
Physics 610 Homework 1

Due Wed. 19 September 2012

1 4-vector notation and Maxwell equations

The purpose of this problem is to get you used to index notation and in particular to 4-vector

notation.

Recall that the electric and magnetic fields can be derived in terms of two quantities, the

scalar potential Φ and the vector-potential ~A. It is also convenient to replace the magnetic

field with the antisymmetric 2-tensor Fij defined as1

Fij ≡ ∂iAj − ∂jAi (non-covariant index notation). (1)

In terms of this, F12 = B3, F23 = B1, and F31 = B2, e.g.,

Fij = ǫijk Bk and Bi =
ǫijk

2
Fjk . (2)

Here as usual ǫijk is the totally antisymmetric symbol (Levi-Civita tensor) with ǫ123 = 1.

In terms of ∂t, ∂i, Ai, and Φ, write the standard (non-covariant) expressions for the

electric and magnetic fields Ei and Fij .

Now we move to 4-vector notation. Define Aµ = (Φ, ~A) (where µ = 0, 1, 2, 3 and the

notation means that for µ = 0 you choose the first object in the parenthesis and for µ = 1, 2, 3

you choose the component of the second, e.g., A0 = Φ and A1,2,3 = ~A1,2,3. Careful: while

A0 = Φ, we have A0 = −Φ.) Also define ∂µ = (∂t, ∂i). Introduce

Fµν ≡ ∂µAν − ∂νAµ , (3)

and show how F 0i is related to the electric field and how F ij is related to the magnetic

tensor. Here F 0i means F µν for the case where µ = 0 but ν 6= 0–we will use Roman letters

to mean that a Lorentz index µ is not zero.

Also introduce jµ = (ρ,~j) the 4-current. Show that the covariant equation

∂µF
νµ = [±]jν (4)

is equivalent to both Gauss’ law and Ampere’s law. Figure out which is the correct sign on

the current; is my ± a + or a −?

1As in class, Roman indices refer to the three space indices 1,2,3 corresponding to x, y, z; since gij = δij ,

we make no distinction between upper and lower indices. Greek indices are 4-vector indices, and it is essential

to distinguish between upper and lower indices.
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Now define ǫµναβ the 4D antisymmetric symbol which generalizes the 3-D Levi-Civita

tensor: ǫνµαβ = −ǫµναβ and similarly for any other permutation of the indices, and ǫ0123 = −1.

[The minus sign is so that ǫ0123 = +1; the sign flips because an odd number of the gµν ’s you

need to raise the indices are negative.]

Show that

ǫµναβ∂
νF αβ = 0 (5)

is an identity (is true regardless of what values Aµ take provided they are twice differentiable)

and that this identity is equivalent both to Gauss’ Law for magnetism and to Faraday’s law.

You are now an expert with index notation.

2 Condition to be a Lorentz transformation

Here we clear up two simple pieces of the derivation of what is and is not a Lorentz trans-

formation.

In class we saw that Λµ
ν is a Lorentz transformation if and only if

xαΛµ
αgµνΛ

ν
βx

β = xαgαβx
β (6)

for any choice of 4-coordinate xα. Show that this really does require that

Λµ
αgµνΛ

ν
β = gαβ (7)

should hold. Hint: show that if (7) is NOT true, then there is some xµ such that (6) is also

NOT true. Then argue by contrapositive.

Next, consider

Λµ
ν = expωµ

ν (8)

where multiplication is defined by thinking of the first upper index as a column index and

the second lower index as a row index, and using matrix multiplication, eg,

expωµ
ν = δµν + ωµ

ν +
1

2
ωµ

αω
α
ν +

1

6
ωµ

αω
α
βω

β
ν +

1

24
. . . (9)

Show that, provided ωµν = −ωνµ, that Λµ
ν really is a Lorentz transform, that is, that it

satisfies Eq. (7).

3 Translations and Lorentz Transformations

Let’s see that translations and Lorentz transformations do not, in general, commute. Con-

sider the translation which shifts the coordinates by a distance ξµ:

x
µ
tr = xµ + ξµ (10)
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and the Lorentz transformation which rotates the 4-coordinates according to

x
µ
lt
= Λµ

νx
ν = xµ + ωµ

νx
ν (11)

(working to linear order in small ω!)

Show that, if we first apply the Lorentz transform on the coordinates and then perform

the tranlation, the coordinate will change to

x
µ
lthent

= xµ + ωµ
νx

ν + ξµ (12)

whereas, if we first apply the translation and then apply the Lorentz transformation, we get

x
µ
tthenl

= xµ + ωµ
νx

ν + ξµ + ωµ
νξ

ν (13)

which is not the same. Why can the difference be interpreted as a translation?

At lowest order in ξ, the unitary operator which implements the translation is

U(ξ) = 1− iP̂µξ
µ , (14)

and the unitary operator which performs the Lorentz transformation is

U(ω) = 1 +
i

2
ωµνM̂

µν . (15)

Argue that U(ω)U(ξ) should differ from U(ξ)U(ω) by −iP̂µω
µ
νξ

ν in order to account for the

difference between Eq. (12) and Eq. (13). Show that the difference between U(ω)U(ξ) and

U(ξ)U(ω) arises due to the failure of M and P to commute as operators. Then show that,

to give the right difference for arbitrary (small) ωµν and ξα, the operators M and P must

obey the commutation relations

[

P µ , Mνα
]

= i
(

gµαP ν − gµνP α
)

. (16)

4 M , J, K, N , N †

Define Ji =
1

2
ǫijkM

jk and Ki = M i0.

First, write explicitly what each J1, J2, J3 are in terms of M ij ’s. For instance, show that

J1 = M23.

Next, show that the commutation relations for Mµν ,

[

Mµν , Mαβ
]

= i
(

gµαMνβ + gνβMµα − gµβMνα − gναMµβ
)

(17)
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turn into the commutation relations

[

Ji , Jj

]

= iǫijkJk ,
[

Ji , Kj

]

= iǫijkKk ,
[

Ki , Kj

]

= −iǫijkJk . (18)

Next, introduce

Ni ≡
Ji − iKi

2
(19)

and its Hermitian conjugate

N
†
i ≡

Ji + iKi

2
(20)

(recall that the Mµν are Hermitian operators, so N † really is the Hermitian conjugate of N).

Show, using Eq. (18), that N , N † satisfy the commutation relations

[

Ni , Nj

]

= iǫijkNk ,
[

N
†
i , N

†
j

]

= iǫijkN
†
k ,

[

Ni , N
†
j

]

= 0 . (21)

5 Extra credit

Verify from the defining condition for Λµ
ν ,

gµν = Λα
µgαβΛ

β
ν or g = Λ⊤gΛ , (22)

that the group O(3, 1) of all Λ satisfying this property, together with the product rule

Λµ
12ν = Λµ

1αΛ
α
2 ν , (23)

constitute an abstract group. That is, show that they obey the four criteria

1. Closure (the product of two elements of the group is also an element of the group)

2. Associativity

3. Existence of an identity

4. Existence of inverses
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