates, i.e., that the commutator [ g, g'] be a positive real number (see appendix C).
It is determined completely if one specifies that g be unitarily related to the annihilation operator a [eq.
(2.2.25)], which implies that

[g.8"1=[a a’l=1. (2.2.29)
The commutator [g, g'] can be written in the following different ways, using egs. (2.2.5) and (2.2.8):
(& "] = 2Re(p.*p,) = 2lp:[y1 = oA %))
= 2lp," Re(y™") = |p, (AP
= lpd? = lpJ* = (1= ITP) = o ((Aal) +2)"
=12 = 1) = pL(lAaf)—2)
= pipl T (1= IIP) = —pipl(Aay) (2.2.30)
[egs. (2.2.5) and (2.2.8)]. Thus, the condition that g be unitarily related to a [eq. (2.2.29)] implies that

Re(p.*p,) =3,  lpf—Ipf=1. (2.2.31)

The expressions (2.2.30) show that the operators g have normalizable eigenstates—i.c., [g g'] is a
positive real number - if and only if y, >0, or |I'| <1; this is equivalent to the condition that the wave
function (x|u,) be normalizable [eq. (2.2.3)]. This condition also requires that the numbers p,, p,, and p.
be nonzero. The only remaining parameter in g is an overall multiplicative phase factor. Multiplying g
by a phase factor € is equivalent to multiplying U, (on the right) by a rotation operator R(8). The
definition (2.2.27) of |u,) shows that this freedom reflects the fact that a coherent state remains a
coherent state when multiplied by a rotation operator [eq. (2.1.20)].

The expressions (2.2.30) for the commutator [g, g'] reveal the following simple relations between the
second-order noise moments of a, a, %, and p and the numbers p,, p,, p., and p, that define operators g
unitarily related to a:

@)y =lp.P,  (@PP) =lpl"s (A% Ap)eym = —Im(p*p,), (2.2.32a)
((Aa)’)=—p*p., (2.2.32b)
(AaP)=3(p +pd*) = lpf — 2= lpf +3 (2.2.32¢)

[cf. egs. (2.2.6) and (2.2.9)]. These expressions make obvious the equalities (2.2.11) satisfied by the
second-order noise moments.

2.2.3. Unitary relation of single-mode GPS to the vacuum state
The form of the unitary operator U, in the definition (2.2.27) of the single-mode GPS |u,) is
determined by the transformation (2.2.25) and the form of g [eqgs. (2.2.19a), (2.2.31)]. The linearity and
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absence of any additive constants in the transformation imply that U, = exp[-iH, 1], where H," is a
(Hermitian) linear combination of the three operators a'a, a® and a™. That is, the generator H," of
U, has the general form H,"+ H,® defined in the Introduction [egs. (1.1)-(1.4)]. It is shown in
subsection 2.3 and appendix A that the operator U, can always be written as a product of a single-mode
squeeze operator and a single-mode rotation operator (and an unobservable overall phase factor). The
rotation operator can be placed either to the right or left of the squeeze operator, without changing the
general form of U, [eq. (2.1.25)]. When placed to the right of the squeeze operator, it acts like the
identity operator on the vacuum state and hence is inconsequential. The rotation operator can therefore
be neglected in the general form for U, Hence the operator U, that relates the most general
single-mode GPS to a single-mode coherent state is a single-mode squeeze operator S;(r, ¢). The most
general single-mode GPS is that state defined by eq. (2.2.27) with U, = S§,(r, ¢); i.e., it is the SMSS

}Ma>(r, @) = D(a’ :u)Sl(ra ‘P)'(» = Sl(r, ‘p)lﬂa>coh (2233)

[eq. (1.16)]. A single-mode GPS is thus completely defined by its complex amplitude w and the values of

its two real parameters r and ¢.
The SMSS |4 ). ») 1s an eigenstate of the squeezed annihilation operator

a(r, o) = Si(r, 9)aS,'(r, o) = a cosh r + a* e** sinh r (2.2.34a)
= 2""*(cosh r + €** sinh r)£ +i27"*(cosh r — ¢ sinh r)p (2.2.34b)

[eq. (2.1.23a); cf. eq. (2.2.19a)]. The complex numbers p., p,, I and p,, p,, ¥, which define the noise
moments of a, a', %, and p, are therefore related to r and ¢ by

p.=coshr, p,=e**sinhr; pp =2""?(cosh r+e*¢ sinh r); (2.2.35a)

I'=p/p.=e*tanhr, y=p,)/p, = (coshr+e* sinhr)/(cosh r—e** sinhr). (2.2.35b)
The complex amplitude x and the eigenvalue u, are related to each other by

pw={(a)=p,coshr—pu*e* sinhr, (2.2.36a)

Mo = cosh r+ u* e*® sinh r (2.2.36b)
[egs. (2.2.20) and (2.2.21b)]. The second-order noise moments of a SMSS in terms of r and ¢ are
obtained by inserting the expressions (2.2.35) for p., p,, p,, and p, into egs. (2.2.32); they were given in
eqs. (2.1.34) and (2.1.35).

The phase angle 8, in the coordinate-space wave function for the SMSS |u.), ., can be obtained
from eq. (2.2.16). The calculation is described in appendix B. The result is

(cosh r—e #* sinh r)'? _ (p,*)'?

lis,) = , = _ 2237
exp(zid,) |cosh r— e~#¢ sinh r|'? 1 ( :
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2.2.4. Single-mode momentum-space Gaussian wave function

To conclude this discussion of single-mode Gaussian wave functions, consider briefly the momentum-
space wave function for a single-mode Gaussian pure state, (p|u,), obtained by Fourier transforming
(x|mg) [eq. (2.2.1)]; here the dimensionless momentum variable p is the eigenvalue of the Hermitian
operator p. The momentum-space wave function has the following form:

(plu=@m ™ | dxe (x|

= X, exp(-3i8,) exp(3ipoxo) exp(~ixep) exp[—(p — po)’/2v], (2.2.38a)
where the (real) normalization constant X, is
N, = (mlyPly) " = Qui(Apy) (2.2.38b)

[cf. egs. (2.2.1) and (2.2.7)]. The phase angle 6, is related to the coordinate-space phase angle 8, by

: N o T1(AE Ap)ymt 3i)
exp(18,) = exp(—i6,) — = exp(—ié, —— —. 2.2.39
P = exp (10N o = P10 a1 22%)
For the single-mode squeezed state |u, ). . the phase factor exp(—3i8,) is therefore
) (cosh r+ e #®sinh r)'?  (p})'*
—3i8,) = - =t 2240
exp(~10,) lcosh r+e7%% sinh r|'> |, |"? ( )
The position and momentum probabilities have the usual Gaussian forms:
x| o) = QALY exp[—(x — xo)’/2((A%))] , (2.2.41a)
Kplugh? = @a{(APY)) ™ expl—(p — pof'I2A(APY)] - (2.2.41b)

2.3. Two-component vector notation for single-mode GPS

This section describes a two-component vector notation that serves as the basis for an efficient and
powerful way of characterizing all single-mode states (pure or mixed) with Gaussian noise statistics.
Subsection 2.3.1 defines the fundamental vectors and two-dimensional matrices. Subsection 2.3.2 writes
the unitary operators and transformations associated with single-mode GPS in the vector notation, and
uses the vector notation to derive many useful properties of the single-mode displacement, rotation, and
squeeze operators. Subsection 2.3.3 discusses the group theoretical significances of the transformation
matrices that arise from unitary transformations by single-mode rotation and squeeze operators.
Subsection 2.3.4 defines two-dimensional second-order noise matrices and discusses some of their
important properties. Subsection 2.3.5 uses the vector notation to derive the unitary evolution operator
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associated with the most general combination of interaction Hamiltonians that can produce a single-
mode GPS. This operator is shown to be expressible as the product of single-mode displacement,
squeeze, and rotation operators. It is thus proved rigorously that the most general single-mode GPS is a
single-mode squeezed state.

2.3.1. Fundamental vectors and matrices

The previous discussion has shown that the unitary operators that relate single-mode GPS to the
vacuum state and to other single-mode GPS are rotation, displacement, and single-mode squeeze
operators. Since these operators induce linear transformations on a and a* (or £ and p), it is useful to
define the two-component operator column vectors [29, 16, 33, 20]

a,= (aT> , X, = C) = Aa,, (2.3.1a)
a 14
—1/2 1 1 -1
A=V ( _ _):(A) . (2.3.1b)
-1 1

The expectation values of these operator column vectors are column vectors whose components are
complex numbers (for a,), or real numbers (for x,):

H=(a,)= (:*>

The adjoints of the operator column vectors are the row vectors

£=(%)= (x") = Ap,. 2.32)

al=(a'a), #=@p)=iT, 2.33)

where a superscript “T” means transpose. The transpose of the adjoint of an operator column vector is

k99,

denoted by a superscript “*”’:

+

@r=ai=(4).  @r=s=(;)-4 34

Similar definitions hold for column vectors of complex numbers. Note that the product of a column
vector and a row vector, e.g., a.a', is a tensor product (i.e., a two-dimensional matrix), whereas the
product of a row vector and a column vector, e.g., ala,, is a scalar product (i.e., an operator or number).

There are three two-dimensional matrices, in addition to the identity matrix 1, that arise naturally
with this vector notation. They are the Pauli matrices oy, o5, o3,

S R

They satisfy

g,0; = 8;1 + g0, LLk=1,2,3. (2.3.5b)



348 B.L. Schumaker, Quantum mechanical pure states with Gaussian wave functions

It is useful to define rotated versions of ¢; and o,:

. 0 e
0, =0,C082¢ — g,8In2¢ = < e ) , (2.3.6a)
e
, 0 —ie¥
T oy = 0y i 20 + 05 COS 200 = <ie’2“" . ) . (2.3.6b)

Note that [0'4,, (T‘p_.,,./4] = [0'1, 0'2] = 2i(T3.
The commutation relations for a, a' and £ p are conveniently expressed by the Hermitian
commutator matrices

[as’ a:] = asaz - (ataI)T = 03, (2373.)
[£, £5] = 247 - (££7) = AgzA" = —0,. (2.3.7b)

2.3.2. Unitary operators and transformations
The (single-mode) rotation, displacement, and squeeze operators are expressed in vector notation by

R(6)=exp[—ifa’a] = exp(3i6) exp[—3i0ala,] (2.3.8a)
D(a, p)=exp[pa’ — p*a] = explalosu,], (2.3.8b)
“Heg? — eBeq™)| = expl—ziralo,_ .ua,]. (2.3.8¢)

$i(r, @) =explar(e

A unitary transformation by the displacement operator on the components of the column vectors a,
or X, results in the addition of a constant column vector:

D(a, :u‘)asDT(‘L ,LL) =4y M, D(d, /"’)stT(a’ /L) =X - & (239)

[eq. (2.1.16)]. Unitary transformations by rotation operators and squeeze operators result in matrix
transformations of a; and ¥. An easy way to obtain these transformation matrices is to note the
following general relation, for arbitrary two-dimensional matrix K, which follows from the commutator
matrix [a,, al] = o3

[alKa,, a,] = Koa;, Ky=-03K+00,K'0))= -0 Tt K+[K, 73] . (2.3.10a)
This implies that
exp(a!Ka,)a, exp(-a’'Ka,) = e¥a,. (2.3.10b)

The matrix transformations induced on the column vectors a, and £, by the rotation operator R(#) are
therefore
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R(6)a,R'(8) = (Zf(‘?)) = explifos)a, = a,(6) , (23.11a)

R(6),R"(9)= (;EZ;) = A explifos)ATE = exp(—i60,)£, = £,(6) ; (2.3.11b)
e 0 . 6 -sind

expl6o)= () ) exp(=ifor) = (& ) 2.3.11¢)

[egs. (2.1.10)).
The matrix transformations induced on the column vectors a, and &, by the single-mode squeeze
operator Sy(r, ¢) are '

a(r,
Sl(r, gD)asSl?(ry §D) = ( 1‘( (P)> = C',tpas = as(ri (0) ) (23123)
a'(r, @)
h 4 sinh
C.= ( _C.OS ) ’ ¢ s r> = cosh r1+sinh ro, = exp(ro,) ; (2.3.12b)
' e 2 sinhr coshr
Sl(r’ go)'esSIT(r’ (D) = ACr ‘pATx’:\s ’ (23133)
cosh 7+ sinh r cos 2¢ sinh r sin 2¢
AGAT=(" | )
’ sinh 7 sin 2¢ cosh r—sinh r cos 2¢
= exp[r(os cos 2¢ + oy sin 2¢)] (2.3.13b)

[eq. (2.3.1b)]. The Hermitian matrix C, , has the following important properties:

Cro=Cro=C,prmn=05C ,03; (2.3.14a)
Coo = exp(ron) = (c?sh r sinh r> , C. o= exp(—ros) = ( c.0§h r isinh r> : (23.14b)
sinh r cosh r —isinhr coshr
C., = explip'as)C,, . exp(=ig'os) ; (23.14¢)
CoCro=Crire (2.3.14d)

(see also appendix A of ref. [20]).

Many properties of the single-mode squeeze operator S;(r, ¢) that would otherwise be difficult to see
can be found from properties of the transformation matrix C, .. For example, one can factor S;(r, ¢)
into a product of exponentials of the operators 3a> 3a'™, and (aa"),,, simply by factoring the matrix
C., . into exponentials of matrices (linear combinations of the Pauli matrices) that have a commutator

algebra identical to that of these operators (see, e.g., refs. [15, 48] or [20]). Examples of such matrices
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are —o_, o,, and o3, where 0. = 3(0, *i0>). These factored forms are listed in appendix B [eq. (B.12)]
of ref. [20]; one of the most useful is

S.(r, ) = (cosh r) "> exp(—3T'a"?) exp[—In(cosh r)a’a]) exp(3T*a®), I'=e**tanhr. (2.3.15)

It is useful, for example, in expressing a SMSS as a sum over number states (a technique useful for
calculating the phase factor exp(3i8,) in the wave function for a SMSS; see appendix B). Also, the
product of two different squeeze operators can be found from the product of two different matrices C, .
In this way one finds that any product of single-mode squeeze operators can be expressed as the product
of one single-mode squeeze operator and one rotation operator, by use of the following rule:

S, @)Si(r, @)= € °R(0)S,(F, ¢) = €7 S\(F, ¢ — O)R(6) . (2.3.16a)
The real numbers 6, 7, and ¢ are related to r', ¢’, r, and ¢ by the matrix equality

e'® cosh 7 e'®* Dginh F

G ; exp(ifas) = ( ) =GC..Cr o (2.3.16b)

e PDginhF e *’coshF
[eq. (B14) of ref. [20]]. For the special case ¢ = ¢’ one finds the simple relation

Si(r, @)S(r', @)= Si(r+ 7, ¢) (2.3.16¢)
[cf. eq. (2.3.14d)].

The vector notation simplifies the task of ordering noncommuting unitary operators. For example,
using the matrix transformations given above one finds that

R(6)D(a, u) = expla’ exp(—ifos)asp, |R(6) = D(a, e °u)R(0), (2.3.17a)
R(0)S:(r, ¢) = explsra exp(~i603)a ,— a exp(ifos)a,]R(6)

= exp[278.0,_o_naa,)R(0) = Sy(r, o — O)R(6), (2.3.17b)
D(a, w)Si(r, ) = Si(r, p) explalC_, ,oap,]

= Si(r, ¢) explatosC, p,) = Si(r, ¢)D(a, pa)

Bos = (”‘;) = C, oHs (2.3.17¢)

o

[cf. egs. (2.1.17), (2.1.25), (2.1.26)].

2.3.3. Group theoretical properties of transformation matrices

The transformation matrices (2.3.11)-(2.3.13) arise naturally, without specific reference to the
single-mode rotation and squeeze operators, from the requirement that a unitary transformation on a
(or £ and p) preserve the commutators (2.3.7). Consider, for example, the real, two-dimensional
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matrices M that describe transformations induced on the components of the real column vector £, by a
unitary operator U: M% = Ui,U" (this_approach has also been used by Milburn, ref. [33]). The
unitarity of U implies that the matrices M preserve the antisymmetric commutator matrix [£,, £1] = — 0
[eq. (2.3.7b)]:

Mo M™ = o,= MTo,M . (2.3.18a)

The real matrices M that satisfy this condition have unity determinant. They comprise the three-
parameter symplectic group Sp(2, R) [41]. Transformations induced by the same unitary operator U on
the components of the column vector a, = A'%, are described by complex two-dimensional matrices M,
Ma, = Ua,U". The matrices M are unitarily related to the real matrices M through the matrix A [eq.
(2.3.1b)]:

M=ATMA. (2.3.18b)

The matrices M have unity determinant and preserve the Hermitian commutator matrix [a,, a}] = o5
[eq. (2.3.7a)]:

M0'3MT =03= MTO':;M. (2.3.18C)

They comprise the three-parameter, noncompact Lie group SU(1, 1) [41], isomorphic to Sp(2, R).

The linearity of these matrix transformations implies that the unitary operator U is an exponential of
the three bilinear combinations of a and a' (or £ and p)— a?, a™, and a'a [or #2, /7, and (£p)sym)- The
three real parameters that characterize the transformation matrices M and M are thus related to the
three parameters of the unitary operator, i.e., to the coefficients of the three bilinear combinations. The
most general such unitary operator can be expressed as a product of a single-mode squeeze and rotation
operator, U = S(r, p)R(0). Hence, from the preceding discussion of the single-mode squeeze and
rotation operators, the transformation matrices M have the general form

e®coshr  €@*Psinh r)

: . 2.3.18d
e i@*Oginhr e ®coshr ( )

M = exp(i605)C,, = C, .0 Xp(—ifos) = (

where 6, r, and ¢ are real, continuous parameters [egs. (2.3.11)-(2.3.13))].

It is instructive to obtain the general form (2.3.18d) for the matrices M in another way. Begin by
noting that any two-dimensional matrix M that describes a linear transformation on the components of
the column vector a, must satisfy

M*= O'IMO'I N (23.193)

since a, = o,a%. This implies that the matrix M has the general form

M= (; f) , (2.3.19b)

where @ and B are complex numbers. It also implies the following equality:
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MaosM oy = Mo,M o . (2.3.19¢)

Because the matrix M describes a unitary transformation on the components of a,, it preserves both the
Hermitian commutator matrix [a,, a,'] = o5 [eq. (2.3.18¢)] and the antisymmetric commutator matrix
[a, a,"] = i02; i.e., both expressions in eq. (2.3.19c) are equal to the identity matrix. But any two-
dimensional matrix satisfies

Mo:M" o, = (det M)1 . (2.3.19d)

Hence unitarity implies that det M = 1. The matrices M that describe unitary transformations on the
components of the column vector a, therefore have the general form (2.3.19b) with unity determinant -
i.e., they have the general form (2.3.18d).

2.3.4. Second-order noise matrices

The vector notation is particularly useful for calculating second-order noise moments of a, a, £, and
p. The two-dimensional matrix that contains all second-order noise moments of a and a' is the
Hermitian matrix

D, =(0a, Aal)ym=3((Aa, Aal) +(Aa* AaT)")

(el (0
<

(Aa'y) (IAa|2)> =4 (2.3.20)

The two-dimensional matrix that contains all second-order noise moments of £ and p is the real,
symmetric covariance matrix
8. = (A%, A% )ym =2((A%, AXT) + (A%, AXT)T)

:< (@zy) Az Aﬁ>sym>: AGA = 5= §T. (2.321)

(AXAp)ym (AP

The relations (2.2.11) imply that for single-mode GPS these matrices satisfy
BosB03=11, (2.3.22a)
S.0.80,=31. (2.3.22b)

Hence their determinants are equal to ;. For a coherent state, both are proportional to the identity
matrix:

Dscon = Bscon =11 (2.3.23)

[egs. (2.1.33)].
The noise matrices &, and 8, for a state | ¥) are related to those of the rotated state R(6)|¥) in the
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following ways:
(RT(O)(AGS Aaz)symR(a» = (Aas (_ 0) AGZ(_ 9))sym = exp(—i00'3) Qs exp(i 003)

o (AaP) e **(Aap)
e2i(9<(AaT)2> (}AaF)

) =3.(-6); (2.3.24a)
(RT(0)A%, AXT)ymR(0)) = (A%, (= 0) AXS (= 0))sym
= exp(ifo,) 8, exp(—ifo,) = 8,(—0). (2.3.24b)
They are related to those of the transformed state S;(r, ¢ )| ¥) by
(8,(r, o)(Aa, Aal)ymSi(r, o)) = C_, ,B.C_, ,, (2.3.25a)
($7(r, )AL AR ymSi(r, @)y = AC_, , A" SAC, A" (2.3.25b)

This immediately tells one, for example, that the noise matrices for a single-mode squeezed state |u,), ,
are

gs = %C%r, @ = %C—Zr,w = %O-BCZr, (p0-3 ] (23263)
8,=3AC,, ,A'=30,AC, A0, (2.3.26b)

[eq. (2.3.23); cf. egs. (2.1.34), (2.1.35)]. The squeezing effect is clearly visible in the transformation of the
noise matrix 8, [eq. (2.3.25b)]. When ¢ = 0, this transformation says that

($1'(r, 0)(A %, A%D)ymSi(r, 0)) = exp(—r3).8; exp(=ras)

—2r A\2 A AB
-(; Az (ardp ?“"‘) . (2.3.27)
(A2 Ap)ym € ((AP))
2.3.5. Evolution operator for general single-mode GPS
Finally, the vector notation enables one to see with relative ease how the unitary operator whose
generator is a linear combination of the Hermitian forms Hg®, H,;, and H, factors into the product
of a single-mode squeeze, rotation and displacement operator (and an overall phase factor). By giving
these generators arbitrary time dependences, one can calculate the evolution operator associated with
the most general combination of Hamiltonians that can produce single-mode GPS. This result is given
here briefly; details that are important for the calculation are presented in appendix A. Equivalent
results have been obtained by Yuen [16].
The single-mode rotation Hamiltonian Hg"(¢) is expressed in vector notation by

HP()=w(t)a’a = ;0(t)(ala, - 1), (2.3.282)

where w(f) is an arbitrary real-valued function of time ¢ [egs. (1.3)]. The linear and quadratic
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Hamiltonians H,®(¢) and H,*(¢) are expressed by

HO() =ialoh,, A= ( ;((’t))) ; (2.3.28b)

HZ(I)(t) = %K(t)az'o-tpx—w/“as b} (2.3.28(:)

where A is a complex-valued function of time, and « and ¢, are real-valued functions of time [egs. (1.4),

(2.3.6b)].
The evolution operator U(t) is the solution to the equation

6, U(1) = [He()+ H() + EO(O)U®G), U©O)=1. (2.3.29)

It can be written as a product (in any order) of a single-mode squeeze, rotation, and displacement
operator, and an overall phase factor. For illustration, consider the following two forms for U():

U(t) = €”D(a, u)Si(r, 9)R(6) = €°Sy(r, p)R(8)D(a, ) (2.3.30)

[cf. eq. (2.2.27)]. Here 6, r, ¢, and 6 are real-valued functions of time, and x and y, are complex-valued
functions of time. For notational convenience, explicit reference to the time dependence of these
functions is omitted, e.g., r = r(¢), etc. The state U(#)|0) is an eigenstate of an operator g = U(f)aU’(¢)
(with eigenvalue u,), whose relation to a is described by the vector relation

&= (gi) = S,(r, 9)R(0)a,R"(6)S,'(r, ) = exp(i603)C, ,a, (2.3.31a)

[egs. (2.3.11), (2.3.12)]. The complex eigenvalue u, is therefore related to the complex amplitude
n ={(a) by

Moo = ('“‘s ) = exp(i603)C, oits - (2.3.31b)
U

*
g

The calculations in appendix A show that the functions r, ¢, 6, g, (or p), and & are related to the
Hamiltonian functions «, ¢., », and A by the following matrix, vector, and scalar equalities:

10y ma— ¢11+(¢ + 0)Cop = @1+ KOy, — s, (2.3.32a)
figs = €xp(ifos)C, A, = A, (2.3.32b)
8+3(0 — 0) = —3ip}opig = Im(p 52,) = Im(n*)). (2.3.32¢)

(Dots denote derivatives with respect to time.) The initial conditions, dictated by U(0) =1, are

5(0)= r(0)= 6(0) = 1, (0)= u(0)=0. (2.3.33)
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For illustration, consider the case ¢, = ¢, — [ @(f) dt, ¢,, = constant. Then the matrix equality (2.3.32a)
gives

t

rzfx(t)dt, — osz(t)dz. (2334)

0

If no driving is present in this case [A = 0], then u, = &6 =0, and U(£)= Si(r, ¢ )R(8) = R(0)S:(r, ¢, )
Suppose now that « is constant, and A = A, exp[—i [¢ @(f) dt], Ao = constant [when w(f)= {2 = constant,
this corresponds to driving the oscillator on resonance]. Then r = «¢, the angles ¢ and  are again given
by eq. (2.3.34), and the number u, is give by the vector relation

: A
Pes = f dt Cu, g, Aos = kC.. o~ 1]0%)(03, Ay = ()‘2) . (2.3.35)
o 0
The phase angle § is
5 = (2iK)_1Agsa-(p.00’3 [J’ (1 - CKI. ‘P“O)] AOs
0
= k(¢ — k' sinh k) Im[exp(—2ig,,)A3] - (2.3.36)

3. Two-mode Gaussian pure states

Proceed now to a discussion of two-mode Gaussian pure states — states produced from two harmonic
oscillators, each in its ground state, by physical processes whose interaction Hamiltonians are linear or
quadratic in the annihilation and creation operators for the two oscillators. The discussion parallels as
closely as possible in structure the preceding discussion of single-mode GPS. Subsection 3.1 is an
introduction. It concentrates on the definitions and properties of the fundamental unitary operators
associated with two-mode GPS, and describes in detail some special kinds of two-mode GPS.
Subsection 3.2 considers the most general two-mode Gaussian wave function, and from it shows that the
most general two-mode GPS can be expressed as a product of two single-mode squeeze operators and
one two-mode squeeze operator acting on a two-mode coherent state. Subsection 3.3 defines and uses a
four-component vector notation to develop an efficient and powerful description of all two-mode states
(pure or mixed) that have Gaussian noise statistics.

3.1. Introduction
This section is composed of seven subsections. Subsection 3.1.1 is concerned with notation and

definitions. It is itself divided into three parts: Part (a) discusses choices for natural “position” and
“momentum variables” for two oscillators of different frequencies. Part (b) introduces a two-component
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vector notation, used throughout this section, that simplifies the description of two-mode GPS and
makes it resemble that of single-mode GPS. Part (c) defines two-dimensional matrices of second-order
noise moments for two-mode states. Subsections 3.1.2-3.1.6 look closely at the unitary operators that
relate two-mode GPS to the (two-mode) vacuum state; these include rotation, mixing, and displacement
operators, two single-mode squeeze operators, and a two-mode squeeze operator. Subsection 3.1.7
derives the second-order noise moments of the most general two-mode GPS, and discusses three special
kinds of two-mode GPS: two-mode minimum-uncertainty states (MUS), two-mode states with time-
stationary (TS) noise, and two-mode states with “‘time-stationary quadrature-phase”” (TSQP) noise.

3.1.1. Notation and definitions

(a) Dimensionless position and momentum variables

Consider now two oscillators, with characteristic frequencies w, and o (w. = w_). Each oscillator
can be described by its own set of annihilation and creation operators-a,, a,’ and a_, a_"-or,
equivalently, by the dimensionless coordinate and momentum operators £,, p. and £_, p_. These
operators are related to each other by

£.=2""a.+a.", p.=2""(-ia.+ia."), (3.1.1a)

a.=2""(%. +ip.) (3.1.1b)
[egs. (2.1.1)]. They obey the commutation relations

la.,a.1=1, [%,p.]=1; (3.1.2a)

la., a-]=[a., a-"| = [£., p<] = [£,, ] = [ B2, p-]= 0. (3.1.2b)

While the operators %, and £_ (p, and p_) are both dimensionless, they do not have the same
“units”, since the natural units of length (momentum) for the two oscillators differ. Dimensionless
position and momentum operators that have compatible units for the two oscillators can be obtained by
dividing the usual dimensional position and momentum operators by new units of length L, and
momentum P,. In general, L, and P, can be chosen quite arbitrarily, subject to the dimensional
restriction LoP, =1 (=#), but there is a natural choice for them. To see this, let the two oscillators be
modeled as masses m. on springs (the result will also hold, however, for the normal modes of a
quantized field). Their natural units of length and momentum are (m.w.) "? and (m.w.)"?, respec-
tively. Now choose quantities m and {2, with dimensions of mass and (time) ™, respectively, and define
Lo=(m0) "2, P,=(m)"?. The dimensionless position and momentum operators Q.. and P. for this
choice are

Q.=A. 4., P.=A.p., (3.1.3a)
Ao =Py (mew.)'? = Lo(mow.)'? = (m./m)(w./0)" . (3.1.30)

Thus, for equal masses with m, = m_ = m, or for normal modes of a quantized field, the natural choice
for A, is (w./£2)"?. For modes of the electromagnetic field, these conjugate variables Q. and P. are the
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Fourier components of the vector potential and its conjugate momentum, the electric field. The free
Hamiltonian for the two modes, written in terms of Q. and P., has the canonical form

H®=310[P,*+ (0. /027 Q.*+ P>+ (w_/02) 0. (3.14)
In most of this discussion of two-mode Gaussian pure states I use the variables £. and p., rather than
Q. and P., because they provide an easy comparison with the previous discussion of single-mode states.
The canonical field variables Q. and P. or, equivalently, the quadrature-phase amplitudes a; and a,

[egs. (1.21) and (1.22)], are useful for describing the special noise properties of two-mode squeezed
states. The variables Q. and P. and the quadrature-phase amplitudes are related by

Re(a)= 202)'[(2+ )0, +(2-¢)Q_],
Re(a,) = 202) (P, + P.),
Im(a,) = 202) (P, - P)),
Im(a,) = —202) ' [(2+ )0, — (2 - £)Q_], (3.1.5a)
Re(e))=3(e; t o),  Im(a)=-i3(e;~ &), j=12. (3.1.5b)
(b) Two-component vector notation
An obvious way to generalize one’s mathematics from a single mode to two modes is to replace the

single-mode annihilation and creation operators a and a' by the two-component operator column
vectors [29, 1]

a= <a+) , a*= <a+T> . (3.1.6)

The column vectors for the dimensionless position and momentum variables £. and p., £ and p, are
related to a and a* by

£E<f+>52‘1/2(a+a*), p

(’f *) — 2 12(Cig +ia*); (3.1.7a)
p-

a=2""*£+ip) (3.1.7b)
[cf. egs. (2.1.1)]. The adjoints and transposes of these column vectors are defined in the usual way (see

subsection 2.3). Similar definitions hold for column vectors of complex numbers; e.g., the column vector
for the complex amplitudes u. and u. is

u=@=("") =2 +ipy), (3.1.82)

where x, and p, are the column vectors for the mean positions x,. and momentums p,., respectively,
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Xo={(f)= (x"*) = 2P+ ), (3.1.8b)
Xo_
po=(p)= (z Oi) =27 (g +ip*) (3.1.8¢)

[cf. eq. 2.1.3)]. This two-component vector notation is used throughout this section in order to present
the two-mode results in a simple form that resembles as closely as possible the single-mode results. For
example, the commutation relations (3.1.2) take on the matrix form

[a,a")=aa"-(a*a"" =1, [a d"|=aa"- (aa")" =[a,,a ]io,=0; (3.1.9a)
(£ p™]= %" — (p£T)" =i,
[£ 7 =[5, p7] =0. (3.1.9b)

(c) Second-order noise moments
For a single mode there are only two relevant Hermitian operators, £ and p (or one complex
operator, a), and hence only three real second-order noise moments to consider - ((AxX)?), ((Ap)*), and
(A% AP)eym, o1, equivalently, ((Aa)?) and (JAal?). For two modes, there are four relevant Hermitian
operators, X. and p., and hence ten real second-order noise moments to consider; six of these are
associated with each of the modes separately, and four describe correlations between the modes. The
four correlated noise moments are (A, AX_), (Ap,. Ap_), and (AX. Aps), or, equivalently, the complex
noise moments (Aa, Aa_) and (Aa, Aa_"). The two-mode analog of the complex number {(Aa)?) is the
complex, symmetric matrix T
2
(Aa.)y) (Aa. Aa_)) _7r (3.1.100)

T=@asan= (e

The two-mode analog of the positive real number (mean-square uncertainty) (|{Aa|’) is the Hermitian matrix

0:

Q=(AaAa")y,=3(AaAa")+3(Aa* Ad")"

(Aa.Py (Aa, Aa ") o .
((Aa_AaJ> <|Aa_y2>) Q (3.1.10b)

[cf. egs. (2.1.4)].
The two-mode analogs of the three real second-order noise moments of £ and p are the three real,

two-dimensional covariance matrices S,, S,, and S,,:

nenen_ ( (QE)) (AR AE)N o 31.11
S, =t = ((AL AR (AR ) x (3.1.11a)
(Ap.Y) (Ap. Aﬁ—>)= T (3.1.11b)

Sr 8p. A5y (@R )T

857 = (
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Sip = (A% APy =3(A£ APT) + 3(AP AXT)T
_ <<Ax+A Apt>sym <§x+ Z§p-> ) . (3.1.11c)
(AX_Ap,) (AZ_Ap_)ym

The matrices S, and S, are positive semi-definite - i.e., their traces and determinants are nonnegative
[47]; they are positive definite, if one excludes eigenstates of X, and £_ or p, and p_. Such states are
excluded here, for although they can be viewed in a formal sense as limiting cases of GPS, they are not
normalizable, since their wave functions are delta functions. Throughout this paper, therefore, S, and S,
are positive definite.

The noise matrices T and Q are related to the covariance matrices S,, S,, and S,, by

T=3(5~$,)+3i(S" + Sy) (3.1.12a)
Q=3(S +8,) +3i(Sy," ~ Sy) (3.1.12b)

[egs. (3.1.1); cf. egs. (2.1.5)]. These matrix equalities are a compact way of writing the following relations
between the second-order noise moments:

(Aa.yy=3[((A%.)") — (Ap)") + 2i(A%. APo)eym] » (3.1.13a)
(Aa.) = 3[(AL) + (AP (3.1.13b)
(Aa, Aa_)=3[(A%, A% )~ (Ap. Ap) +i((A£_ Ap,)+ (A%, AP, (3.1.13c)
(Aa, Aa_"y=[(A%, A%+ (AP, Ap ) +i((A% Ap.)— (A%, Ap)). (3.1.13d)

The total noise of a two-mode GPS is the sum of the mean-square uncertainties,
(Aa,y+{(|Aa_)=Tr Q=3Tr(S, +S,). (3.1.14)

The analog for two-mode states of the inequalities (2.1.6) is a matrix relation between the noise
matrices S, S,, and S,,, or equivalently, between Q and T [49]. This relation says that the real matrix

S.S, —31- 8. (3.1.15a)
and the Hermitian matrix
Q*-3i1-TT* (3.1.15b)

are both positive semi-definite (psd), and they vanish identically if and only if the state is an eigenstate
of two independent kinds of linear combinations of £, £_, p,, and p_ (or a., a_, a,", and a_")-1i.., if
and only if the state is a two-mode Gaussian pure state (see subsection 3.2). Hence for a two-mode GPS
only six of the ten real second-order noise moments are independent; i.e., there are six independent real
parameters associated with the second-order noise moments. Note that the diagonal elements of the
matrices (3.1.15a) and (3.1.15b) are identical. A psd two-dimensional Hermitian matrix must have
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nonnegative diagonal elements, and it is equal to the null matrix if and only if both diagonal elements
vanish. This implies the following two equivalent pairs of inequalities:

(Aa.PY¥ =3+ K(Aa )+ KAa, Aa )P - [(Ba, Aa "), (3.1.16a)

(BEHAPP) = 2+ (Afs AP om + (A%, AP_XAZ AP —(A%, AZXAP, AP.). (3.1.16b)

Equations (3.1.16a) and (3.1.16b) each represent a pair of inequalities (uncertainty principles), one for
the upper (“+”) sign, and one for the lower (‘") sign; the two pairs (not the members of each pair) are
equivalent. Equalities hold in these expressions if and only if the matrices (3.1.15) vanish, i.e., if and
only if the state is a two-mode Gaussian pure state. If the two modes are uncorrelated, these
expressions reduce to the single-mode uncertainty principles (2.1.6) for each mode.

3.1.2. Two-mode rotation operators
Associated with each of the two modes is a single-mode rotation operator,

R.(0)=exp(-ifa.'a.), (3.1.17)

whose properties were discussed in subsection 2.1.2. It is useful to define another pair of commuting
unitary operators, R(#) and R,(#), equivalent to R.(6) and R_(8), as follows:

R.(8)= R.(6)R_(6) = exp(—iba‘a); (3.1.18a)

R.(8)= R.(6)R_'(6) = exp(~iba'osa) . (3.1.18b)

In this paper the operators R,(6) and R,(6) are referred to as the symmetric and antisymmetric
(two-mode) rotation operators, respectively. For notational convenience, denote the general product of
two single-mode rotation operators (angles 6., 6_) by the symbol R(8), and define angles 6, and 6, by

R(0)= R.(6.)R_(A_) = R,(6.)R.(6,) = exp[—ia’0a], (3.1.19a)
0=01+0,0,= (% :) (3.1.19b)
0,=3(6.+6), 6,=3(6,—-6). (3.1.19¢)

For two oscillators characterized by frequencies 2 + &, R(2f)R,(¢t) is the evolution operator associated
with the free Hamiltonian H,® [50],

H?=a’a+ ca’osa, (3.1.20a)

exp[-iH,?t] = R(N1)R.(¢t) . (3.1.20b)
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The rotation operators R,(8) and R,(8) acting on any (two-mode) number eigenstate |n., n_) multiply it
by the phase factors exp[—i(n. + n_)8] and exp[—i(n, — n_)8], respectively; in particular, they leave the
vacuum state unchanged:

R.(0)0)=10),  R.(6)0)=10). (3.1.21)

A unitary transformation generated by the symmetric rotation operator R (8) produces a common
phase change of the annihilation operators - i.e., it transforms a into e'?a, and rotates £ and p into each
other:

R.(6)aR.'(8) = ¢°a = (Ztiz;) , (3.1.22a)
R(OVER(O) = £ o (%(6)

s(8)XR, ()= % cos 6 — p sin 0 = <£ (0)> , (3.1.22b)
RUOPRE) = & 5in 6+ 3 in o (PO

{(0)PR,"(6) = £ sin 6+ psin 6 = (ﬁ (0)> (3.1.22¢)

[egs. (2.1.10)]. The notation here means that each component of the column vector undergoes the
(same) unitary transformation. A unitary transformation generated by the antisymmetric rotation
operator R,(6) produces an opposite phase change of the annihilation operators:

R.(6)aR. (8) = exp(ifos)a = (a“*( (_0;)) , (3.1.23a)
R.(6)FR.'(0) = £ cos - opsin o= 1+(®)

(0)FR.1(0) = £ cos 0~ asp sm@-()2 (_0)>, (3.1.23b)

R.(O)pR, (6) = 5% sin 6+ p cos 6 = ( p-(0) ) . (3.1.23¢)
p-(=0)

The product of two single-mode rotation operators therefore unitarily transforms a in the following
way:

R(8)aR'(0) = (Z* EZ* ;) = exp(i6,) exp(i6,05)a = exp(i0)a = a(6) ; (3.1.24a)
R(0)<R'(6) = (xiiz_b =i(0); (3.1.24b)
R(6)pR'(6) = (ﬁgj) =j(0) (3.1.24c)

[cf. egs. (2.1.10)].
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Both R,(#) and R,() preserve the total number of photons in each mode separately, i.e., they
preserve both the sum and the difference of the number of photons:

(RJ}(8)a'aR(0))={(a'a), (R, (0)a’aR,(0))={(a’a); (3.1.25a)
(RS(8)a'o3aR(0)) = (a'03a),  (R.'(0)a'0:aR,(0))=(a’0sa). (3.1.25b)

They therefore also preserve the total noise of each mode separately. This is seen by replacing a’a in
eq. (3.1.25a) by the operator for the sum of the total noises,

(Aa' Aa),,m=3(Aa’ Aa+Aa" Aa*) = |Aa. P+ |Aa_f?, (3.1.26)
Y.

and replacing a'osa in eq. (3.1.25b) by the operator for the difference in the total noises of the two
modes,

Ad’o;Aa=Ad"os Aa* = |Aa, P —|Aa_f. (3.1.27)
[Recall that the operators Aa. are defined only with reference to-a particular state, which defines (a.);
see comment after eq. (2.1.12b).] The noise matrices T and Q for a state | ¥) are related to those of the

rotated state R(8)|¥), T(—0) and Q(—8), respectively, as follows:

(R'(8) Aa AaR(8)) = (Aa(—0) Aa™(— ) = exp(—i0) T exp(—i6) = T(-0)

- ( exp(—2i¢9+)<(Aa+)2> eXP(—Ziés)<Aa+ Aa->> 5.1.280)
exp(—2i6,)Aa, Aa_) exp(—2i8_)(Aa-)*)
(R'(0)(Aa Aa")y,R(0)) = (Aa(~0) Aa'(— 0))., = exp(~i0)Q exp(iB) = Q(-0)
_ (Aa.P exp(-2i0.)Aa, Aa_")
B <exp(2iea)<Aa_ Aa.") (Aa_P) ) (3.1.28b)

[eq. (3.1.24a); cf. egs. (2.1.12)].

3.1.3. Two-mode displacement operator
The two-mode displacement operator [10, 11] is simply a product of two single-mode displacement
operators,

D(a, p)=D(a., u.)D(a_, n_) = expla’pn — p'a]
= expli(po" % — xo"p)] = exp(—3ipo" xo) explipo" £ — ixo" p] (3.1.29)
[cf. eq. (2.1.14)]. 1t satisfies the following equalities:

D™ '(a, p)=D'(a, p)= D(a, —p)= D(-a p). (3.1.30)
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The properties of D(a, u) follow directly from those of the single-mode displacement operator D(a, u)
(subsection 2.1.3). Most important is the way it unitarily transforms the annihilation operators for the
two modes:

D(a, p)aD'(a, p)=a—p. (3.1.31)

This implies that when the displacement operator acts on a (two-mode) state, it preserves all noise
moments of a. and a.".

Two other properties of the two-mode displacement operator are useful here. They are the
two-mode analogs of the properties (2.1.17)-(2.1.20). First, it is unitarily transformed by the product of
two single-mode rotation operators in the following way:

R(0)D(a, p)R(0)" = D[a(8), u] = D|a, u(-0)] = D(a, exp(-iB)u)

= Dla., p+(=0.)|D[a-, p-(-6)], (3.1.32a)

10+

1(0)=exp(i0)u = exp(if.) exp(i6.03)p = (:m_z i) = (

u+(0+)>

e 0) (3.1.32b)

[egs. (3.1.24a), (3.1.29)]. This transformation shows that the form of the displacement operator is
invariant under unitary transformations of a, and a_ generated by the rotation operators:

D(a, p) = D[a(0), n(9)] . (3.1.33)

Second, the product of two two-mode displacement operators is another two-mode displacement
operator, multiplied by a phase factor:

D(a, w)D(a, i) = expli Im(p" w)|D(a, g+ ') (3.134)

[cf. eq. (2.1.19)]. These properties, like the transformations (3.1.24a) and (3.1.31), show that any
eigenstate of a. or a_ remains an eigenstate of a, or a_ when displaced and/or allowed to evolve freely.
A two-mode coherent state [eq. (1.15)], for example, changes in the following way as it evolves freely:

R(0)|”'>Coh = |”’(_ 0)>coh = |e—i0+/1'+’ e_m—#’—>coh > (3135)
where 0. = (2 x¢)t [cf. eq. (2.1.20)).

3.1.4. Mixing operator
The two-mode mixing operator T(q, x) is defined by

T(q, x) =explg(e **a_"a. — e**a,"a_)] = exp|-iqa'c . a] , (3.1.362)

[egs. (1.10), (2.3.6b)]. It satisfies the following equalities:
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T gx)=T(qx)=T(-q x)=T(g x+37). (3.1.37)

It is called a mixing operator because it unitarily transforms the annihilation operators for the two
modes into each other:

T(q,x)aT (g, x)= F, ,a, (3.1.38a)

c e sin .. ,
F,,= < 4:5 q q) =cosgltisinqo, ..=expigo, ..). (3.1.38b)
' —-e“¥sing cosgq

[Note that the matrix o, appears in both T(qg, x) and the transformation matrix F,, because the
matrix of commutators [a, a’] = 1 is the identity matrix, i.e., because [a'Ka, a] = —Ka; cf. eqgs. (2.3.10).]
The unitary matrix F, , has the following important properties:

F ' =F =F  =Fqyim=0:F, 0, (3.1.39a)
. cos sin ) cos 1sin
F, o= expligo») = ( . 9 q) , F , == €xpligoy) = ( ) 1 q) , (3.1.39b)
—sing cosq 1sing C€OS ¢
F = explixos)F, - exp(=ix'os), (3.1.39¢)
FoxFyx=Faigx. (3.1.39d)

The transformation (3.1.38a) ensures that states unitarily related to eigenstates of a. and a_ by mixing
operators are themselves eigenstates of a, and a_. This shows, for example, that the mixing operator,
like the rotation operators, leaves the vacuum state unchanged:

T(q, x)|0) = |0) . (3.1.40)
This can also be seen from the factored forms for T(g, x) given below [eq. (3.1.45)).
The unitarity of F,, ensures that the mixing operator preserves the total number of photons in the
two modes:
(T'(q, x)a'aT(q, x)) = (a'F, ,F, 'a)=(a'a). (3.1.41a)
It therefore also preserves the total noise of the two modes:

(T'(g x)(Aa" Aa)y T(g, X)) = (A’ Aa)y = {|Aa. )+ (Aa ). (3.1.41b)

The noise matrices T and Q for a state |¥) are related to those of the transformed state T(g, x)|¥) in
the following ways:

(T'(g, x)Aa Aa"T(g, x)) = F, ' TF, ,*, (3.1.42a)

(T'(q, x)(Aa Aa") oy T(g, X)) = F 4 ' OF (3.1.42b)
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[egs. (3.1.38)]. For states whose noise matrix Q is proportional to the identity matrix 1, the total noise
of each mode separately is left unchanged when the state is multiplied by rotation or mixing operators
[egs. (3.1.28b), (3.1.42b)}. Such states include all eigenstates of a. and a_, all two-mode squeezed states,
and all products of two single-mode squeezed states with identical squeeze factors. For the general
two-mode GPS (1.18), however, the total noise of each mode is separately preserved only when the
state is multiplied by a symmetric rotation operators R,(8) or by a particular mixing operator, whose
parameters g and y satisfy

(lAa.P)~(Aa_P))sin g— 2 Re(e **(Aa. Aa_T))cos g =0. (3.1.43)

The mixing operator and the two rotation operators represent all the unitary operators that induce
matrix transformations on the column vector a. The transformation matrices associated with them
comprise the group U(2) of two-dimensional, unitary matrices My, that preserve the identity matrix, i.e.,
that preserve the commutator matrix [a, a'] = 1, My1My" = 1. The most general element of this group
has the form

My = exp(i6;) exp(i6,05)F, , = exp(i6,)F, ,+q, €xp(16,03)
. exp(if,) cos a expli(y + 8,)] sin
~ exp(i6,) ( plify)cosa PliCx + 6.)] q) (3.1.44a)
—exp[—i(2x + 6.)]sing  exp(—ib,)cos q
for real numbers 6, 6., g, and y. The matrix (3.1.44a) is the transformation matrix that results from a
unitary transformation of a by a product of the two rotation operators and a mixing operator, i.e.,

Mya = T(q, x)R(8)aR'(6)T(q, x) . (3.1.44b)

The unitary transformation matrices associated with the mixing operator T(g, y) and the antisymmetric
rotation operator R,(6) form the three-parameter group SU(2), the elements of U(2) with unity
determinant. The underlying Lie algebra for the group SU(2) is that of the operators a_*a,, a.’a_, and
(a-'a_—a,%a,), i.e., the generators of T(q, x) and R.(6).

Properties of the mixing operator can be obtained directly from properties of the matrix F, ,, just as
properties of the single-mode squeeze operator are obtained from properties of the transformation
matrix C,, (see subsection 2.3). For example, the mixing operator can be factored into a product of
exponentials of the operators a_"a,, a,’a_, and (a-Ta_—a,"a,), simply by factoring the matrix F, ,
into exponentials of matrices (linear combinations of the Pauli matrices) that have the same commutator
algebra as these operators. Examples of such matrices are o_, o, and —a, where 0. =3(0, *ic,). The
mixing operator T(g, ) is thus found to have the following equivalent factored forms:

T(q, x) = exp(—AA") exp(A* e”A) e/® = exp(A *A) exp(-A e¥AT) e /®
= exp(—AA") e exp(A*A) = ¢ exp(— 14 e¥AT) exp(A *A)

=e¢ " exp(4* e¥A) exp(—AA") = exp(4*A) e /P exp(-4A"),
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A=e**tang, f=In(cosqg),

A=a"a,, B=a'a —a,%a,. (3.1.45)
The matrix equality
FoyFo v = Fgexp(ifos) = exp(i6o3)F 5 ;o (3.1.46a)

implies that the product of two different mixing operators is another mixing operator, multiplied by a
rotation operator:

T'(q', X)T(q, x) = R(6)T(g X) = T(G X — O)R.(6) ; (3.1.46b)
here the real numbers g, y, and 6 are related to ¢, ¢, x, and x' by

€'’ cos § = cos q cos ¢’ +exp[2i(y — x')} sin g sin g, (3.1.46¢)

exp[—i(8 — 2x)] sin § = €** sin q cos g’ — €** sin g’ cos q.. (3.1.46d)
For the special case y = x' this gives the simple relation

T(qx)T(q, x)=Tqg+4q x) (3.1.46¢)

[eq. (3.1.39d)].
The property (3.1.39¢c) of the transformation matrix F, , implies that the mixing operator T(g, x) is
unitarily transformed by the rotation operators in the following way:

R(0)T(q, x)R'(0) = T(q, x — 6.). (3.1.47)

Thus, T'(g, x) commutes with the symmetric rotation operator R (6) but not with the antisymmetric
rotation operator R,(#). This reveals why it preserves the total number of photons (hence the total
noise), but not the difference in the number of photons in the two modes. The mixing operator unitarily
transforms the two-mode displacement operator in the following way:

T'(q, x)D(a, u)T(q, x)= D(F, 'a, p)= D(a, F, , ). (3.1.48a)

The form of the (two-mode) displacement operator is thus invariant under unitary transformations of a
generated by a mixing operator:

D(a, ) = D(F, 8, F, (pt). (3.1.48b)

One can now verify the statement made in the Introduction: a state unitarily related to a two-mode
coherent state by any product of rotation, displacement, and mixing operators is equal to another
coherent state (multiplied by an unobservable phase factor). For example,

R(8)T(q, x)D(a, &) )eon = €xp[i Im(p"" )| i )econ »

3.1.49
= exp(-i0)F_, (1 + ). (3-1.49)
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All two-mode states that are eigenstates of both a, and a_ are unitarily related to the vacuum state
by products of rotation, displacement, and mixing operators. Conversely, all such states are eigenstates
of a, and a_. These states comprise the entire class of two-mode states whose total noise is equal to
that of the vacuum state. The special properties of the rotation and mixing operators - that they
preserve the total number of photons, that they preserve the total noise, and that they preserve
coherent states — are a consequence of one essential property: these operators generate the most general
unitary matrix transformation of the annihilation operators and nothing more; i.e., they never mix
creation operators with annihilation operators. To find unitary operators that do not conserve the total
noise and that generate new states from coherent states (states with a total noise greater than that of the
vacuum state), one must consider operators —the single-mode and two-mode squeeze operators — that
mix creation and annihilation operators.

3.1.5. Squeeze operators for two modes

(a) Single-mode squeeze operators
The single-mode squeeze operators

S..(r, ) =exp[3r(e #¢a.? - e%°a.")] (3.1.50)
were discussed in subsection 2.1.4. Each single-mode squeeze operator unitarily transforms the
annihilation operator for its mode into a linear combination of the annihilation and creation operator
for that mode:

S1:(r, ©)a.S..'(r, o) = a. cosh r+ a.' e** sinh r (3.1.51)

[egs. (2.1.21)}-(2.1.23)]. In vector notation these transformations are

S14(rs, ¢+)Sl_(r" (0_)051‘1‘(7_, ¢—)Sl+1(r+’ ‘P+) = Pa+ Pa*, (31523)
coshr, 0 e”**sinh r, 0
P, .= ( > , P = ( ) > .
' 0  coshr ' 0 e sinhr. (3.1.52b)

Recall that a single-mode squeeze operator preserves neither the total number of photons nor the total
noise of a mode [egs. (2.1.24)].

(b) Two-mode squeeze operator
The two-mode squeeze operator S(r, ¢) is defined by

S(r, p)=exp[r(e **a.a_—e**a."a_")

= exp[3r(e"**a"o1a — e**a’0ia*)), (3.1.53a)

. (3.1.53b)

N[

O0<r<w, —gw<e<

[eq. (1.13)]; it is denoted simply by S when lack of reference to a particular r and ¢ does not lead to
confusion. It satisfies the following equalities:
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SNre)=S"(r,e)=S(-r,¢)= S(r,o +3m). (3.1.54)

Properties of S(r, ¢) are discussed in refs. [19] and [20]. Most important is that it unitarily transforms a..
into a linear combination of a. and a.":

S(r, 9)a.S'(r, o) = a. cosh r+ a." €*¢ sinh r = a.(7, ¢) (3.1.55a)

[eq. (1.20)]. In vector notation, these transformations take the form

* o2

S(r, ¢)aS'(r, ¢) = a cosh r + oya* € sinh r = <0‘+(” 4"))

= a(r, (P) . (3155b)
a(r,¢)

A state unitarily related to an eigenstate of a, and a. by a two-mode squeeze operator is an eigenstate
of two “two-mode squeezed annihilation operators” [18-20] a..(r, ¢) (denoted simply by a.. or by the
column vector a when lack of reference to a particular r and ¢ does not lead to confusion). Inverting
eq. (3.1.55b) gives the vector expression for @ in terms of @ and a*:

a=S"(r,0)a(r, ¢)S(r, ¢) = @ cosh r — ;@™ €** sinh r. (3.1.56)
The unitarity of S ensures that the commutator algebra of . and a.' is identical to that of a. and a.":
@, a’l=[a,a"]=1, (3.1.57a)
la, @) = [a,, a_lio,=[a,a"] =0 (3.1.57b)

[eq. (3.1.92)].
The transformations (3.1.55) show that the two-mode squeeze operator preserves neither the total
number of photons nor the total noise of a two-mode state:

(S*a’aS) = sinh? r + cosh 2r{a’a) — 2 sinh 2r Re(e **{a.,a_)), (3.1.58a)
(S7(Aa" Aa),,,S) = cosh 2r(Aa’ Aa),,,, — 2 sinh 2r Re(e *¢(Aa, Aa_)) (3.1.58b)

[cf. egs. (2.1.24)]. Equation (3.1.58b) shows explicitly that any (two-mode) state whose unitary relation
to the vacuum state (or to any eigenstate of a, and a.) includes a two-mode squeeze operator has a
total noise greater than that of the vacuum state. The two-mode squeeze operator does, however,
preserve the difference in the number of photons, and therefore also the difference in the total noises,
of the two modes:

(STa'o;aS) = (a'oa), (3.1.59a)
(S"Aa'o3AaS)= (Aa'os Aa). (3.1.59b)
The relations between the noise matrices T and Q for a state |¥) and for the state S(r, ¢)|¥) follow

straightforwardly from the transformation (3.1.55b). The noise matrices T and Q for a two-mode
squeezed state are given explicitly below (see section 3.1.7).
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A few other properties of the two-mode squeeze operator are useful here. First it is unitarily
transformed by the rotation operators in the following way:

R(0)S(r, 9)R(8) = S(r, ¢ — 6.) (3.1.60)

[egs. (2.1.24a) and (3.1.53) or (2.3.14c); cf. egs. (2.1.25) or (2.3.19b)]. Thus, S(r, ¢) commutes with R,(6)
but not with R,(6). This reveals why it preserves the difference in the number of photons (hence the
difference in the total noises), but not the total number of photons in the two modes. [Contrast this with
the mixing operator, eq. (3.1.47).]

Second, the two-mode squeeze operator unitarily transforms the two-mode displacement operator in
the following way:

S™(r, ¢)D(a, p)S(r, ) = D(a, p) , (3.1.61)
Mo = p cosh 7+ oy u* € sinh r (3.1.62)

[egs. (3.1.29), (3.1.56); cf. egs. (2.1.26), (2.1.27)]. This shows that the form of the displacement operator
is invariant under unitary transformations of a generated by the two-mode squeeze operator:

D(a, n)= D(a, p..) . (3.1.63)

This equality implies that the TMSS |u, ). ), defined by eq. (1.19) as S(r, ¢) acting on the two-mode
coherent state |u,).n, can as well be defined as the displacement operator D(a, u) acting on the
(two-mode) squeezed vacuum:

) . 0y = S(1, @)l )eon = D@, p)S(r, ¢)[0) . (3.1.64)

The complex numbers u., u_ are the complex amplitudes (a.), (a_), i.e., up =(a). They are related to
the eigenvalues p, ., fo— by

M= j, cosh r— oy, * €3¢ sinh r (3.1.65)

[eq. (3.1.56); cf. eqgs. (2.1.28)(2.1.30)]. With these transformations, and the properties described above,
one can easily verify the statement made in the Introduction: any state unitarily related to the TMSS
[1ta) 0, o) DY @ product of rotation and displacement operators is equal to another TMSS (multiplied by
an unobservable phase factor) with the same squeeze factor r, but with different squeeze angle and
eigenvalues. For example,

R(o)D(aa ”‘I)’I‘a>(r, o) CXP[i Im(”IT”)]D(aa ﬁ)S(l‘, ¢~ os)lo>
= eXP[i Im(l‘ﬁ”)]'ﬂahr, ®—65) 3
A=p-0)+p(-0)=e(p+p) (3.1.66)

[egs. (3.1.32), (3.1.34), (3.1.60), (3.1.64)).
Finally, it is important to note the formal relation between a product of two single-mode squeeze
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operators and a two-mode squeeze operator. These unitary operators describe very different physical
processes. The product of two single-mode squeeze operators is, roughly speaking, the evolution
operator for a process in which two harmonic oscillators are separately squeezed [i.e., each subjected to
a degenerate two-photon interaction Hamiltonian (1.8)]. In contrast, a two-mode squeeze operator is
the evolution operator for a process in which two harmonic oscillators become correlated through the
nondegenerate two-photon interaction Hamiltonian (1.7). Although these operators differ profoundly
from each other in a physical sense, they are unitarily equivalent. The unitary operator that transforms
them into each other is a mixing operator. In other words, by defining certain linear combinations of a,
and a_, call them b, and b_, one can write the two-mode squeeze operator S(r, ¢) as a product of two
single-mode squeeze operators, one for the “b. mode” and one for the “b_ mode” [13, 33, 19]. This
unitary equivalence is described by the following relation:

T(t%’ﬁ, ¢a)sl+(r+a ¢’+)Sl—(r—a (p__)TT(i%'n', (Pa) = Sl+(rs, ¢+)S1—(rs, §0—)S(ira’ (Ps) ,

ro=anEr), e =ileite). (3.1.67a)

For the special case r,=0 (r, = —r_), this can be rewritten as
T3, @atam)S1s(r, 0:)81-(r )T G, patim) = S(r, 0. —57). (3.1.67b)

Thus, one might say there are two ways, mathematically but not physically equivalent, to produce a
two-mode squeezed state from two single-mode coherent states. The natural way is simply to turn on a
nondegenerate two-photon interaction [eq. (3.1.64)]. The second way, revealed by the relations (3.1.67),
is first to turn on a mixing interaction (frequency converter), then separately squeeze the two modes (by
turning on two degenerate two-photon interactions), and then turn on another mixing interaction. The
relations (3.1.67) thus remind one that the process of separately squeezing two single modes cannot by
itself (i.e., without additional frequency-converting processes) produce a state with the reduced noise
properties of a two-mode squeezed state. As was pointed out in the Introduction (subsection 1.8; see also
subsection 3.1.7), “squeezing” of an electric field—i.e., a reduction in the time-averaged noise in
one of its quadrature phases relative to its value for a field composed of modes in coherent states —is
possible only if the modes in the field are correlated. That is, squeezing is possible only if each pair of
sidebands (models with frequencies 2 + £) is in a state whose unitary relation to a two-mode coherent state
includes a two-mode squeeze operator.

(c) Two-component vector notation for states with TSQP noise
The two-mode squeeze operator, S(r, ¢), and the two rotation operators, R(@), represent all the
unitary operators that induce matrix transformations on another two-component column vector,

a_f

a
a’E( +>' (3.1.68)
The transformation matrices associated with them comprise the (noncompact, pseudounitary) group
U(1,1) of all two-dimensional, complex matrices M that preserve the metric o3, i.e., that preserve the
commutator matrix [a’, '] = g3, MosM' = o5. The elements of this group have the general form
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M = exp(if.,) exp(i0,03)C, , = exp(i8,)C, ,+0, eXp(—i 6503)

exp(if,) cosh r exp[i2¢ + )] sinh r ) (3.1.692)

= exp(if, ( . . .
p(i6.) exp[—i2¢ + 6,)] sinh r  exp(-—if,) cosh r

for real numbers 8,, 8, r, and ¢ [cf. eq. (2.3.18d)]. The matrix (3.1.69a) is the transformation matrix that

results from a unitary transformation of a’ by a product of the two rotation operators and a two-mode

squeeze operator, i.e.,

Ma' = S(r, o)R(0)a’R'()S(r, ¢) (3.1.69b)

[egs. (3.1.24) and (3.1.55)]. Those transformation matrices associated with unitary transformations on a’
by the two-mode squeeze operator S(r, ¢) and the symmetric rotation operator R.(6,) form the
three-parameter group SU(1, 1), the elements of U(1,1) with unity determinant. These same trans-
formation matrices describe unitary transformations of the single-mode two-component column vector
a, (see subsection 2.3) by the single-mode rotation and squeeze operators. This similarity is a key to
understanding why two-mode squeezed states are the natural analogs of single-mode squeezed states. It
is a consequence of the fact that the three operators a,a., a_a.’, and (a.a."+ a_a_"),,, generators
for the two-mode squeeze operator S(r, ¢) and the symmetric rotation operator R(#), have the same
commutator algebra as the three operators 342 ;a', and (aa'),m, generators for the single-mode
squeeze and rotation operators, S;(r, ¢) and R(6). Another consequence of this fact is that the
mathematical properties of the two-mode squeeze operator and the symmetric rotation operator are
identical in form to those of the single-mode squeeze and rotation operators. For example, in addition
to the properties mentioned above, one can write factored expressions for the two-mode squeeze
operator by analogy with eq. (2.3.15), and the product of two different two-mode squeeze operators as
the product of another two-mode squeeze operator and a symmetric rotation operator, by analogy with
eq. (2.3.16).

The two-component column vector a’ of eq. (3.1.68) provides a basis for a complete description of all
states (pure or mixed) with TSQP noise (see the discussion of TSQP noise in subsection 1.8). Another
useful basis is the two-component column vector A formed from the quadrature-phase amplitudes a,
and a,:

A= (Z) = AAd', (3.1.70a)
aere (el 1), e o1

[cf. egs. (1.21)]. The statistics of the quadrature-phase amplitudes provide direct information about the
quadrature phases of the electric field. A formalism for describing states with TSQP noise, based on
these two-component column vectors, is developed in refs. [18-20]. Note that, by contrast, a formalism
capable of describing all two-mode GPS would require a four-component vector notation; such a
formalism is described in subsection 3.3 of this paper.

3.1.6. Product of three squeeze operators
Consider now the unitary operator S that relates the most general normalized two-mode GPS to a
two-mode coherent state:
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S=81.(re, ¢.)8:(r, -)S(r, @) (3.1.71)

[eq. (1.16)]. Note that the inverse of S is obtained by changing the signs of r,, r_, and r and reversing
the order of the squeeze operators:

S'=8"=8(-r¢)S_(-r_, 0 )81 (1., @) . (3.1.72)

The operator S transforms the operator column vector a into a linear combination of a and a*:

SaS' = Pa+Pa*=g= (i*) : (3.1.73a)

the complex matrices P, and P, are equal to
P.=cosh rP, .+ e*¢ sinh ro, P,.* , (3.1.73b)
P_.=cosh rP,,+ e*¢ sinh ro, P,.* (3.1.73¢c)

[egs. (3.1.52) and (3.1.55b); see also eq. (3.2.35) below]. States unitarily related to eigenstates of a, and
a_ by S are eigenstates of the transformed annihilation operators g, and g_. The unitarity of S ensures
that the commutator algebra of g. and g." is identical to that of 4. and a.":

[¢.8"]=[aa']=1, (3.1.74a)
[¢.2"]= 8+, g-Jio,=[a,a"]= 0 (3.1.74b)

[eq. (3.1.9a)]. Because of the presence of both single-mode squeeze operators, S does not, in general,
preserve any of the noise moments of a. or a.’. The components of the noise matrices T and Q for the
general two-mode GPS |u,) = S|, )con are given below [egs. (3.1.85)).

Many properties of S follow trivially from the corresponding properties of the three squeeze
operators (e.g., the way it is unitarily transformed by rotation operators); these are left to the reader.
Two properties, however, deserve special attention. First, S unitarily transforms the two-mode dis-
placement operator in the following way:

S'D(a, p)S= D(a, p,), (3.1.75)
pe=P.pu+Ppu* (3.1.76)

[egs. (3.1.29), (3.1.73)]. This relation reflects the fact the form of the two-mode displacement operator is
invariant under unitary transformations of a that are linear in ¢ and a* (and that do not add to a a
constant column vector). Such unitary transformations are generated only by (products of) rotation,
mixing, and squeeze operators. The invariance under transformations generated by rotation, mixing,
and two-mode squeeze operators has already been noted [egs. (3.1.33), (3.1.48), (3.1.63)]. The in-
variance under transformations generated by S says that

D(a, )= D(g, ) (3.1.77)
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This equality implies that the general two-mode GPS |, ), defined by eq. (1.18) as the operator S acting
on the two-mode coherent state |u,).n, can as well be defined as the product of the displacement
operator D(a, u) and S acting on the vacuum state:

1) = St )eon = D(a, p)S[0) . (3.1.78)

The complex numbers u., u_ are the complex amplitudes (a.), (a_), i.e., u ={a). They are related to
the eigenvalues ., u,— by

p=P'p -P . (3.1.79)

The second important property to note is that the product of two different operators S and §' can
always be expressed as another operator S (i.e., another product of the three squeeze operators),
multiplied by a mixing and a rotation operator (and an overall phase factor). This property is a
consequence of the general fact (proved in subsection 3.3 and appendix A) that any unitary operator
whose (Hermitian) generator is composed of bilinear combinations of creation and annihilation
operators for two modes can be expressed as a product of three squeeze operators (i.e., an operator like
S), a mixing and a rotation operator, and an overall phase factor.

It is proved in the next section, by considering the most general two-mode Gaussian wave function,
that the Hermitian generator H,® of the unitary operator U, = exp(~iH,®?) that relates a two-mode
GPS to the vacuum state is a sum of linear and bilinear combinations of a,, a_, a.’, and a_". In other
words, the most general two-mode GPS is produced when two harmonic oscillators in their ground
states are exposed to the interaction Hamiltonians Hgx®(¢), H,(¢), and H,®(t) described in the
introduction [egs. (1.3) and (1.4)]. The unitary operator U, factors into a product of displacement,
squeeze, mixing, and rotation operators (in any order), and an (unobservable) overall phase factor (see
subsection 3.3 and appendix A). The properties described in this and the previous sections ensure that any
product of rotation, mixing, squeeze and displacement operators can be expressed as the product of a
displacement operator and an operator like S (in either order), multiplied on the right by a rotation and
a mixing operator (and an overall phase factor). Since the rotation and mixing operators have no effect
on the vacuum state, this shows that the most general two-mode GPS is the state |u,) defined by egs.
(3.1.71) and (3.1.78).

3.1.7. Two-mode GPS and minimum-uncertainty states (MUS)

The noise matrices T and Q (or S,, S,, and §,,,) for two-mode states that are tensor products of two
single-mode states are diagonal matrices. For a product of two single-mode squeezed states, the most
general of this type of two-mode GPS, the noise matrices T and Q are

" (6”"’* sinh 2r, 0 )
o2 0 e”* sinh 2r_
(3.1.80)
_ 4 {cosh 2r, 0
O_i< 0 cosh 2r_>

[egs. (2.1.34)].
For a two-mode squeezed state, the noise matrices are not diagonal, but they, too, have simple
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forms. They follow directly from the transformations (3.1.55) and the noise matrices for a coherent
state. For the TMSS | )¢ ) [€q. (3.1.64)] they are

T=-3e¥®sinh2ro,, Q=%4cosh2rl; (3.1.81)
—sinh 2 2
5. =1 ( ' cosh 2r sinh 2r cos qo) , (3.1.822)
—sinh 2r cos 2¢ cosh 2r
cosh 2r —sinh 2r cos 2¢

S,= 03805 =3 ( ). 1.

p = 035:03 =2 —sinh 27 cos 2¢ cosh 2r (3.1.820)
S., = —3sinh 2r sin 2¢0; . (3.1.82¢)

The simple forms for these noise matrices are a consequence of TSQP noise, which requires that the
noise moments {(Aa.,)’), ((Aa_)?), and (Aa, Aa_") vanish, or, equivalently, that the noise moments
{(Aar)?), {(Aay)®), and (Aa, Aa,) of the quadrature-phase amplitudes vanish [egs. (1.21) or (3.1.70)]. The
nonvanishing second-order noise moments of the quadrature-phase amplitudes for a two-mode
squeezed state are

(|Aa,? = 3[cosh 2r — (1 — £2/42%)"? sinh 2r cos 2¢] , (3.1.83a)
(|Aa,?) = 3[cosh 2r + (1 — £%/42%)"2 sinh 2r cos 2¢] (3.1.83b)
(Aay Ay )y = 3(1 — £2/42%)*sinh 2r sin 2¢ + 3ig/02 cosh 2r, (3.1.83c)

[cf. eqs. (2.1.35)]. The squeezing effect is obvious if one rewrites the mean-square uncertainties [egs.
(3.1.83a,b)), for ¢/2 <1 and ¢ =0, as

(Aa, Py=3[e™ =120 =1e™. (3.1.83d)
2

By contrast, two separately squeezed (uncorrelated) single modes do not exhibit this kind of squeezing; the
mean-square uncertainties both in quadrature phases are greater than the coherent-state value of 3:

(Aa, )= Y1+ A% sinh® r, + A2 sinh® r_), A= (1+ /). (3.1.84)
2

The noise matrices for the general two-mode GPS |u,) [eq. (3.1.78)] can be obtained from the
transformation (3.1.73a) and the noise matrices for a coherent state, or from eqs. (3.2.34) and (3.2.35)
below. The components of T and Q, the noise moments of a. and a.', are

((Aa.y’) = —3cosh 2r €*¢= sinh 2r..,

(Aa. Aa_)= —3sinh 2r(e** cosh r, cosh r_ + exp[2i(¢. + ¢_ — ¢)]sinh r, sinh r_), (3.1.85)

(Aa, Aa_") = 3sinh 2r(exp[2i(¢ — ¢_)] cosh r, sinh r_ + exp[—2i(¢ — ¢.)] cosh r_sinh r,),

(|Aa.l?) = 3 cosh 2r cosh 2r.. .

The choice for the order of the three squeeze operators in S [eq. (3.1.71)] was made so that the noise
moments ((Aa.)*) and {|Aa.[*) would have these simple forms.

By analogy with single-mode MUS, the natural definition for two-mode ‘“minimum-uncertainty
states” (MUS) is those states for which



B.L. Schumaker, Quantum mechanical pure states with Gaussian wave functions 375

S.5, =11 (3.1.86)

ENT

[eq. (3.1.15a); cf. eq. (2.1.36)]. These are (two-mode) GPS that satisfy
ImT=ImQ=S§,=0 (3.1.87)

[egs. (3.1.12); cf. eq. (2.1.37)]. The condition (3.1.86) implies that for a two-mode MUS there are only

three independent real parameters associated with the ten second-order noise moments. The conditions

(3.1.87) are equivalent to the following four conditions on the second-order noise moments of a. and
+

a.'

Im(Aa, Aa_"y=0, (3.1.88a)
Im(Aa. Aa_)=0, (3.1.88b)
Im((Aa.)?) =0, (3.1.88¢)
Im{(Aa_)2)=0. (3.1.88d)

Comparison with eqgs. (3.1.85) shows that the set of two-mode MUS consists of all two-mode GPS for
which ¢, = ¢_ = ¢ =0 [eq. (3.1.78)]. It is shown below [see egs. (3.2.5) or (3.2.6)] that a two-mode state
is a MUS if and only if it is an eigenstate of both components of the vector linear combination
£+iM7'p, where M, is a real, symmetric, positive-definite matrix. A two-mode GPS with ¢, =¢_=
¢ = 0 satisfies this condition with the matrix M, equal to

3 < exp(2r,)cosh2r  exp(r, + r_)sinh 2r>

exp(r. + r_)sinh2r  exp(2r_) cosh 2r (3.089)
Milburn [33] has proposed a more restrictive definition of two-mode MUS, which stipulates that the
real, symmetric, positive-definite matrix M, also be diagonal; his definition therefore includes all
products of single-mode squeezed states with ¢, = ¢_ = 0, but it excludes all two-mode states in which
the two modes are correlated —i.e., all two-mode GPS for which r # 0. A two-mode state is a Gaussian
pure state if and only if it is an eigenstate of both components of a vector linear combination ¥ +iM~'p,
where M is a two-dimensional complex, symmetric matrix, and Re(M) is positive definite (see
subsection 3.2). All states unitarily related to two-mode MUS by products of rotation and mixing
operators satisfy this condition. Conversely, all states that satisfy this condition (i.e., all two-mode GPS)
are related to two-mode MUS by products of rotation and mixing operators. Thus, by extending the
definition (3.1.86) of two-mode MUS to include all states related to two-mode MUS by products of
rotation and mixing operators, one obtains all two-mode GPS. Another way to see this is to note that
the four conditions (3.1.88) can always be met for some operators defined as linear combinations of a.,
and a_ by a transformation like (3.1.44b), with appropriate choices for the four parameters g, x, 8., and
a_.

Another set of two-mode states, the two-mode analogs of single-mode states with random-phase
noise, consists of states whose noise moments are invariant under all rotations, i.e., under unitary
transformations generated by the rotation operators R(#)= R.(6,)R.(6.) [egs. (3.1.19)]. Two-mode
states with random-phase noise are simply tensor products of two single-mode states with random phase
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noise [see egs. (3.1.24) and subsection 2.1.5]: all correlated noise moments between the two modes must
vanish, and all noise moments of a, and a_ separately vanish [eq. (2.1.39a)]. Fields composed of such
states have “time-stationary” (TS) noise; the adjective TS is often used, instead of “random phase”, to
describe the noise associated with these states. For two-mode states (pure or mixed) with Gaussian
noise statistics, the conditions for random-phase noise are that the noise matrix 7' = 0, and the noise
matrix Q be diagonal [egs. (3.1.28)]. Note that the condition T = 0 is equivalent to the condition

S.(0)=S,(0)=S,(®) forall 6,,0_, 6.6, . (3.1.90a)
where

S.(0)=(A£(0) A£™(0)) = (R(0) A% AS™R(9)), (3.1.90b)

S,(6)=(Ap(0) Ap™(0)) = (R(8) Ap AF"R'(8)) (3.1.90¢)

[egs. (3.1.12), (3.1.24b,c); cf. eq. (2.1.39b)]. This condition alone is not adequate to define random-phase
noise, since it does not ensure invariance of all second-order noise moments under rotations induced by
the antisymmetric rotation operator R,(#); that invariance requires the additional condition that the
noise matrix Q be diagonal [egs. (3.1.28)]. The only nonvanishing second-order noise moments for a
two-mode state with random-phase noise are the total noises for each mode, {|Aa,[*) and (Aa_[*). The
intersection between the two-mode Gaussian pure states and states with random-phase noise is the set
of two-mode coherent states, which have

Tcoh = (Sxp)coh = 0 ’ (31913)
Ocoh = (Sx)coh = (Sp)coh = %1 (3.191b)

[cf. egs. (2.1.33)].

Another important set of two-mode states consists of those with TSQP (time-stationary quadrature-
phase) noise (see subsection 1.8). These are states whose noise moments are invariant under rotations
induced by the antisymmetric rotation operator R,(6) [eq. (3.1.18b)] [S0]. The noise moments of a. and
a." for two-mode states with TSQP noise satisfy the conditions

(Aa-Y (Aa. Y )ym=0 if r#s, (3.1.92a)
(A, (Aa))=0 ifr#s, (3.1.92b)
{(Aa,)(Aa Ty¥)=0, (3.1.92¢)

where r and s are nonnegative integers. For the quadrature-phase amplitudes, these conditions are
(Aay)(Ae2)’) =0, (3.1.93a)
(AamY (A, ) )ym=0 ifr#s, (3.1.93b)

where m,n=1,2. When these conditions are satisfied, all time-dependent noise moments of the
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electric-field quadrature phases E, and E, vanish—hence the adjective TSQP. Comparison of egs.
(3.1.93) with eq. (2.1.39a) suggests that the adjective TSQP, which describes the noise in a field
composed of these states, could be replaced by “random-quadrature-phase” when describing the noise
associated with these two-mode states. For states (pure or mixed) with Gaussian noise statistics, the
conditions (3.1.92) for TOSP noise reduce to

(Aa, Aa "y ={((Aa,)P) = ((Aa. )= 0; (3.1.94a)

i.e., the noise matrix T has only off-diagonal components, and the noise matrix Q is diagonal [egs.
(3.1.28)]. For the quadrature-phase amplitudes, the conditions for Gaussian TSQP noise are

(Aar)) = {(Bazf’) = (Aay D) = 0. (3.1.94b)

The intersection between two-mode GPS and states with TSQP noise is the set of two-mode squeezed
states.

Note that TSQP noise is less restrictive than TS noise —i.e., time-stationary noise in the quadrature
phases E, and E, does not imply time-stationary noise in the total electric field E. Like TS noise, TSQP
noise requires that each mode have random-phase noise [{(Aa.)?)=0; eq. (3.1.94a)]; but, unlike TS
noise, it does not require that the modes be uncorrelated. It is precisely the nonvanishing correlated
noise moment (Aa, Aa_) that makes possible the squeezing effect.

3.2. Two-mode Gaussian wave functions

This section begins with the most general two-mode Gaussian coordinate-space wave function, with
all parameters arbitrary, subject to normalization. Subsection 3.2.1 explores the relation of the
parameters in the wave function to the noise properties of a two-mode GPS, and derives general
relations between the different noise moments. The two-component vector notation defined in the
preceding section (subsection 3.1.1b,c) allows these relations to be derived and expressed very simply as
matrix relations between the different second-order noise matrices. Subsection 3.2.2 examines the pairs
of independent operators of which two-mode GPS are eigenstates, these being determined by the wave
function. It establishes thereby the logical connection between the wave function and the formal
definition of a two-mode GPS as a unitary operator acting on the (two-mode) vacuum state. Subsection
3.2.3 derives the unitary operator that relates the most general two-mode GPS to the vacuum state, and
shows that it is equal to a product of two single-mode squeeze operators and one two-mode squeeze
operator. The parameters in the general two-mode Gaussian wave function are given explicitly in terms
of the six real parameters associated with these squeeze operators. Subsection 3.2.4 considers the most
general two-mode Gaussian momentum-space wave function, and relates its parameters to those of the
coordinate-space wave function.

3.2.1. The wave function

Consider now the coordinate-space wave function for the most general two-mode Gaussian pure
state, symbolized here by the state vector |u,) (Or |pz+, pp-)). The two-mode GPS |u,) is an eigenstate
of a pair of operators g, and g_, whose general forms are discussed below, with complex eigenvalues
g+ and u,_, respectively. [It will be seen below that g, and g_ have the forms discussed in subsection
3.1.6.] The wave function is written in terms of the dimensionless position variables x.., the eigenvalues
of the Hermitian operators £.. The most general (normalized) two-mode Gaussian coordinate-space
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wave function has the form

(x.x_|pg) = N, exp(3i8,) exp[~3i(Po+Xo+ + Po-Xo-)] eXpli( Po+ X + po-x_)]
Xexp[—3 My (Ax, Y — 3 My (Ax_ Y — 3(My, + My) Ax, Ax_]
= N, exp(318,) exp(~zipo" Xo) exp(ipo"x) exp(—3 Ax"M Ax),

Ax,

A s(
* Ax_

) L Axe=x.—(£) (32.1)

[cf. eq. (2.2.1)]. Here x, and p, are the column vectors for the mean position and momentum [egs.
(3.1.7)], with components defined by

o

re=(i) = [ dx [ do nieox P, (3.2.22)

— —

@

(Poy=-i j dx, J dx (gl x )3 (X x_| ptg) (3.2.2b)

—o0 —00

Po:

M is a two-dimensional, complex matrix whose components M, are related to the second-order noise
moments of X. and p., 8, is an unobservable phase angle (separated out for reasons discussed below),
and N, is a (real) normalization constant determined by the condition (g, |p,) = 1. The subscript “x”
on the phase angle 8, serves only to distinguish 8, from the phase angle §, which appears in the
momentum-space wave function [eqs. (3.2.38)(3.2.41) below]; 8, has no dependence on x.. The
antisymmetric part of the matrix M is irrelevant, so I assume henceforth that M is symmetric, M = M"
(My, = M,,). Normalizability dictates that the real part of M be positive definite —i.e., that

TrM;>0, detM;>0, M;=ReM=3(M+M*), (3.2.3)
and the normalization constant N, is equal to

N, = (7*/det M;) ™" (3.24)
[cf. egs. (2.2.2)-(2.2.4)].

The most important parameters in the wave function (3.2.1) are the three complex numbers that
make up the (symmetric) matrix M. The form of the wave function tells one that the state |u,) is a
simultaneous eigenstate of both components of the vector linear combination £ +iM~'p, and hence that
the matrix M is related to the noise matrices S, S,, and S,, by

M =M, +iM, = =i XS, +i1) = —iS,(S,, - il . (3.2.52)

The real and imaginary parts of M are therefore equal to
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M;=ReM=3S,", M,=ImM=-5'S,,, (3.2.5b)
and the absolute square of its determinant is
|det M> = det S,/det S, (3.2.5¢)
[cf. egs. (2.2.5)]. Equation (3.2.5c) shows that for normalizable two-mode GPS the matrix M must be
nonsingular [if det M = 0, the wave function in the momentum representation is a delta function; see
discussion below eqs. (3.1.11)]. Inverting these expressions gives the covariance matrices S,, S,, and S,,
in terms of the matrix M:
Se=0QM,)™", S,=[2ReM ', S,=-0CM)'M, (3.2.6)
[cf. eq. (2.2.6)]. The normalization constant N, can thus be rewritten as
N, = (7*/det M) "% = (47* det S,) (32.7)
[cf. eq. (2.2.7)).
That the state |u,) is an eigenstate of the components of £+ iM~'p means that it is also an eigenstate
of the components of a + (M + 1)"(M — 1)a*. The noise matrices T and Q are therefore more naturally
expressed in terms of the symmetric complex matrix

F=r"=M+1y"'(M-1)=—(Q+:1)'T=—-(Q-inT*" (3.2.8)

[cf. eq. (2.2.8)]. Inverting these expressions gives the noise matrices T and Q in terms of the matrices I’
and M:

T=-TA-T*ry*=—-1-ITr*'r
=—-(M*+1)[@dM)'M-1), (3.2.9a)

Q=3+IT*HA-IT* ' '=M+1)'(1+ MM*)4M,) " (M +1) (3.2.9b)
[cf. egs. (2.2.9)]. Note also that

1-IT*=(M+ 1) 4M,M*+ 1), (3.2.10)
hence normalizability requires that the (Hermitian) matrix (1~ IT*) be positive definite. The above
expressions show, though not in a transparent way, that only six of the ten real pieces of information in
the second-order noise moments for a two-mode GPS are independent, since

S.S,=31+8,7, (3.2.11a)

Q*=31+1T* (3.2.11b)
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[cf. egs. (3.1.15) and (2.2.11)]. They also show that the following matrix products are symmetric:
8508 = (SS)" . S8, =(55,)", QT=(0T)"=TO*. (3.2.11¢)

These relations are made more obvious below [egs. (3.2.30)(3.2.34)].

The remaining parameter in the wave function (3.2.1) is the phase angle &, ; in general it can be any
real number. The phase angle 8, is unobservable, but for a state defined as a particular unitary operator
acting on the (two-mode) vacuum state it has a well-defined value, provided one assigns a phase angle to
the vacuum-state wave functions. The properties of the displacement operator reveal why the phase
factor exp(5id,) separates naturally from the overall phase factor in the wave function (x|m,). The
definition (3.1.29) of the two-mode displacement operator implies that the wave function for a
“displaced” two-mode state D(a, )| ¥) is related to the wave function of the original state |¥) in the
following way:

(x| D(a, p)|¥) = exp(—3ipo" xo) explipo x)x — xo| ¥) (3.2.12)

[cf. eq. (2.2.12)]. A natural way, therefore, to obtain an arbitrary two-mode pure state |¥,) with
complex amplitudes x, and w_ is to operate with the two-mode displacement operator D(a, ) on a
state | ¥,)=U,|0) that has the desired noise properties but has zero complex amplitudes ({0]U,'aUy|0) =
0):

|¥,) = D(a, p)U,|0). (3.2.13)

The property (3.1.31) of the displacement operator then ensures that |¥,) has complex amplitudes u.
and p.,

(Vla|¥)=n. (3.2.14)

Any normalized two-mode pure state with complex amplitudes u, and x_ can be defined by an
expression like (3.2.13). The advantage of this definition is that the state’s mean values xo. and p,. (or
complex amplitudes u.) are determined solely by the displacement operator D(a, u), and its noise
moments of a. and a.' are determined solely by the unitary operator U,. The (normalized) two-mode
GPS |u,) with complex amplitudes u., u_ can therefore be formally defined by

|iee) = D(a, p)U,|0) . (3:2.15)

Note the following three properties of U,: First, it is uniquely defined only up to (right-hand)
multiplication by rotation operators R.(6.), a mixing operator T(g, x), and an overall phase factor.
Second, since it defines the noise moments of a. and a.' (or £. and p.) for the GPS |u,), it has
associated with it no more than six independent real parameters (over and above those of the rotation
and mixing operators and phase factor). Third, since the state |p,) has complex amplitudes u.,, u_, the
expectation value (0[U,"aU,|0) must vanish.

The phase factor exp(3i8,) in the wave function (x| ¥,) is given, from egs. (3.2.1) and (3.2.12), by

exp(3i8,) = (x, = x_ = 0JU,|0)/|(x, = x_ = 0[U,|0)| (3.2.16)
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[cf. eq. (2.2.16)]. The phase angle &, has no dependence on the complex amplitudes u.., provided U,
does not; any dependence of U, on u. is artificial, since it does not affect the state’s complex
amplitudes (a.). Consider, for illustration, the two-mode coherent state |u).., = D(a, #)|0) [eq. (1.15)],
for which the operator U, is the identity operator. Equation (3.2.12) says that the wave function for
|it)eon is related to the vacuum-state wave function (x|0) by

<x ‘ ﬂ)coh = exp(_%iPOTxO) eXp(iPoTxxx - x0’0> ’ (3217)

so the phase angle 8, for a two-mode coherent-state wave function is equal to the phase angle assigned
to the two-mode vacuum-state wave function.

3.2.2. Operators of which two-mode GPS are eigenstates

The form of its wave function shows that a two-mode GPS |u,) is a simultaneous eigenstate of two
linearly independent operators g, and g_ that are linear combinations of the components of the vector
linear combinations £ +iM~'p or a + I'a*. The label u, for the GPS |u,) is chosen to be the vector
whose components are the eigenvalues of g, and g_. Thus, one can write the following relations:

glre) = pelme) (3.2.18a)
g=K(#+iM'p)= K(a+ I'a*), (3.2.18b)
M= K(xo+iM'po)= K(u+ I'p*), (3.2.18¢)

where K and K are two-dimensional nonsingular matrices. It is instructive to consider the general form for
all independent operators g,, g- of which the two-mode GPS |u,) is an eigenstate:

g= (g+> =P.a+ Pa*=P.(a+Ta*)

=Px+iPp=P,(£+iM'p). (3.2.19a)
Here P, P, P, and P, are two-dimensional complex matrices, related to each other by

P =277P,%P,), P =2'P.%P). (3.2.19b)

S x

The eigenvalues u,., u,— are related to the complex amplitudes u,, x_ and the mean positions and
momentums Xy., Po. by similar relations,

M. =Pxo+iPpo=Ppu+ Pu*. (3.2.20)
Inverting egs. (3.2.19) and (3.2.20) leads to the following expressions for a and u in terms of g and p,:

a=PlY;'g— PT(Y*)lg*, (3.2.21a)
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— ~ pty- —1
p=(a)=PlY;'n,— PXYI) 0%, (3:221b)

where Y, =|g, g'] is the Hermitian commutator matrix

[g+7 g+T] +9 ~T
Y.=[g g 1=gg"-(g*¢")" = ([g, o] 5_ Z_f}) (3.2.21¢)
[cf. egs. (2.2.21)]. These relations imply the important equality
D(a, p)=D(g Y;'ne) (3.2.22)

[cf. eq. (2.2.22)].

The equality (3.2.22) enables one to see explicitly how the form of the unitary operator U,, which
defines a two-mode GPS through eq. (3.2.15), is determined by the forms of the operators g, and g_. To
see this, begin with an alternative definition for the GPS |u,). First, assume that |u,) is related to the
vacuum state by some unitary operator U:

|n,) = U)0). (3.2.23a)
It is then convenient to define another unitary operator U, by

U=U,D(a, p,), (3.2.23b)
so that the state |u,) is equal to the operator U, acting on the two-mode coherent state |, )eon,

lpte) = Up,Do(a, p1,)|0) = U |ty dcon - (3.2.24)

[The equality (3.2.22) will be seen to ensure that the operator U, defined here is the same as that in eq.
(3.2.15).] It is then consistent with the eigenvalue equations (3.2.18a) that the operators g, and g_ be
unitarily related to the annihilation operators a, and a_, respectively, through the operator U,:

g=U,al,’. (3.2.25)

The form of U, is thus determined by the forms of the operators g, and g_. Note that this relation says
that both a, and a_ are transformed by the same unitary operator, U,. The fact that a, and a_ are
transformed by the same, unitary operator ensures that [g, g") = [a, a'] = 1. This, together with the
forms (3.2.19a) of g, and g_, implies the equality

D(a, p) = D(g, p,) (3.2.26)

[eq. (3.2.22)], which in turn proves the equivalence of the definitions (3.2.15) and (3.2.24) for |u,). Thus,
any two-mode GPS |u,) has the following two equivalent definitions:

II"g) =UD(a, l"g)'o) = Ul”‘g)coh = D(a, l‘)U|0> (3.2.27)

[cf. eq. (2.2.27)).
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Return now to the general forms (3.2.19a) for the operators g, and g_ of which two-mode GPS are
eigenstates. Six of the sixteen real parameters in the expressions (3.2.19a) for g are determined by the
wave function (x|, ), which specifies the (symmetric) matrix products

P;'P,=M, P;'P,=T. (3.2.28)

(It will be seen that these parameters specify the squeeze factors 7, r. and the squeeze angles ¢, ¢...) Six
more real parameters are partially determined by the requirement that g, and g_ have a complete (or
overcomplete) set of simultaneous, normalizable eigenstates, i.e., (i) that the commutator [g,, g_] =0
(or, equivalently, that the antisymmetric commutator matrix [g, g*] vanish), and (ii) that the Hermitian
commutator matrix [g, g'] be positive definite (for further discussion of this requirement see appendix
C). These parameters are determined completely if one specifies that the operators g, and g_ be
unitarily related to a, and a_, respectively, by the same unitary operator [eq. (3.2.25)], which implies
that

[g£"=[aa"=0, (3.2.29)
[¢.87]=[a,a]=1. (3.2.29b)

The antisymmetric commutator matrix [g, g7} is related to the matrices in the expression (3.2.24a) for g
in the following way:

(¢, 8"1=28" - (88")" = [8+, &-lio

= PP - PPY = P[M '~ (MR}

=PPT-PP"=P(I'"-IP.. (3.2.30)
Thus, the condition (3.2.29a)-i.e., that the operators g, and g_ commute - simply tells one that the
matrix M must be symmetric. The Hermitian commutator matrix [g, g'] can be written in the following
different ways:

[¢.8"] = ., + P,P.'=2P.M,P = PSP/

=2P,Re(M™ )P, =P, 'P}

=P.P'-PP'=P(1-IT*P'=P(Q+31)'P}

=PI -1)P) = P(Q*-31)'P!

=PI *(1-IT*)P!=-P,T'P} (3.2.31)

[egs. (3.2.5) and (3.2.8); cf. eq. (2.2.30)]. Thus, the condition that g, and g_ be unitarily related to a,
and a_ through the same unitary operator [eq. (3.2.29b)] implies that

PP +PP'=PP'-PP'=1. (3.2.32)
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The expressions (3.2.30) and (3.2.31) show that the operators g, and g_ have simultaneous normalizable
eigenstates - i.e., [g., g ] = 0 and the Hermitian commutator matrix [g, g'] is positive-definite - if and only
if the real matrices M, and 1— I'T™* are symmetric and positive-definite; this is equivalent to the condition
that the wave function {x | m, ) be normalizable [eqs. (3.2.3) and (3.2.10)]. This condition also requires that
the matrices P,, P, , and P, be nonsingular. Two other propertles of the matrlces P, P, P, andP canbe
found from the expression (3.2.21a) for a in terms of g and g*, by setting [a, a'] = 1 For the matrices P,
and P, these properties are

Im(P,'Y;'P,) = Im(P,'Y;'P,) =0, (3.2.33a)
Re(P.'Y;'P,)=11. (3.2.33b)

For the matrices P, and P, they are

P.Y;'P,= (PY;'P)", (3.2.33¢)
PY;'P.—- PX(Y;')*P* =1 (3.2.33d)

From now on 1 restrict attention to operators g., g- that are unitarily related to a, and a_ by the same
unitary transformation [eq. (3.2.25)), so that [g, g'] = 1. This entails no loss of generality, since by taking
appropriate linear combinations of other operators g.’, g_’ for which [g’, g’'] is positive definite but not
proportional to the identity matrix, one can always define operators g, g_ that satisfy [g, g'] = 1.

The four remaining real parameters in g, and g_ describe the invariance of the commutation
relations (3.2.29) under transformations that take g, and g_ into certain independent linear com-
binations of each other, i.e., under multiplication of the vector g by an arbitrary unitary matrix.
Multiplying g by an arbitrary unitary matrix is equivalent to (right-hand) multiplying the operator U, of
eq. (3.2.25) by a mixing operator T(g, y) and two rotation operators R.(6.) [eqs. (3.1.44)]. The
definition (3.2.27) of |u,) shows that this freedom in the definitions of g, and g_ reflects the fact noted
in subsection 3.1.4 that a (two-mode) coherent state remains a coherent state when multiplied by
rotation and mixing operators [eq. (3.1.49)].

The expressions (3.2.31) for the commutator matrix [g, g'], together with the matrix properties
described above [egs. (3.2.32) and (3.2.33)], reveal the following simple relations between the noise matrices
for a two-mode GPS and the complex matrices P,, P,, P, and P, that define operators g., g- unitarily
related to a,, a- by the same unitary operator:

S.=P'P,, S,=P'P,, S,=-Im(P'P,); (3.2.34a)
T=-P/P,, (3.2.34b)
= %(PCTPC+ PsTPs*) = PCTPC—. %1 = PsTPs* + %1 (3234C)

[cf. egs. (3.2.6), (3.2.9) and (2.2.32)]. These expressions, together with eqgs. (3.2.30)-(3.2.33), make more
apparent the equalities (3.2.11) satisfied by the noise matrices.

3.2.3. Unitary relation of two-mode GPS to the vacuum state
The form of the unitary operator U, in the definition (3.2.27) of the two-mode GPS |u,) is dictated by
the transformation (3.2.25) and the forms of g, and g_ [egs. (3.2.19), (3.2.32) and (3.2.33)]. The linearity and
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absence of any additive constants in the transformation imply that U, = exp( -1H (Z)t) where H, @is a
(Hermitian) linear combination of the ten bilinear products of a. and a." (a.'a.,a.a_, a.’, a+a_ and
their adjoints). That is, the generator H,? of U, has the general form H,® + Hg® + Hz‘z) defined in the
Introduction [egs. (1.1)-(1.4)]. It is shown in subsection 3.3 and appendix A that the operator U, can always
be written as a product of two single-mode squeeze operators, a two-mode squeeze operator, two rotation
operators, and a mixing operator (and an unobservable overall phase factor). The rotation operators can be
placed in any position relative to the squeeze and mixing operators, without changing the form of U, [egs.
(2.1.25), (3.1.47), (3.1.60)]. When placed to the right of the squeeze operators, they act like the identity
operator on the vacuum state and hence are inconsequential. It is not a trivial exercise to commute the
mixing operator through the squeeze operators, but it is easy to see that doing so produces a unitary
operator whose generator has the form Hy® + Hx® + H,®, multiplied on the right by a mixing operator.
This operator, in turn, can be expressed as a product of the three squeeze operators - 1.e., an operator like S
of eq. (3.1.71) - multiplied on the right by a rotation and mixing operator. The mixing operator, like the
rotation operators, acts like the identity operator on the vacuum state and hence is inconsequential. Hence
the unitary operator that relates the most general two-mode GPS to a two-mode coherent state can always
be expressed as an operator like S, i.e., a product of the three squeeze operators. The most general
two-mode GPS is that defined by eq. (3.2.27) with U, equal to S, i.e., it is the state described in eq. (1.18) of
the Introduction. A two-mode GPS is thus completely defined by its complex amplitudes x, and u_ and the
values of its six real parameters 7, r., ¢, and ¢..

The most general two-mode GPS [eq. (1.18)] is an eigenstate of operators g, and g_ defined by the
vector relations (3.2.19). The matrices P. and P, are given by egs. (3.1.73b,c):

cosh rcosh r, e2®~¢Jginh r sinh r_>

p.= ( . coshr
¢ \e %@~ ginh rsinh r, cosh r cosh r_

P <e2"“’+ cosh rsinh r, €% sinh rcosh r ) (32.35)

e?* sinh rcosh r, e%* cosh rsinh r_

The matrices P, and P, follow from these by the relations (3.2.19b). The complex, symmetric matrices
M and I are related to the matrices P,, P,, P, and P, by eq. (3.2.28). The complex amplitudes u., g
and eigenvalues ., i, are related to each other through the vector expressions

=(a)= Plp,— Pipu%, p,=Ppu+Pp* (3.2.36)

[egs. (3.2.20) and (3.2.21b)]. The noise matrices S,, S,, S, T and Q for the two-mode GPS |u,) are
obtained by inserting the expressions for P, P,, P,, and P, into eqs. (3.2.34). The components of the
noise matrices T and Q were given explicitly in the preceding section [egs. (3.1.85)).

The phase angle 8, in the coordinate-space wave function (x|g,) for the two-mode GPS |u,)=
U, |, )eon can be obtained from eq. (3.2.16). The calculation is described in appendix B. The result is

exp(318,) = (det P,*)"?/|det P,|*"? (3.2.37)
[cf. eq. (2.2.37)].

3.2.4. Two-mode momentum-space Gaussian wave function
To conclude this discussion of two-mode Gaussian wave functions, consider briefly the momentum-
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space wave function for a two-mode Gaussian pure state, (p | p,) (or (p., p_| u,)), obtained by Fourier
transforming (x|pg,) [eq. (3.2.1)]. Here the dimensionless momentum variables p, and p_, components
of the column vector p, are the eigenvalues of the Hermitian operators p.. The momentum-space wave
function has the following form:

(plug)=@m)™ | dx. dxexp(-is")x | )

= X, exp(—318,) exp(zipo" Xo) exp(—ixo" p) exp(~3Ap™M " Ap), (3.2.38a)
where the (real) normalization constant X, is
N, = (4n° det S, (3.2.38b)

[cf. egs. (3.2.1), (3.2.7), and (2.2.38)]. The phase angle §, is related to the coordinate-space phase angle
6, by

exp(is,) = exp(~is,) SZ: AA; = —exp(-is) l:—::%—:;—g' . (3.2.39)
For the two-mode GPS |p,) = S|g, ).on the phase factor exp(—3i8,) is therefore
exp(—3id,) = (det P,*)"?/|det P,|"*? (3.2.40)
[cf. eq. (2.2.40)).
The position and momentum probabilities have the usual Gaussian forms:
(x| pe)f* = (47 det S,) 2 exp(—3 Ax" S Ax), (3.2.41a)
Kp|pe) = (47 det S,) 7" exp(—3 Ap™S;" Ap) (3.2.41b)

[cf. egs. (2.2.41)].

3.3. Four-component vector notation for two-mode GPS

This section describes a four-component vector notation that serves as the basis for an efficient and
powerful way of characterizing all two-mode states (pure or mixed) with Gaussian noise statistics.
Subsection 3.3.1 defines the fundamental vectors and four-dimensional matrices. Subsection 3.3.2 writes
the unitary operators and transformations associated with two-mode GPS in the vector notation.
Subsection 3.3.3 discusses the group theoretical significances of the transformation matrices that arise
from unitary transformations by the rotation, mixing, and squeeze operators. Subsection 3.3.4 defines
four-dimensional second-order noise matrices and discusses some of their important properties. Sub-
section 3.3.5 uses the vector notation to derive the unitary evolution operator associated with the most
general combination of interaction Hamiltonians that can produce a two-mode GPS. This operator is
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shown to be expressible as the product of two single-mode rotation, displacement, and squeeze
operators, a mixing operator, and a two-mode squeeze operator. It is thus proved rigorously that the
most general two-mode GPS is unitarily related to a two-mode coherent state by a product of two
single-mode squeeze operators and one two-mode squeeze operator.

3.3.1. Fundamental vectors and matrices

The previous discussion has shown that the unitary operators that relate two-mode GPS to the
vacuum state and to other two-mode GPS are rotation, mixing, displacement, and squeeze operators.
Since these operators induce linear transformations on a. and a.' (or £. and p.), it is useful to define
the four-component operator column vectors [33]

as(“*), &= (;)=Aa, (3.3.1a)

PR T TN
A=2 ﬂ(_il i1)~(A*) (3.3.1b)

[cf. egs. (2.3.1)]. Here and throughout this section the components of four-component vectors are
grouped into two two-component vectors, and the components of four-dimensional matrices are
grouped into four two-dimensional matrices. The symbol 1 is used to denote both the two- and
four-dimensional identity matrices. The expectation values of these operator column vectors are column
vectors of complex numbers (for a) or real numbers (for £):

p=@=(), &=W®- (;>=Au (332)

The adjoints of the operator column vectors are the row vectors
a'=(a'a"), '=@EFPpH=%", (3.3.3)

where a superscript “T”” means transpose. The transpose of the adjoint of an operator column vector is
denoted by a superscript “*”’:

*

@ =at = (aa ) @ =ite (:) —% (3.3.4)

Similar definitions hold for column vectors of complex numbers. Note that the product of a column
vector and a row vector, e.g., aa’, is a tensor product (i.e., a four-dimensional matrix), whereas the
product of a row vector and a column vector, e.g., a'a, is a scalar product (i.e., an operator or number).

There are six Hermitian four-dimensional matrices, in addition to the identity matrix, that arise naturally
with this vector notation. They are

SR (e N}
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rlz<"1 0), rzs("2 0), r3z("3 0)‘ (3.3.5b)

O o, 0 — 03 0 — 03
Different, but equivalent, matrices have been used by Milburn [33] to discuss a subset of two-mode

GPS. Each of these two sets of matrices satisfies properties analogous to those of the two-dimensional
Pauli matrices. For example,

Z,'Ej = 8,-]-1 + ieijkzk . F,[} = 6,‘,‘1 + ie,-,-krk . i, j, k= 1, 2, 3. (335C)

It is useful to define rotated versions of 3, 3, and Iy, I'»:

_ ) 0 e%1

Y, =3,c082¢ - 3,sin2¢ = <e‘2i‘91 0 ) , (3.3.6a)
_ 0 -ie?*1

S, e 31sin 20 + 3, c0s 20 = <ie‘2“”1 . ) : (3.3.6b)

. o, 0

I',=T cos2¢~1I,sin2¢ = ( 0 U*) , (3.3.6c)
. o 0

[, e=Tysin2e + I cos 2¢ = (" A ) (3.3.6d)

U(p,,,/“

[cf. egs. (2.3.6)]. Note that [, 3, _..] = [2}, 3,] = 2135, and [T, I, s} = [Ty, I';] = 2iT 5. The following
projection matrices are also useful:

%(1 + 23F3) = P+ s %(1 - 23F3) = P, . (3.366)

Some of the most useful properties of these matrices follow:

[P, 3=}, 2:5)=0; 3,033, =-T5; 313 =I*; (3.3.7a)
3,3, =exp[i(p — )35}, expQip'33)3, =2, .. (3.3.7b)
I =expl2ix—-x)G); expQix'D), =105 (3.3.7¢)
expixls)3, = P.2 ., t P X, _; (3.3.7d)
P.IS,+P 3T, =5,.TI. (3.3.7¢)

The commutation relations for a., a.” and £., p. are contained in the Hermitian commutator
matrices
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[a,a"] =aa’— (a*a")" = 35, (3.3.8a)
[%, &) =%" - X" = A3AT= -3, (3.3.8b)
[egs. (3.1.9); cf. egs. (2.3.7)].
3.3.2. Unitary operators and transformations
The rotation, mixing, displacement, and squeeze operators for two modes are expressed in this vector

notation in the following ways:

R(0) = exp[—ia'0a] = exp(i,) exp[—3ia"N,a] ,

(3.3.92)

Ny=6,P,+6_P_=61+86,3:5=61
[egs. (3.1.19); cf. eq. (2.3.8a)];

D(a, u) = expla’Isp] (3.3.9b)
[eq. (3.1.29); cf. eq. (2.3.8b)];

T(q, x) = exp[~3iqa'T,_ aa] (3.3.9¢)
[egs. (3.1.36)];

S14(re, 9:)S1-(r-, ¢_) = exp[—3ia'Nya] ,

N=r,P. 3, ,u+tr P23, .. (3.3.9d)
feq. (3.1.50); cf. eq. (2.3.8¢)];

S(r, ¢) = exp[—3ia'Na] ,

No=1Z, ol = (. o em"‘) (3.3.9)

1re %o, 0

[egs. (3.1.53)].
A unitary transformation by the two-mode displacement operator on the components of a or %
results in the addition of a constant column vector:

D(a,p)aD'(a,p)=a-p, D(a p)XD'(a, p)=%-§ (3.3.10)

[eq. (3.1.31); cf. eq. (3.3.9)]. Unitary transformations by rotation, mixing, and squeeze operators result
in matrix transformations of a and . One way to obtain these transformation matrices is to note the
following general relation, which follows from the commutator matrix [a, a’] = 35: Let K be an arbitrary
four-dimensional, symmetric matrix,
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Ka Kb
K= ) 311
(Kc s (33.11a)

where K, K, K., and K, are arbitrary two-dimensional matrices. Then

[a'Ka,a] = K,a,

Ko=~3y(K + 5,KTS)) = <—(Ka +KS) (Kt KJ)) . (3.3.11b)

(K A+KT)  (KT+K)
This implies that
exp(a’Ka)a exp(—a'Ka) = ¢ a. (3.3.11¢)
Note that if K, K,, K_, and K, are all symmetric,
Ko=—(K,+ K;)3:+ K, 23] (3.3.11d)
[cf. egs. (2.3.10)]. For the matrices K in egs. (3.3.9), K, and K. are symmetric and K, = K,"; hence
Ko=-23:K. (3.3.11e)

The matrix transformations induced on the column vectors a and % by the rotation operator R(0) are
therefore

R(0)aR'(8) = (:*((00))) = exp(iN,35)a=a(8). (3.3.12a)
R(ORR'(0) = (’f(o)) = A exp(iN,35)A% = exp(—=iN,3,)k = () ; (3.3.12b)
p(6) |
exp(iNoZs) = P. exp(if. 35) + P_ exp(i6_35) = (eo e?“’) , (3.3.12)
exp(—iNs3,) = P.(cos 6,1—isin 8, %,)+ P_(cos 6_1—isin §.3,)
C -5 _(cos B, 0 _/sin 6, 0
- (S C)’ C=( 0 cos 0_>’ S=< 0 sin G,) (3:3.12d)

[egs. (3.1.24); cf. egs. (2.3.11)).
The matrix transformation induced on the column vector a by the mixing operator T(g, x) is

T(q7 X)a TT(q9 X) = eXp(1q23r —11'/4)a (3313)
[egs. (3.1.38)]. A product of two single-mode squeeze operators induces the matrix transformation
Sie(re, 0)81-(r-, 9_)aS,_'(r-, ©-)$1.7(r+, 9.) = Pra,

P. P.
P,=exp(i35Ny) = P, exp(r..5,.)+ P_exp(r_3, ) = ( 25 p ) -p (3.3.14)
1s 1c
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[egs. (3.1.52); cf. egs. (2.3.12)]. Finally, the matrix transformation induced on a by a two-mode squeeze
operator is

coshrl  e**sinhroy
e~2i<p

S(r, 0)aS'(r, ) = Poa, PZEexp(i23N2)=exp(rZ¢F1)=( ) (3.3.15)

sinhro; coshri

[eq. (3.1.55b)]. The simple form of the transformation matrix P, associated with the two-mode squeeze
operator S(r, ¢) or, equivalently, the simple form of the matrix N, that defines S(r, ¢) [eq. (3.3.9¢)],
makes it possible to describe all the properties of two-mode squeezed states with a two-component
vector notation. That two-component vector notation is one which naturally groups a. with a_" and a_
with a," [see the discussion in subsection 3.1.5¢, eqs. (3.1.68)-(3.1.70), and ref. [20]]. The trans-
formation matrix that results from unitarily transforming a with the product $,.5,_S=S of three
squeeze operators is equal to the product of the transformation matrices (3.3.14) and (3.3.15), and is
denoted by the symbol P:

P, Ps>

SaS'=Pa, P=PP, = (P* o

(3.3.16)

[egs. (3.1.73)]. Transformation matrices for the column vector % are unitarily related to those for a by
the unitary matrix A [eq. (3.3.1b)).

3.3.3. Group theoretical properties of transformation matrices

The transformation matrices (3.3.12)~(3.3.16) arise naturally, without specific reference to the
rotation, mixing, or squeeze operators, from the requirement that a unitary transformation on a, and
a. (or %,, ¥, p,, and p_) preserve the commutators (3.3.8). Consider, for example, the real,
four-dimensional matrices M that describe transformations induced on the components of the real
column vector % by a unitary operator U: Mk = UxU". The unitarity of U implies that the matrices M
preserve the antisymmetric commutator matrix [&, X'] = -2, [eq. (3.3.8b)]:

M3IM™=3,=M"3,M (3.3.17a)

[cf. eq. (2.3.18a)]. The real matrices M that satisfy this condition have unity determinant. They comprise
the ten-parameter symplectic group Sp(4, R) [41]. Milburn [33] has used the properties of Sp(4, R) to
pick out special two-mode GPS that comprise a subset of the set of two-mode minimum-uncertainty
states defined in this paper (see discussion in subsection 3.1.7). Transformations induced on the
components of the column vector a= A% by the same unitary operator U are described by complex,
four-dimensional matrices M, Ma= UaU". The matrices M are unitarily related to the real matrices M
through the matrix A [eq. (3.3.1b)]:

M= ANA (3.3.17b)

The matrices M have unity determinant and preserve the Hermitian commutator matrix [a, a'] = 35 [eq.
(3.3.8a)):

MSM'=3,=M'3.M. (3.3.17c)
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They comprise a ten-parameter subgroup of the 15-parameter, noncompact Lie group SU(2,2) [41],
isomorphic to Sp(4, R).

The linearity of these matrix transformations implies that the unitary operator U is an exponential of
the ten bilinear combinations of the annihilation and creation operators for the two modes. The ten real
parameters that characterize the transformation matrices M and M are thus related to the ten
parameters of the unitary operator, i.e., to the coefficients of the ten bilinear combinations. The most
general such unitary operator can be expressed as a product of a rotation and mixing operator, two
single-mode squeeze operators, and one two-mode squeeze operator,

U =ST(g, x)R(8) (3.3.17d)

(proof in appendix A). Hence, from the preceding discussion of the rotation, mixing, and squeeze
operators, the transformation matrices M have the general form

M = exp(iN,2,) exp(ig2s] - a)P, (3.3.17¢)

where r., r, ¢-, ¢, q, x, and 6. are real, continuous parameters [eqgs. (3.3.12)~(3.3.16)].

It is instructive to obtain the general form (3.3.17¢) for the matrices M in another way. Begin by
noting that any four-dimensional matrix M that describes a linear transformation on the components of
the column vector a must satisfy

M*= 21M21 5 (33183)
since a= 3;a*. This implies that the matrix M has the general form

M, M,,)

(3.3.18b)
M,* M,*

-

where M, and M, are two-dimensional complex matrices. It also implies the following equality:

M3 M3, = M3.M"3, (3.3.18¢)
[cf. egs. (2.3.19)]. Because the matrix M describes a unitary transformation on the components of a, it
preserves both the Hermitian commutator matrix [a,a']=3; [eq. (3.3.17c)] and the antisymmetric
commutator matrix [a,a"] =i3,; i.e., both expressions in eq. (3.3.18c) are equal to the identity matrix.
Unitarity thus determines six of the sixteen real parameters associated with the matrix M of eq.
(3.3.18b), by imposing the following equivalent sets of conditions on the two-dimensional matrices M,
and M,:

MM, -MM, =1, MM - (MM =0 (3.3.18d)
[imposed by M3.M '3, = M3,M™3,=1], or

MM, -MM,*=1, M} M,— (M, M,)"=0 (3.3.18¢)



B.L. Schumaker, Quantum mechanical pure states with Gaussian wave functions 393

[imposed by M*3;M3;= M"3,M3,=1]. Note that these conditions also ensure that det M = 1. The
matrices M that describe unitary transformations on the components of the column vector a therefore
have the general form (3.3.18b), subject to the conditions (3.3.18d) or (3.3.18¢)-i.c., they have the
general form (3.3.17e).

3.3.4. Second-order noise matrices
The four-component vector notation is very useful for calculating second-order noise moments of a..,

a.', £., and p. -i.e., the noise matrices Q, T, S,, S,, and S, The four-dimensional matrix that contains
all second-order noise moments of a. and a.' is the Hermitian matrix

T
@ = (AaAa'),,. =L((Aa Aa") + (Aa* AaT)T) = ( Q Q*) - g (3.3.19a)
[cf. eq. (2.3.20)]. The four-dimensional matrix that contains all second-order noise moments of £. and p. is
the real, symmetric covariance matrix
8= (A% AR )y =3 ((A% ART) + (A% ART)T)

S, S,
= x Pl=APA = §*=8" 3.3.1%b
( st s )=A@a=5%-5 (3.3.19b)

[cf. eq. (2.3.21)]. The relations (3.2.11) imply that for two-mode GPS these matrices satisfy

23, 33,=31, (3.3.20a)
83,8%,=31 (3.3.20b)

[cf. eqgs. (2.3.22)]. Hence their determinants are both equal to 5. For a two-mode coherent state, both
are proportional to the identity matrix:

gcoh = Xcoh = %1 (3321)
[egs. (3.1.91)].
The noise matrix & for a two-mode state |¥) is related to that of the rotated state R(8)|¥) in the

following way:

(R'(0)(Aa Aa"),,,R(0)) = (Aa(—0) Aa'(-0)),..
= exp(—iN,35) @ exp(iN,3;) = F(-0) (3.3.22)

[egs. (3.1.28)]. It is related to that of the transformed state T(g, x)|¥) by
(T'(q, x)(Aa A2")y T(g, X)) = exp(~ig3sTy 11a) D eXp(gZsTy— ra) - (3.3.23)
The noise matrix ¢ for a two-mode state |¥) is related to that of the transformed state S| ¥) by

(S'(Aa Aa'),,.S) = P Z(P)'. (3.3.24)
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This immediately tells one, for example, that the noise matrix & for the most general two-mode GPS
1) = Slpte deon €9 (3.2.27)] is

F=3PP)'=33,PP3, (3.3.25)
[eq. (3.3.21); cf. egs. (3.1.85), (3.2.34b,c)].

3.3.5. Evolution operator for general two-mode GPS

Finally, the four-component vector notation is helpful for seeing how the unitary operator whose
generator is an arbitrary combination of the Hermitian forms Hx®, H,®, and H,® factors into a
product of three squeeze operators, a mixing operator, a (two-mode) rotation operator, and a
(two-mode) displacement operator (and an overall phase factor). By giving these generators arbitrary
time dependences, one can calculate the evolution operator associated with the most general com-
bination of Hamiltonians that can produce two-mode GPS. This result is given here, with supporting
details presented in appendix A.

The photon number-conserving Hamiltonians associated with two-mode GPS are expressed in vector
notation by

Hp P+ Hg_P(t) = —w,+3a'N,a, N, =w.P.+w P = wl+ w315,

(@*w); (3.3.26a)

NI

. =0T w,, w

Heo()=1pa'T,, ., (3.3.26b)

where w.. (or w,, ©.), p, and y, are real-valued functions of time ¢ [egs. (1.5), (2.6), (3.3.9a,c)]. The linear
Hamiltonian associated with two-mode GPS has the form

. A A,
H,?(t)=ia"3:\, AE(A*), AE(L), (3.3.26¢)

where A, and A_ are complex-valued functions of time f [egs. (1.4a), (3.3.9b)]. The quadratic,
non-photon-number-conserving Hamiltonians associated with two-mode GPS are

H2+(1)(t) + Hz—(l)(t) = %aT(K*'P*E(P“—‘ﬂ/“ +tk_P_ 2%;#/4)3 s (3326d)
where «.. and ¢, are real-valued functions of ¢ [eqgs. (1.8), (3.3.9d)}, and
H2+_(t) = %KaTE q,x_,,-mrla s (33266)

where « and ¢ are real-valued functions of time ¢ [egs. (1.7), (3.3.9¢)].
The evolution operator U(#) is the solution to the equation

U= H2nU@), U@O0=1,
H®=[Hg, "+ Hg®+ Hgy-+ H®+ H,, "+ H, P+ H,._]. (3.3.27)
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It can be written as a product (in any order) of the three squeeze operators, a mixing, rotation, and a

(two-mode) displacement operator, and an overall phase factor. For illustration, consider the following
two forms for U(#):

U(5) = €°D(a, p)Sy.(rs, 9:)81-(r-, ¢-)S(r, ) T(q, X)R(0) (3.3.28a)

= €°S1u(re, 9:4)81-(r-, 0-)S(r, ¢)T(g, X)R(6)D(a, 1,.) (3.3.28b)

[cf. eq. (3.2.27)]. Here §, r., 1, ¢-, ¢, g, X, and 6. are real-valued functions of time, and u«. and g,. are
complex-valued functions of time. For notational convenience, throughout the remainder of this section
the product of the three squeeze operators is denoted by S [eq. (3.1.71)], and the parameters of the
other unitary operators are omitted, i.e., T = T(g, x) and R =R(#). The state U(¢)|0) is an eigenstate of
operators g. = U(f)a.U'(f) (with eigenvalues u,.), whose relations to a. are described by the vector
relation

g= ( £ ) = STRaR'T'S' = exp(iN,25) exp(igSsT, _,.4)Pa (3.3.29a)

*

[egs. (3.3.12)~(3.3.16)]. The complex eigenvalues u,. are therefore related to the complex amplitudes
p=(a.) by

*
4

s = (1) = expliNo ) explig —riPh. (3:3.29)

It is shown in appendix A that the relations of the functions r, r., ¢, ¢., 0. (or 6,, 6,), .. (or u.), and &
to the Hamiltonian functions «, k., ¢,, ¢.., w- (Or w,, w,), and A. take the form of matrix, vector, and
scalar equalities. The vector and scalar equalities are

,:l.g = eXp(iN923) CXp(iqZ}FX_,,MPX = Xg y (3.3.303)
8+ 6,~ 0, =—3ipfTape = Im(p. A+ p_*A2) = Im(piA,) = Im(p'2) (3.3.30b)

[eq. (3.3.17c); cf. egs. (2.3.32b,c)]. (Dots denote derivatives with respect to time.) The matrix equality is
given in its full generality in eqs. (A.15}-(A.17)]. The initial conditions, dictated by U(0) =1, are

8(0)=r(0)= r.(0) = q(0) = 6.(0) = p,-(0) = 1-(0) = 0. (33.31)
For illustration, consider the case where (i)
Pur = Puc * Xp» (33323)

and (ii) the time dependences of these parameters are
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t

Pue = Py~ f w. dt, (3.3.32b)

4]

where ¢,,, are constants. The matrix equality then implies that

t

P = Pr ¢ = ¢, X~ Xp> 0. = J w. dt 5 (33333.)

0

p = ¢ cosh 2r cosh 2r, — r sinh 2r, ,
= F cosh 2r, - ¢ cosh 2r sinh 2r, , K. = F.*qsinh2r, (3.3.33b)

where r. = r, = r,. If the mixing interaction is absent (p = 0), egs. (3.3.33b) reduce to the following coupled
equations for r, r. (or r,, r,), and ¢:

rsech2r,=«, F. * k sinh 2r, tanh 2r = k.., g cosh 2r/sinh2r, = k. (3.3.34a)

If k. = k_=«’, these coupled equations have the simple solutions

t t

r+=r_=jx'dt, r=JKdt, g=0. (3334b)

0 0

The phase angle 6 and complex amplitudes u.. (or eigenvalues u,.) are obtained by using the solutions
forr, r., g, ¢, ¢., and y (from the matrix equality) to solve the vector and scalar equalities (3.3.30a,b).

4. Concluding remarks

Nature abounds with phenomena whose classical or quantum mechanical description involves fields
or states that are Gaussian in nature. The reasoning, formalism, and results presented here form a basis
for a simple but complete description of all such states and fields. This paper has focused on pure states,
defined as specific unitary operators acting on the vacuum state. Its goal has been to provide a
description of two-mode Gaussian pure states that is as complete and useful as the existing description
of single-mode Gaussian pure states. The motivation has come primarily from the desire for a realistic
description of “two-photon” devices, such as parametric amplifiers, which are capable of producing
states with exceptional low-noise properties, compared with the coherent states produced by con-
ventional one-photon devices such as lasers. Two-photon devices operate by producing pairs of
correlated photons. In the special case of a degenerate device, these photons occupy a single mode; in
general, however the photons occupy different modes, and they may differ from each other in
frequency. The (pure) states produced by ideal degenerate and nondegenerate two-photon devices are
single-mode and two-mode squeezed states, respectively. The properties and importance of two-mode
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squeezed states were discussed only briefly here, since they are the subject of detailed discussions
elsewhere [18-20]. Here, their origin and properties were compared with those of other two-mode
Gaussian pure states, e.g., products of two single-mode squeezed states, produced by two degenerate
two-photon devices.

Although this paper has focused on pure states, the results and formalism described in it serve as a
basis for a general description of all states that are mixtures of Gaussian pure states (Gaussian mixed
states). The analog for mixed states of a wave function is a quasi-probability distribution [52] (QPD),
defined as a 2N-dimensional Fourier transform of a characteristic function [32]. The characteristic
function of an N-mode state described by a density operator p is defined as the trace of the product of p
and an (appropriately ordered) N-mode displacement operator. Thus, an N-mode Gaussian mixed
state, a mixture of N single-mode Gaussian pure states, is a mixed state whose QPD (or characteristic
function) is Gaussian (i.e., an exponential of complex-valued linear and quadratic forms in ‘“‘position”
and “momentum” variables). Characteristic functions and QPDs have been used successfully in
quantum optics, for example, to provide realistic descriptions (including losses and other nonideal
effects) of devices that produce single-mode GPS and mixtures thereof —e.g., “one-photon” devices
such as the laser [10, 11, 29] and degenerate two-photon devices [53, 54]. More recently, the author has
defined special “two-mode” characteristic functions and QPDs (based on the electric-field quadrature-
phase amplitudes) that are specifically suited to describing realistic nondegenerate two-photon devices
[18, 55]. More general two-mode characteristic functions and QPDs, based on the formalism described in
this paper, are the keys to a realistic description of all devices that produce (mixtures of) states whose noise
statistics are Gaussian in the sense defined here.
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Appendix A: Evolution operators for GPS

In this appendix certain properties of the unitary operators associated with single-mode and
two-mode GPS are derived that are useful for calculating the general evolution operators described in
subsections 2.3 and 3.3 [egs. (2.3.28)(2.3.36), egs. (3.3.26)-(3.3.34)].

Al. Single-mode GPS

One way to find the single-mode evolution operator U(#) defined by egs. (2.3.28)—(2.3.30) is to take
the derivative with respect to time of either of the factored expressions (2.3.30) for U(¢), and match
terms with the Hamiltonian. This is the approach described here. An alternative approach, which
permits calculation of everything except the phase factor ¢'® in the expressions (2.3.30) for U(¢), is to
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solve in the Heisenberg picture the matrix equation a,(¢) = M(t)a,(0)+ us(f), and identify the unitary
operator U, that generates M; then ayt)= D'(a, u)U, a,(0)D(a, p)U, [29]. The evolution operator
U(¢) is equal, up to an overall phase factor, to the product of U, and the displacement operator
D(a, ).

The first (and hardest) task involved with computing the time derivative of the expressions (2.3.30)
for U(t) is to compute the (first-order) derivatives of each of the unitary operators S(r, ¢), R(6), and
D(a, p); the second task is to commute these operators through each other. The time derivative of the
second expression for U(t) in eq. (2.3.30) is

UU =18+ 8,5, + Si(RR"S," + $,R(D,D; )RS/, (A.1)
4

where D, = D(a, u.), and a superposed dot denotes a single derivative with respect to time. These time
derivatives can be found using the general rule

[a‘ef(t)]e-f(t)= i {f"f} Ef“'%[f;f]"'%[f’ [f‘,ﬂ]+ (A2)

aso(n+ )

(derived in subsection A3 of this appendix). The time derivative of S;(r, ¢) can be calculated with the
help of the following facts:

Op = =260 g msr O gma= 260, ; (A.3a)
[alo,_ maa,, alo,a,] = 4iala,, (A.3b)
lalo,—waa, ala] = dialo,a;. (A.3¢)

The result is

$18," = —3ial[- 1+ ¢Cyp , + 0y myala . (A4)
The time derivatives of R(8) and D(q, p,) are

RR'=-lif(ala, - 1), (A.5)

D,D},= (i~ 31505 s (A-6)
Note that ﬂg = at(/"’g) # (/‘i)g'

Commuting the operators through each other to find the last two terms in eq. (A.1) is accomplished
using the transformations in egs. (2.3.11) and (2.3.12). Equating iUU" to the sum of the Hamiltonians
on the right-hand side of eq. (2.3.29) then results in the relations (2.3.32), which define the functions r,
@, 6, u, (or w), and 8§ uniquely in terms of the Hamiltonian functions «, ¢,, {2, and A.

A2. Two-mode GPS

As in the single-mode case, the first task is to calculate the (first-order) time derivatives of the various
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unitary operators, and the second is to commute the operators through each other. The time derivative
of the expression (3.3.28b) for U(¥) is

UU'=i8+SS"+S(TT")S' + ST(RR")T'S' + STR(D,D,R'T'S", (A7)
where D, = D(a, p,), S=5,.5,_S, and a superposed dot denotes a single derivative with respect to
time. The time derivatives of these operators are found using the formula (A.2). For the rotation and
displacement operators the calculation is straightforward, giving

RR =i,—3ia'N,a, N;=6,P,+6_P_ =61+6,5.T;; (A.8)

D.ngT = (aT - %H;)Zsllg . (A9)

For the remaining operators it is useful to have the analogs of egs. (A.3). For the mixing operator these are

rx = —2/\;[‘,\/—#/4 ) f‘x—rr/4 = 2X X (Aloa)
[a'T,_.4a,a'[,a]=—4ia'3la, (A.10b)
[a'T,_.ua a" 33 a) = 4ia'Ta. (A.10¢)

These lead easily to the result
TT' = -}ia'Mra,  Mp=—x3:05+ x50 expRig3sly—ma) + GF yma - (A.11)

For the three squeeze operators the relevant facts are

2’¢ = 2¢2¢—7r/4 ’ 2‘(0-7'!/4 = 2¢2<p ; (A' 123)
[a'%,_ .44, a" 3 a]=4ia'a, (A.12b)
[a'Y, .2 a'a]=4ia'3,a. (A.12¢)

These lead to the results
(8:51+51-)(S1+.81-)" = —3ia"Msa,
My=-¢,P.—¢ P +¢,Pexpr.3,)+¢.P expr-3,)+iP.3, 4+t P23, .. (A13)
SS'=-%ia'Mya, My=-¢1+¢exprS )+ F5,_..T,. (A.14)
Commuting the operators through each other to find the last three terms in eq. (A.7) can be
accomplished with the help of the transformations described in egs. (3.3.12)~(3.3.16). Equating iUU" to

the sum of the Hamiltonians on the right-hand side of eq. (3.3.27) then results in matrix, vector, and
scalar equalities, which define the functions r, 7., ¢, ¢., ¢, x, 6., g, (or x.), and & uniquely in terms of
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the Hamiltonian functions , K., ¢, @.«, P, Xm {2, and A.. The vector and scalar equalities were given
in egs. (3.3.30). The matrix equality is

M, + P,M, P+ P M P+ P exp(—ig3sl, )N 6 exp(ig2sl,— .a)P

=N, + PFX,,—”/A + K+P+2(pk+—‘n'/4 + KfP—Z‘p&—wM"F qupfwmrl (A.lS)
fegs. (3.3.12)-(3.3.16) and (A.8)-(A.14)]. The matrix transformations required in order to put the
left-hand side of eq. (A.15) into a form that is easily compared with the right-hand side (the
Hamiltonian) can be accomplished fairly easily by making use of the properties of the matrices 2; and [
noted in egs. (3.3.5)-(3.3.7). The terms that comprise the left-hand side of eq. (A.15) are listed below,

with the four-dimensional matrix that multiplies it listed at the left of each term. The following
shorthand notations are used:

‘pt—qo:-XEBt’ ¢+OSE‘YS, X+anYa- (A16)
The terms are as follows:
P.: —¢.+cosh2r.[B, + 9, cosh2r + vy, cos 2q]

+sinh 2r sinh 2r,[ v, sin2q cos 28, — ¢ sin 23,], (A.17a)

P.: —¢_+cosh2r_[B_ + ¥, cosh 2r — 7, cos 2q] +sinh 2r sinh 27_[ y, sin 2¢ cos 2B_ + ¢ sin 28] ,

(A.17b)
I', .4 ¢gcosh2rcoshr,coshr,

Ig, g y-ma: qcosh2rsinhr,sinhr_,
Ig,ix—ma: —Fsinhr,coshr_,

Iy g s rsinhr_coshr,; (A.17¢)

P+Z(p+—1r/4: r.+ ’
P.3,. .5.—ms —qsinh2rsinh®r,,

P.3,. p.—mas ¢sinh2rcosh’r,; (A.17d)

P-Z.p_—nm: F,

P.3, g —ma §sinh2rsinh’r_,

P, g _ms —qsinh2rcosh’r_, (A.17e)
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S —maly: Fcoshr,coshr_,
S pipirp—maly: —Fsinhrysinhr_,
S oip—ma: —qcosh2rsinh r, coshr_,
3 ip—ma: g cosh2rsinhr_coshr, ; (A17f)
3,I: y,sinh2rcosh r, cosh r_,
S iprp 1 Yesinh2rsinh r, sinhr_,

3 +g.11: ¥a.sin2q cosh 2r sinh r, cosh r_,

3 ,+p.1: 7vasin2q cosh2rsinh r_cosh r, ; (A17g)
I',:  va.sin2qcosh2rcoshr,coshr_,

Iyip—p.: 7Yasin2qcosh2rsinhr,sinhr_,

I'yip.: 7Yssinh2rsinhr,coshr_,

I'y_g: 9yssinh2rsinhr_coshr,; (A.17h)

P.5,.: sinh2r.[B. + y,cosh2r+ y,cos 2q],

P.3,..p.: 7asin2qsinh2rsinh’r,,

P.3,. g 7asin2gqsinh2rcosh’r, ; (A.170)

P_3,: sinh2r_[B_+ y,cosh2r— y,cos2q],

P 3, .5: 7va.sin2qsinh2rsinh®r_,

P 3, 5: v.sin2gsinh2rcosh’r_ . (A.175)
The obvious simplifying case is that considered in subsection 3.3 [egs. (3.3.32)], for which

Bi=B-=7=7=0. (A.18)

A3. Derivation of eq. (A.2)

The formula (A.2) for 9,¢/ can be found as follows: First, use the standard definition for
derivatives, and keep only terms of lowest order in At:
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efran _ of0) ef(t)+Atf'(t) _ ef(r)
® = lim (————) = lim {(—————). Al
3,60 lim () = Iim (~——5——) (A.19)
Next, use the definition of e* to write
A f n—j-1
exp(f+Adf) = lim [ef + 2 (1 + f) (—’f) (1 + i) + O(At)2] . (A.20)
nseo n n
As n—>x, let 1/n— dx, where the variable x (=j/n) runs from 0 to 1. Then
1
o/ of = Ay J dx e¥fe o + OALY. (A21)
The relation (A.2) is then proved by noting that
. © 2
e’fe ™ = Z — {f”f} f+x0f 1+ [f [N+ (A.22)

Appendix B: Phase factors for wave functions

The phase factors exp(3i8,) and exp(3id,) in the single-mode and two-mode coordinate- and
momentum-space wave functions can be found using egs. (2.2.16) and (3.2.16), respectively. Two
methods are described here for single-mode GPS (i.e., single-mode squeezed states): one uses a factored
form for the single-mode squeeze operator [eq. (2.3.15)]; the other uses a differential equation. For the
most general two-mode GPS the calculation is more challenging. Factored forms for the product of the
three squeeze operators are not as convenient for this calculation as their single-mode counterparts,
because they involve more than one operator that does not act like the identity operator on the vacuum
state; furthermore, their derivation is nontrivial. The differential equation approach, while possibly
more promising, still involves a painful process of commuting operators through each other. Although
no rigorous derivation is given here, the phase factor for a general two-mode GPS can be guessed with
reasonable certainty. Of course, for two-mode squeezed states the calculation is no more difficult than
for a single-mode squeezed state, since the two-mode squeeze operator factors just as easily. Similarly,
for states that are a product of two single-mode squeezed states the phase factor is just the product of the
single-mode phase factors.

The coordinate-space phase factor exp(3id,) for a single-mode squeezed state is found, from eq.
(2.2.16), by calculating

(x = 0Sy(r, ©)I0) - (B.1)

The factored form (2.3.15) for Si(r, ¢) implies that

©

Si(r @0) = (cosh Py 3 2 —2¢™ tanh 1)" 2 AN en)eny . B.2)
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The wave function for a number state |n) = [(n)!]""*(a")"|0) is [17]

x| ) = @nt) M H,(x)(x | 0), (8.32)
where ‘
(x[0) = 77" exp(—3x7), (B.3b)

and H,(x) is a Hermite polynomial with the property that
H,,(0)=(-1)"2"2n-11". (B.3c)

These relations then imply that

(x = 0|S:(r, 9)|0y= 7~ V¥(cosh )" 3 3€%% tanh r)"

n=0

sinh 7). (B.4)

= @n-1)!
!

= 7~ Y4(cosh r—e**

Hence the phase factor exp(3i8,) in the coordinate-space wave function of a single-mode squeezed state
‘,ua> e 18
(cosh r— e sinh 1) (p,*)"?

lcosh r— e 3¢ sinh 1| |p,["?

exp(id;) = (B.5)

as given in eq. (2.2.37).

The phase factor exp(3i8, ) for a single-mode squeezed state can also be calculated using a differential
equation. One considers the wave function (x = 0|S,(r, ¢)|0) = fo(r) as a function of the squeeze factor r.
Differentiating it, and replacing the operators a and a' with the appropriate linear combinations of £
and p, leads to a simple first-order differential equation in 7, whose solution is

fo(r)= N, exp(3i8,) = 7 "*cosh r — €?* sinh r|"'? exp(3i8,)
=~ Y*(cosh r — e%* sinh r)~ 12 (B.6)

[egs. (2.1.35a), ((2.2.7)].

The phase factors in the wave functions of two-mode squeezed states can be calculated in these same
ways; the first method is somewhat simpler, since the required factored form for the two-mode squeeze
operator is already known from the single-mode result (see discussion in subsection 3.1.5c). The
calculation parallels that given in eqs. (B.2)~(B.5) above. The result is the following expression for the
phase factor exp(3i8,) in the wave function of a two-mode squeezed state |u.. )¢, ,):

exp(3i8,) = (cosh? r — e ** sinh? r)”%/|cosh? r — e ** sinh? "2 (B.7)

The phase factor in the wave function of a product of two single-mode squeezed states is just the
product of the phase factors for two single-mode squeeze states [eq. (B.5)]. These results suggest
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strongly that the phase factor for the coordinate-space wave function for the general two-mode GPS
le) = S14+. 81 S|p)eon is given by the following expression:

exp(3i6,) = (det P, *)'?/|det P,|' (B.8)

[eq. (3.2.37))].

Appendix C: Simultaneous eigenstates of complex operators

The complex (non-Hermitian) operators of which Gaussian states are eigenstates are linear com-
binations of creation and annihilation operators. The discussions in subsections 2.2 and 3.2 showed that
a single operator g of this type has a complete (or overcomplete) set of normalizable eigenstates if and
only if the commutator [g, g'] is a positive real number, since this is equivalent to the condition that the
wave function be normalizable (recall that [g, g'] = 0 corresponds to a delta-function wave function).

Two-mode Gaussian pure states are eigenstates of two linearly independent complex operators g.
and g_, each of which is a linear combination of the creation and annihilation operators for the two
modes. The discussion in subsection 3.2 showed that two such operators have a common, complete (or
overcomplete) set of normalizable eigenstates if and only if (i) the commutator [g., g_] =0, and (ii) the
Hermitian commutator matrix Y, is positive definite, where

oo (len g g gf]) s _ <g+> C.1)
Yi=le g ([g-, gl 1goe ) BT (
These conditions are equivalent to the requirement that the two-mode Gaussian wave function be
normalizable. That g, and g_ must commute with each other in order for them to have a complete set
of simultanecous eigenstates is obvious. The further requirement that Y, be positive definite —but not
necessarily diagonal —is not so obvious. One might have expected, incorrectly, that the two operators
must commute completely, i.e., that the commutator [g,, g-"] must also vanish. Following is a simple
argument that shows why Y, must be positive definite, but not necessarily diagonal.

Let g. and g_ be two complex operators (with c-number commutators) that commute with each
other completely,

lg:» 8-1=1g,8-"1=0. (C2)

Suppose also that each has a complete (or overcomplete) set of normalizable eigenstates, i.e.,
{8+, 8."1>0. Clearly there exist normalizable states that are eigenstates of both g, and g_, and hence
also of all linear combinations of g, and g_. Consider two such (independent) linear combinations, g.'
and g_’, defined by

£=(%)- . -

where K is any two-dimensional nonsingular matrix (det K # 0). The operators g,’ and g_’ will certainly
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commute with each other, [g.’, g_'] = 0, but the commutator [g.’, g_'*] will not, in general, be zero. The
commutator [g,’, g_'"] will vanish if, for example, the operators g,’ and g_' are obtained by unitarily
transforming g, and g_ by the same unitary operator U, g.'= Ug.U", since in that case all
commutators are preserved. If, however, the operators g and g_" are obtained by unitarily transform-
ing g, and g_ with different unitary operators,

g:’ = U:g: UJ_fT s (C4)

then only the commutators [g.., g.'] must be preserved, and the commutator [g,’, g''] need not vanish.
The Hermitian commutator matrix Y,. for the operators g,’ and g_' is related to that of g, and g_ by

Y, =[g\g"1= KY,K". (€5)

In general, all elements of Y, can differ from those of Y,. The property of the commutator matrix that is
preserved in the transformation (C.5) is positive definiteness. A Hermitian matrix is positive definite if and
only if its eigenvalues are positive; i.e., if g is a vector of complex numbers with components u;,
i=1,2,..., N and M is an N-dimensional matrix with components M;;, then M is positive definite if and

only if
I‘TMI‘ = Mu;* ;>0 (C.6)

for all vectors u. This shows clearly that Y,. is positive definite if and only if Y, is positive definite, since

B Y= (Kp)' Yo (Kp)=0. (C.7)

Appendix D: Squeezing in general two-mode GPS

This appendix presents some supporting mathematical details for the discussion of squeezing in
subsection 1.8 of the Introduction.

Consider the electric-field operator for a collection of modes with frequencies between £2 — £ and 2 + ¢,
all travelling in the x-direction with identical polarizations. It has the form

E(xn)=f f do 0'?[a(w) e + a* () ]
=f f de {e7“[(2 + &)"a.(e) e 7™ + (2 - £)"%a_"(e) €] + h.c.} (D.1a)
= Ei(x, t)cos f2u + Ex(x, t)sin u, (D.1b)

where u=1t-x, a.(¢)=a(f) + ) are annihilation operators for the modes, f is a spatially dependent
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3

proportionality factor, and “h.c.” means “Hermitian conjugate”. The quadrature phases E,; and E,
describe modulation of the carrier waves cos Qu and sin Qu. Their Fourier components at frequencies ¢ are
proportional to the quadrature-phase amplitudes defined in egs. (1.21):

E(x 1) = fQ0)"™ J de [ay(e) e "™ + a'(e) ] (D.2a)

=260 j de [an(e) cos eu+ ap(e)sin eul,  j=1,2, (D.2b)
0

where a;;(¢) and a;,(¢) are (2 times) the real and imaginary parts of a;, respectively:
a;(e)=2""a;(e)+iap(e)] . (D.3)
The variance of E;(x, ¢) is

e &

(AEP) « J j de de’ [(Aay(e) Aay (') expl — i(e + £)u] + hoc.

+ 2AAa;(e) Ae, (€' )sym expl —i(e — ") u]] - (D.4)

Restrict attention now to (i) Gaussian fields, for which the moments of E and E; obey a Gaussian
distribution and hence are characterized by second-order moments, and (ii) fields for which the modulations
at different frequencies ¢ are independent of each other, so that each of the noise moments in the above
expression vanishes when ¢ # ¢'. Such fields can be viewed quantum mechanically as a collection of
independent two-mode GPS, all of which have the form of eq. (1.18). One need therefore consider only one
of these two-mode states, i.€., a single modulation frequency . The filtered output of a heterodyne detector
(the frequency ¢ component of E;) represents just such a state. When this output is mixed with a wave
cos £u, the resulting dc signal is proportional to {(a;;(¢)), [egs. (D.2) and (D.3)]. The noise in this signal is
proportional to the variance of ;. For the general two-mode GPS |u,) [eq. (1.18)], the mean-square
uncertainties in @, and a, and the second-order noise moments ((Aa;)?) and {((Aa,)?) are

(|Aa,|*) = 3{cosh 2r(1 + A, sinh? r, + A_*sinh* r.)

: F A, A_sinh 2r{(cosh r, cosh r_cos 2¢ +sinh r, sinh r_cos 2(¢ — ¢, — ¢ )]}, (D.5a)

((Aa1)®) =3[, A_sinh 2r(exp[2i(¢ — ¢_)] cosh r, sinh r_+ exp[—2i(¢ — ¢,)] cosh r_sinh r,)
2
¥ 3cosh 2r(A, 2 exp(2ig.) sinh 2r, + A_%exp(— 2ip_) sinh 2r_)] (D.5b)
A= /)7 (D.5c¢)

[eq. (3.1.85)]. The variances of a;; and a;, are related to these by
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((Aa,gf) = (|Aq;") = Re({((Aey)?)) - (D.6)

It is clear from eq. (D.5a) that the mean-square uncertainty in a;, which constitutes the time-independent
contribution to the variance of E}, can be smaller than the coherent-state value of Sonlyif r # 0, as stated in
the Introduction. For a two-mode squeezed state (7. = r_ = 0), the noise moments {(Aq;)’) vanish (TSQP
noise), which implies that the variances of a;; and «;, are equal; the modulation signal at the output of the
heterodyne detector has random-phase noise. Consider now states that do not exhibit TSQP noise, i.e.,
states for which the modulation signal has phase-sensitive noise. In particular, let us look for states in which
the variance of a,,, say, can be smaller than it is in either a coherent state or a two-mode squeezed state.
Clearly such a state must have ¢, = ¢_ = ¢ = 0; i.e., it is a two-mode MUS, as defined in subsection 3.1.7.
For two-mode MUS, the variances of a;; and a;, are

(A it Y)=3[3cosh2r (A2 + A2 ) F A, A_sinh 2r exp(F2r,)], (D.7a)
2

((Aa2 ) =33cosh2r (A, e*** + A_>e™¥")F A, A_sinh 2r exp(£2r,)], (D.7b)
22

re=x(r.*r.). | (D.7c)

The variance ((Aay,)) is minimized, for a given r and r, (or r_), when

2r,=r,~r_=In(A, /A )= (e/Q)[1+ 3(e/02) + (/D) +--]. (D.8)
When this condition is satisfied, the variance of ay, is

(Aany)?) = 3, A_exp(=2r,) exp(-2r), (D.9)

which can be arbitrarily small.
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