
Physics 610 Homework 5

Due Wednesday 24 October 2012

1 High-order Feynman diagrams

Consider the theory of one real scalar field φ with Lagrangian density

L[φ, ∂µφ] = −
1

2
∂µφ∂

µφ−
m2

2
φ2 −

λ

24
φ4 . (1)

1.1 6 external legs

In class we considered the scattering of two scalars φ into two scalars φ, which involved

investigating the four-point function 〈0|T
(

φ(x1)φ(x2)φ(x3)φ(x4)
)

|0〉. It is also possible for

the final state to contain more than two particles. The simplest case is that it contains 4

final state particles; this requires evaluating the 6-point correlation function

〈0|T
(

φ(x1)φ(x2)φ(x3)φ(x4)φ(x5)φ(x6)
)

|0〉.

Draw the simplest connected Feynman diagram contributing to this correlation function

which you can find. Now many occurrences of λ does it involve? Therefore, how many

powers of λ will occur in the rate for this process (remembering that the rate involves the

square of the matrix element |M|2)? If λ is small, do you expect that the rate for this

process will be smaller or larger than the rate for the scattering process with two final state

φ particles (assuming both are energetically allowed)?

1.2 Two-point function

The simplest diagram contributing to the two-point function 〈0|T
(

φ(x)φ(v)
)

|0〉 and the

first order connected contribution are given by the diagrams
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Write the (position-space) expression associated with each graph. Name the sum of these

expressions −i∆(x − v), so −i∆(x− v) = −i∆0(x− v) + . . ..
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1.3 Four-point function

The lowest-order connected diagram and two of the next-order connected diagrams for the

four-point function (relevant in scattering) are
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Label the external points x, y, z, w. Label the “main” cross point in the first two diagrams

v, the extra cross-point in the middle diagram u, and the two cross-points (vertices) in the

final diagram u, v.

First, find the symmetry factor for each diagram.

Second, figure out how many “very similar” diagrams (the same except for the assignments

of external legs) there are for the middle and final diagrams.

Third, write an expression for each diagram (in position space), in terms of
∫

d4vd4u, (−iλ)

and the propagator −i∆0(x− v) etc.

Fourth: consider the first (simplest) diagram. Suppose you replace each appearance of the

propagator ∆0(x − v) with ∆(x − v) found in the last subsection. Since each ∆(x − v) is

the sum of an order-λ0 and an order-λ1 piece, the resulting expression contains pieces of

order λ1, λ2, and so forth. Find the λ2 term which arises from the λ term in ∆(x− v), and

show that it reproduces precisely the middle diagram. Argue that the role of the middle

diagram and its “very similar” partners is to replace the leading-order propagators ∆0 with

the λ-improved propagators ∆.

Fifth: transform your expression for the final (rightmost) diagram into momentum space;

take the external momenta to be p1, p2, p3, p4. Show that the energy-momentum conserving

δ-functions associated with the two vertices (u, v integrations) can be rewritten as one δ-

function forcing all the external momenta to sum to zero, plus another δ-function which

performs one of the two remaining momentum integrals. Reduce your momentum-space

expression for the diagram to something with only a single unperformed momentum
∫

d4q

integral. DO NOT try to perform that integral. (We will return to that problem late in the

term.)
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2 Spinor identities

Here we clear up a bunch of properties of spinors and their transformation matrices which

we claimed were true in class.

2.1 Pauli matrices

First (really easy), show that the Pauli matrices σi,

σ1 ≡





0 1

1 0



 , σ2 ≡





0 −i

i 0



 , σ3 ≡





1 0

0 −1



 (2)

are Hermitian and traceless and satisfy the commutation relations
[

σi

2
,
σj

2

]

= iǫijk
σk

2
. (3)

Next, show that the epsilon-matrix

ǫ ≡





0 1

−1 0



 (4)

obeys ǫ2 = −1 and that

−σ∗
i ǫ = ǫσi and − ǫσ∗

i = σiǫ . (5)

2.2 Left-handed spinors

Write ri =
1

2
ǫijkωjk so ~r gives the axis r̂ and angle |~r| of a rotation; and write bi = ωi0 such

that ~b gives the direction b̂ and arctanh of the velocity |~b| for a boost. In this notation the

unitary operator corresponding to a Lorentz transformation is

U(ω) = U(~r,~b) = exp
(

i(riĴi + biK̂i)
)

. (6)

Take the expressions from lecture or from the book and show that

La
b(ω) = exp

(

iσi

2
(ri + ibi)

)

. (7)

If ψa transforms under Lorentz transform as

ψa → La
bψb (8)

with La
b given above, show that ψ†

ȧ ≡ (ψa)
† transforms as

ψ
†
ȧ → Rȧ

ḃψ
†

ḃ
with Rȧ

ḃ ≡ exp
(

−iσ∗
i

2
(ri − ibi)

)

. (9)
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Then show that ψ†ȧ ≡ ǫȧḃψ
†

ḃ
transforms according to

ψ†ȧ → Rȧ
ḃψ

†ḃ with Rȧ
ḃ ≡ exp

(

iσi

2
(ri − ibi)

)

. (10)

Therefore the (upper, dotted) index transforms like the (lower, undotted) left-handed index

except that the sign on the boost is reversed.

2.3 Antisymmetric tensor

Show that

ǫabψaψb → ǫabLa
cLb

dψcψd = ǫabψaψb , that is, ǫabLa
cLb

d = ǫab (11)

for any La
c of the form shown in Eq. (7). Therefore the combination ǫabψaψb is a Lorentz

scalar. Show similarly that

ǫȧḃψ
†ȧψ†ḃ (12)

is also a Lorentz scalar.

2.4 Mix of dotted and undotted

Define

σ
µ
aȧ ≡

(

1 , ~σ
)

(13)

with 1 the 2× 2 identity matrix and ~σ the Pauli matrices. Show to linear order in ωµν that,

under Lorentz transform, the combination

σ
µ
aȧψ

aψ†ȧ (14)

(where ψa ≡ ǫabψb as usual) transforms to

σ
µ
aȧψ

aψ†ȧ → σ
µ
aȧL

a
bRȧ

ḃψbψ†ḃ

= Λµ
νσ

ν
aȧψ

aψ†ȧ . (15)

That is, show that, at linear order in ω,

σ
µ
aȧL

a
bRȧ

ḃ = Λµ
νσ

ν

bḃ
. (16)

Therefore one lefthanded and one righthanded spinor combine into a 4-vector.

4


