
Physics 610 Homework 3

Due Thurs 4 October 2012

1 Projection operators

Consider the free field theory of one scalar φ of mass m. Define the state

|p〉 = a†p |0〉 . (1)

(Recall that
[

ak , a
†
p

]

= 2ωp(2π)
3δ3(~k − ~p) and that ak |0〉 = 0.) Explain that the object

F̂range ≡
∫

p∈range

d3p

(2π)32ωp
|p〉〈p| (2)

is an operator. (Here (p ∈ range) means that the integral is restricted to some well specified

range of momenta p. For instance, the range could be |~p| < q for some q, or pz > q1 but

q2 < px < q3 and py anything, or . . . Each choice for the range included in the integral gives

rise to a distinct operator; we want to make general statements about such operators.)

An operator F̂ is said to be a projection operator if it satisfies the property (F̂ )2 = F̂ .

Show that F̂range, defined above, is a projection operator.

2 Time ordering symbol

The time ordering symbol T means that the operators (inside parenthesis or appearing to

its right) are to be re-arranged in descending order of their time arguments. For two fields

this means

T(φ(x)φ(y)) ≡






φ(x)φ(y) , x0 > y0

φ(y)φ(x) , y0 > x0 .
(3)

We can rewrite this condition using the Heaviside function Θ(r) which is 1 if r > 0 and 0 if

r < 0, specifically,

T(φ(x)φ(y)) = φ(x)φ(y)Θ(x0 − y0) + φ(y)φ(x)Θ(y0 − x0) . (4)

First, check that the two expressions are the same by seeing that they give the same

result for each possible case x0 > y0 or y0 > x0. (This should be trivially easy.) Next,

consider the case with three operators:

T(φ(x)φ(y)φ(z)) ≡



























φ(x)φ(y)φ(z) , x0 > y0 > z0

φ(x)φ(z)φ(y) , x0 > z0 > y0

φ(y)φ(x)φ(z) , y0 > x0 > z0

. . . . . .

(5)
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Fill in the remaining terms. Then write an expression in terms of Θ functions for this

time-ordered product.

If we considered the time ordered product of N fields, how many terms would appear in

its explicit expression? (This is the reason we use the time ordering operator!)

3 Flux factor

In lecture, in discussing the longitudinal part of the wave packets for scattering, we reached

the expression
∫

dp′1zdp
′′
1zdp

′
2zdp

′′
2z

(2π)4(2E12E2)2
ψ∗(p′′1z)ψ(p

′
1z)ψ

∗(p′′2z)ψ(p
′
2z)

×(2π)2δ(p′1z+p
′
2z−p′′1z−p′′2z)δ(p01

′
+p02

′−p01
′′
+p02

′′
) (6)

with E ≡
√
p2 +m2, the p,m arguments of each E are implicit, and

∫ dpz
(2π)2E

ψ∗(pz)ψ(pz) = 1 . (7)

I then claimed that (for wave packets tightly peaked in momentum) the integrals could be

performed and give
1

2E12E2|v1 − v2|
(8)

with v1 the group velocity along the z axis of particle 1. (Group velocity is defined in the

usual way as dE/dpz.)

Fill in the missing steps to complete this derivation. Hint: use the pz delta function to

perform the p′′2z integration. Remember that p0 is a dependent variable, defined as p0 =
√

p2z +m2. When you do the p′′2z integral, forcing p′′2z = p′1z + p′2z − p′′1z, this substitution

must be made in p02z
′′
. That means that using the remaining delta function to do the p′′1z

integration will lead to a nontrivial Jacobian, which you have to take proper account of.

Next, show that the resulting factor, Eq. (8), is Lorentz invariant. First, show that it is

unchanged by boosts along the beam axis. Then show that it equals

1

2E12E2|v1 − v2|
=

1

4
√

(p1 · p2)2 −m2
1m

2
2

, (9)

which is manifestly Lorentz invariant.

4 Wave packets

First, to have a clearer picture of what we are talking about when we write down a wave

packet for a particle, write down a 3-dimensional wave packet ψ(~x) which describes a particle
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centered at momentum ~p, with a wave packet centered at position ~y, with a Gaussian dis-

tribution of momenta about ~p of width ∆ ≪ |~p|. Demonstrate explicitly that it is properly

normalized so that
∫

d3~xψ∗ψ(~x) = 2E~p . (10)

Next, to have a clearer picture about the temporal part of the wave packet, consider

ψ(t) = e−iω′te−t2/2τ2/
(

τ
√
2π
)

, (11)

which is an example of the function of time we used to create a particle of energy ω′. Show

that its Fourier transform ψ(ω) is peaked at ω = ω′, with peak value 1.

Consider using ψ(t) to produce a single particle state for a single simple harmonic oscil-

lator with energy splitting ω and creation operator a†, via the operator

O =
∫

dt ψ(t) a†(t) . (12)

First, write down what a†(t) is in terms of a†(t = 0). You should be able to determine this

from any quantum mechanics textbook. Then consider the state O |0〉. Evaluate its square,

and comment on its dependence on the difference ω′ − ω.

Extra credit; suppose that instead of Eq. (12), the operator contains a mix of single and

double particle creation operators,

O =
∫

dt ψ(t)
(

a†(t) + [a†(t)]2
)

. (13)

For this part, choose ω′ = ω the actual frequency of the SHO. Show that the state O |0〉
contains a mix of the first and second excited states of the SHO, but that, if ωτ ≫ 1, that

the amplitude of the second excited state is exceedingly small.

5 Simplest path integral

The simplest path integral is the 0-dimensional path integral, which is just a Gaussian

integral over one variable:

Z =
∫ dφ√

2π
e−φ2/2 . (14)

In analogy with what we do for the full path integral to evaluate correlation functions,

generalize this to be a function of an external current J :

Z(J) =
∫

dφ√
2π

exp

(

−φ
2

2
+ Jφ

)

. (15)

Evaluate each of the following:

d2Z(J)

dJ2

∣

∣

∣

∣

∣

J=0

and
d4Z(J)

dJ4

∣

∣

∣

∣

∣

J=0

(16)

by each of the following two methods:
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1. Carry out the derivatives with respect to J . Then, set J = 0. Then, do the φ

integration.

2. Solve for Z(J) by actually doing the φ integration first. Do this by completing the

square. Then, carry out the derivatives on the resulting expression, and set J = 0 at

the end.

You should get the same answers. Verify by looking at the first method, that the answers

are the two-point and four-point functions, that is, the integral with φ2 and with φ4 inserted

into the integrand.
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