
Physics 610 Homework 2

Due Thurs 27 September 2012

1 Commutation relations

In class we found that
[

φ(x) , π(y)
]

= iδ3(x− y) (1)

and then defined

φ̃(pm) ≡ L−3/2
∫

d3xe−ipm·xφ(x) (2)

and likewise for π̃(pm). Show that it really follows from these definitions that

[

φ̃(pn) , π̃(pm)
]

= iδpn,−pm . (3)

Then, show that
1

2

∫

d3x(∇φ(x))2 =
1

2

∑

pn

p2nφ̃(pn)φ̃(−pn) . (4)

Next, show that the definition

apn =
ωpφ̃(pn) + iπ(pn)√

2ωp
leads to a†pn =

ωpφ̃(−pn)− iπ(−pn)√
2ωp

(5)

which together lead to
[

apn , a
†
pm

]

= 1δpn,pm . (6)

Finally, fill in the steps to show that

H =
1

2

∑

pn

π̃(pn)π̃(−pn) + (p2 +m2)φ̃(pn)φ̃(−pn) =
1

2

∑

pn

ωp(a
†
pnapn + apna

†
pn) . (7)

(That is, take the first expression for H to be shown, and derive the second expression from

it, together with the definition of a and a†.)

2 Momentum and field

This is part of problem 3.4 from the book. Recall that the translation operator is T (a) ≡
exp(−iP µaµ) and its action on the field is

T (a)−1φ(x)T (a) = φ(x− a) . (8)
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By considering infinitesimal a and the Taylor expansion of φ(x − a) about φ(x), find the

expression for
[

P µ , φ(x)
]

. Show that the time component (µ = 0) of your relation is the

Heisenberg equation of motion (recall H = P 0)

∂tφ = i
[

H , φ
]

. (9)

3 Correlation functions

Here we will study the values of several correlation functions in the free theory. First, use the

expansion of the field in terms of creation and annihilation operators and their commutation

relations (Useful Formulae equations 13,14)

φ(x) =
∫ d3k

(2π)32k0

(

ake
ik·x + a†ke

−ik·x
)

k0≡
√

~k2+m2

=
∫

d4k

(2π)4
2πδ(k2 +m2)Θ(k0)

(

ake
ik·x + a†ke

−ik·x
)

(10)

[

ak , a
†
p

]

= 2k0(2π)3δ3(~k − ~p) (11)

to derive that the Wightman correlation function

G>(x) ≡ 〈0| φ(x)φ(0) |0〉 (12)

takes the value

G>(x) =
∫

d4k

(2π)4
eik·x 2πδ(k2+m2)Θ(k0) . (13)

Hint: insert the explicit expressions for φ(x) and φ(0) in terms of creation and annihilation

operators. Use that a |0〉 = 0 and 〈0| a† = 0 and the commutation relation to evaluate the

resulting expression.

Next, use translation invariance to show that the “lesser than” Wightman correlator

G<(x) ≡ 〈0| φ(0)φ(x) |0〉 = G>(−x) =
∫ d4k

(2π)4
eik·x 2πδ(k2+m2)Θ(−k0) . (14)

It is also common to define the retarded Green function

GR(x) ≡ 〈0|
[

φ(x) , φ(0)
]

|0〉 Θ(x0) =
(

G>(x)−G<(x)
)

Θ(x0) (15)

the advanced Green function

GA(x) ≡ GR(−x) = − 〈0|
[

φ(x) , φ(0)
]

|0〉 Θ(−x0) (16)

and the time-ordered Green function

GT (x) ≡ G>(x)Θ(x0) +G<(x)Θ(−x0) . (17)
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Explain why G>(x) = G<(x) for spacelike x, and how that ensures that GR vanishes unless

x0 ≥ |~x|, GA vanishes unless x0 ≤ −|~x|, and all three functions are Lorentz invariant (despite

the presence of the non-Lorentz-invariant Θ(x0) in their expressions).

Although we know the momentum-space form of G>(x) and G<(x), the presence of Θ(x0)

in the above expressions makes it tricky to get to the momentum-space expressions for these

correlation functions. But we can do so by writing

Θ(x0) = lim
ǫ→0+

∫

dω

2πi

eiωx
0

ω − iǫ
. (18)

Substitute this expression, as well as the Fourier-space expressions Eq. (13) and Eq. (14),

into Eq. (15). Use the δ(k2 +m2) functions to perform the k0 integration, to show that

GR(x) =
∫

d3~k

(2π)3
ei
~k·~x
∫

dω

2πi

eiωx
0

ω − iǫ

(

e−iωkx
0

2ωk
− eiωkx

0

2ωk

)

where ωk =

√

~k2 +m2 . (19)

This expression is the sum of two terms with different-appearing complex exponents. For

each term, change variables from ω to k0 ≡ −ω ± ωk such that the new variable appears in

the exponent as e−ik0x0

. Re-organize the integrand in terms of this variable and show that

it gives

GR(x) =
∫

d3~kdk0

(2π)4
−ieik·x

~k2 +m2 − (k0 + iǫ)2
. (20)

Therefore the momentum-space value of GR is GR(k) = −i/(k2 +m2)k0→k0+iǫ.

You will take my word that one can similarly show that GT (k) = −i/(k2 +m2 − 2iǫωk).

One last thing. The retarded function we found has poles in the complex k0 plane at the

points k0 = −iǫ ± ωk, but it is analytic in the upper half-plane (whenever k0 has positive

imaginary part). Show that this is actually totally general. That is, defining the Fourier

transform of the retarded function

GR(k) =
∫

d4xe−ikµxµ

GR(x) , (21)

argue that so long as G>(x) and G<(x) are nonsingular for x0 > 0, that the integral is

perfectly well defined if k0 has a positive imaginary part. (Hint: write out the exponent

e−ikµxµ

= eik
0x0

e−i~k·~x, and then write k0 = k0
re + ik0

im. Does the exponent help or hurt

convergence when x0 > 0? Does it help or hurt when x0 < 0? But what is the value of

GR(x) when x0 < 0?) Similarly, GA(p) is well defined for negative imaginary part.

4 Energy associated with the vacuum

We saw that the Hamiltonian for a free field theory is

H =
∑

~p= 2π
L
~n

ωp

2

(

a†pnapn + apna
†
pn

)

(22)
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where
[

apn , a
†
pm

]

= δ~n,~m (the Kroneker delta).

Show that the energy of the vacuum 〈0|H |0〉 is

Evac ≡ 〈0|H |0〉 =
∑

~p

ωp

2
. (23)

Suppose that, because space is somehow discrete on some scale a, there is a maximum size

which the momentum p is allowed to take, call it pmax.

Show that the energy of the vacuum is extensive – that is, that it grows as we increase

the size of our “box” as L3. This is to be expected. Then show that it also depends on

pmax with proportionality p4max, that is, Evac ∼ L3p4max. Do not try to evaluate the actual

coefficient, which depends on exactly what we mean by “momenta cannot exceed some scale

pmax.”

Show that, if we include a constant term C in the Lagrangian density, the Hamiltonian

is shifted by −L3C.

[This energy associated with space is of no relevance in particle physics because it is

not observable. Particle physicists who also worry about gravity do worry about it, though,

because it should behave as a “cosmological constant,” and we know observationally that

the cosmological constant is very small, whereas presumably p4max is very large. In principle

it might be that C is just the right value to balance the energy associated with all the SHO

zero-points, but . . . .]
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