
Physics 610 Homework 10 and Final

Due Thursday 13 December.

This homework is extra credit only. There are two problems. Do one, both, or neither,

as you have time available.

1 Renormalization

Consider scalar φ4 theory, with one real scalar field and Lagrangian

L = −
1

2
∂µφ∂

µφ−
m2

2
φ2 −

λ0
24
φ4 . (1)

We have seen many times that the lowest-order matrix element for the scattering process

φφ→ φφ is M = λ0. Here we consider the next order.

Label the two incoming momenta p, k and the outgoing momenta p′, k′. Consider the

diagram
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where p enters and p′ exits the upper vertex and k enters and k′ exits the lower vertex.

(There are two similar diagrams with different external momentum labels, we will figure

them out based on what happens with this diagram.)

1.1 The evaluation

Show that the contribution to the matrix element from this diagram is

i
(−iλ0)

2

2

∫

dDl

(2π)D
(−i)2

(l2 +m2 − iǫ)((l+p−p′)2 +m2 − iǫ)
(2)

and label l and l + p− p′ on a picture of the diagram.

Combine the denominators using the Feynman parameter trick. Then Wick rotate the l0

variable. Write an expression for the diagram in terms of your
∫

dx Feynman integral,
∫

dDlE,
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m2, and Mandelstamm t. Now set m2 = 0 from now through the rest of the calculation, to

make the problem a little simpler.

Perform the l-integration in dimensional regularization. Then perform the x integration

by using
∫

1

0
dx ln[x(1 − x)] = −2. You should find (using D = 4 − 2ǫ, your 1/ǫ will differ if

you use the convention of the book)

−
λ2
0

32π2

(

1

ǫ
+ ln

µ2

−t
+ 2

)

. (3)

Add the other two contributions to find

M = λ0 −
λ2
0

32π2

(

3

ǫ
+ 6 + ln

µ6

|stu|
− iπ

)

(4)

(Don’t worry about showing that the imaginary part is correct, just assume that it arises

from the difference between ln(−s) and ln(s).)

1.2 The cross-section

Compute the total scattering cross-section which you obtain using the lowest order result

M = λ0. Make the strict m2 = 0 approximation to simplify the calculation. Your answer

should be a function of λ0 and s only. [Hint: The whole phase space integral reduces to the

somewhat simpler expression

σ =
1

16πs2

∫

0

−s
dt (5)

see, eg, Burgess and Moore, page 196, Eq. (6.22) and (6.25). Remember that the identical

final states mean that you should integrate over half the t-range, or include an extra factor

of 1

2
to avoid double counting the available final states.]

Now re-compute the scattering cross-section to order λ3
0
by including the corrections you

found to M. Now your result should be a function of s, µ2/s, and 1/ǫ as well.

1.3 Renormalization

Supposing we define λr(µ1) so that the cross-section for s = µ2

1
equals the lowest-order cross-

section evaluated using λr; that is, equate the order-λ3
0
cross-section you found in the last

subsection with the leading-order expression but using λr.

Write this relation, which expresses λr(µ1) in terms of λ0. Now, invert this relation to

find an expression for λ0 in terms of λr, accurate to second order. (Hint: if x = y + y2 and

both x and y are small, then the y2 can be approximated as x2, so y = x− x2 to the desired

order of accuracy.)
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Substitute this relationship into your previous result for M (at general s, t, u), working

to second order in λr(µ1). You should find that all reference to 1/ǫ disappears. However

your answer should depend on µ6

1
/stu.

You have now successfully renormalized a theory to one loop order.

1.4 Scale dependence of the coupling

As a final exersize, suppose that you use λr(µ1) but your friend chooses a different value and

uses λr(µ2). Use the expressions from the last section to relate each coupling to λ0, and then

use the two relations to eliminate λ0 and directly relate λr(µ1) to λr(µ2). You should find

an expression of form

λr(µ2) = λr(µ1) + λ2
r
(µ1)× (something)× ln

µ2

2

µ2
1

. (6)

If µ2 > µ1, which coupling is larger?

2 an elementary QED calculation

Consider the theory QED of electrons and muons. There is a gauge field Aµ representing

electromagnetism, as well as two Dirac fermion fields ψ1 and ψ2, with masses m1 and m2.

The Lagrangian is

L = −
1

4
FµνF

µν + ψ̄2(i /D −m2)ψ2 + ψ̄1(i /D −m1)ψ1 . (7)

Here /D = γµ(∂µ − ieAµ).

2.1 Scattering

Using the book to find the Feynman rules if you prefer, draw the single diagram responsible

for the scattering process ψ1ψ2 → ψ1ψ2. Label the ψ1 and ψ2 incoming momenta p, k and the

ψ1 and ψ2 outgoing momenta p′ and k′ respectively. Write down the associated scattering

matrix element. Find its Hermitian conjugate. Write the product of the two, summed over

final and averaged over initial spins. Now take the limit m1, m2 → 0. Then carry out the

traces and find an expression for the squared matrix element. You should find

|M|2 = 2e4
s2 + u2

t2
. (8)
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2.2 Annihilation and crossing

Now consider the process in which ψ1 and its antiparticle ψ̄1 annihilate to give ψ2 and its

antiparticle ψ̄2. Call the ψ1 incoming momentum p and the ψ̄1 momentum k, while the

outgoing ψ2 and ψ̄2 momenta are p′ and k′.

Draw the single diagram contributing to this process. Write out the matrix element and

the spin summed-and-averaged squared matrix element – but do not evaluate the traces and

contract.

Look at your two expressions for spin averaged squared matrix elements – for the ψ1ψ2 →

ψ1ψ2 process and the ψ1ψ̄1 → ψ2ψ̄2 process. Argue that they are identical, except that the

four momenta (p, k,−p′,−k′) in the first expression have been switched to p,−k′, k,−p′ in

the second expression.

Now write the expressions for s, t, u (setting all masses to zero). Apply the same permu-

tation – what does each Mandelstamm variable turn into?

Use this information to show, without performing any Dirac traces or computing any

farther, that the spin summed-averaged matrix element squared for the annihilation process

is

|M|2 = 2e4
t2 + u2

s2
. (9)

The property you have just used (that changing particles between the initial and final states

corresponds to changing the choice and sign of their momenta and leads to a re-assignment

of Mandelstamm variables) is called crossing symmetry.
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