
Physics 610 Homework 4

Due Monday 15 October 2012

1 Asymptotic series

Consider the “baby” or “toy” version of scalar φ4 theory, where it is just a single integral;

Z =
∫

∞

−∞

dφ exp

(

−φ2

2
+

−λφ4

24

)

. (1)

This is what the path integral for scalar φ4 theory would look like if there were only one

point in spacetime (and after rotating the contour for φ so the i’s go away).

Consider Z as a function of λ.

1.1 Values

Evaluate

• Z(0)

• Z(0.01)

• Z(0.1)

• Z(0.4)

• Z(1)

• Z(5)

numerically to 20 digits, for instance, with Maple.

1.2 Series expansion

Replace exp(−λφ4/24) with its series expansion in λ (or equivalently, in φ). Find explicitly

the λ0 and λ1 terms in the series. Evaluate the λ0 and the sum of λ0 and λ1 terms (first and

second partial sums) numerically, for each of the examples you did above. For which cases

does the λ1 term help improve the accuracy?
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1.3 Asymptotic series

Find the complete series expansion in λ in closed form, that is, write

Z(λ) =
∞
∑

n=0

cnλ
n , (2)

and find an explicit expression for cn. (Do this by expanding the exponent, exchanging

orders of summation and integration, and doing the integral for each term in the series.)

Show that the radius of convergence (in λ) of this series is zero.

1.4 So what good is it?

The expansion

e−x =
∞
∑

m=0

(−1)m

m!
xm = 1− x+

x2

2
−

x3

6
+ . . . (3)

has the following property for x > 0: the partial sums

fn(x) ≡
n
∑

m=0

(−1)m

m!
xm (4)

are alternately strict over-estimates and strict under-estimates of the actual function; that

is, for x > 0, f0(x) = 1 > e−x, f1(x) = (1−x) < e−x, f2(x) = (1−x+x2/2) > e−x, and so

forth with the <,> alternating. (Extra credit: prove this.)

Use this property to prove that the partial sums found above, Eq. (2) with n cut off at

0, 1, 2, 3, . . ., are alternately over-estimates and under-estimates. Therefore, the true answer

always lies between neighboring terms in the series of partial sums.

Use this property to find a bound for Z(λ) at λ = 1, by evaluating alternating terms until

they start to diverge. How tight is the bound?

Repeat for Z(0.4) and Z(0.1). Argue that the bound becomes tighter and tighter as λ gets

smaller, so at small λ, while the series does not converge, it gives us very good information

about the value of Z(λ).

A series with this property–zero radius of convergence but the ability to give good infor-

mation near the origin–is called an Asymptotic Series.

1.5 Negative λ

What happens when λ < 0?
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2 Cancellation of vacuum bubbles

Consider a theory of one real scalar field with Lagrangian

L =
1

2
φ(∂µ∂

µ −m2)φ−
λ

24
φ4 , (5)

with corresponding path integral

Z(J) =
∫

Dφ exp
(

i
∫

d4uL(φ(u))
)

= exp

(

−iλ

24

∫

d4u
δ

(iδJ(u))4

)

N exp
(

1

2

∫

d4xd4y iJ(x) ∆0(x− y) iJ(y)
)

, (6)

where N is an overall normalization factor which we will not need, and ∆0(x − y) =

〈0|T
(

φ(x)φ(y)
)

|0〉λ=0 is the two-point time-ordered correlation function of the free the-

ory. In this problem we will be interested in the 4-point correlation function.

2.1 Lowest order

Compute the 4-point function 〈0|T
(

φ(x)φ(y)φ(z)φ(w)
)

|0〉 at leading order in λ, which is

zero order. Do this by explicitly evaluating

G(x, y, z, w) ≡
1

Z(J)

δ4Z(J)

δJ(x)δJ(y)δJ(z)δJ(w)

∣

∣

∣

∣

∣

J=0

(7)

at zero order in λ, that is, for the free theory. Write your answer in terms of the two-point

function ∆0. (In class we showed that ∆0(p) = −i/(p2+m2). But for this problem just treat

it to be a function of spatial separation, do not try to evaluate it. In other words, your final

answer should be something like ∆0(x− y)∆0(z − w) + . . .)

Make sure that the sum of the coefficients of the terms you find corresponds to the

number of ways of pairing the δ/δJ ’s.

Repeat this calculation by drawing the (three, identical looking except for permuting of

labels) Feynman diagrams. (They will be disconnected.)

2.2 First order

Next we will find an expression for G(x, y, z, w) to first order in λ. This requires two steps:

finding δ4Z/ . . . to first order and 1/Z(J) to zero order, and finding δ4Z/ . . . to zero-order

(last subsection) and 1/Z(J) to first order.

First, find an expression for [δ4Z(J)/δJ(x)δJ(y)δJ(z)δJ(w)]|J=0 to first order in λ. Do

this by expanding the exponent containing λ, in Eq. (6), to first order in λ. You will now

have to do a variation with respect to eight J ’s. I recommend that you not do this by
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taking eight derivatives of exp(−
∫

d4ud4vJ(u)∆0(u − v)J(v)/2), but instead that you use

the results about pairing. You can either perform the pairing by hand, or by drawing the

diagrams, whichever you find easier. But in either case, draw the diagrams and write the

expressions; and group the expressions into three different “types” according to the topology

of the graph. Make sure that the total coefficients of these terms correspond to the number

of ways of pairing off the J derivatives.

Next, find the first-order-in-λ form for 1/Z(J). Since Z(J) is in the denominator, you

will have to write
1

Z0 + λZ1

=
1

Z0

−
λZ1

Z2
0

. (8)

The product of the order-λ term here, and the λ0 term in ∂4Z(J)/∂J(x) . . . which you found

before, is also a term contributing at order λ to the 4-point correlation function.

Add these two types of order-λ contributions. You should find that the contributions from

expanding the denominator cancel one of the three types of graphs you found by expanding

the numerator, leaving the other two distinct types.

Argue that the terms which caneled off between numerator and denominator correspond

precisely to the diagrams containing vacuum bubbles. However, we do not find only con-

nected diagrams. Which diagrams are not connected?
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