
Physics 673 Homework 1

Due 16 January 2007

1 Free field theory

(a) It is well known that a free quantum field theory is related to an infinite number of

quantum mechanical harmonic oscillators with different frequencies. You can view these

harmonic oscillators as unit mass particles on springs with spring constants k, where k takes

all values. Now imagine the following scenario: these particles also have non-zero charges,

and I suspend the system in a constant electric field E0. Ignoring the effects of any outgoing

radiations due to the oscillations of charged particles, show that this system of harmonic

oscillators is equivalent to a massive scalar field theory with a classical source term
∫

d4x Jϕ

where J is the source and ϕ is the scalar field. Find the connection between E0 and J . Also

calculate the number of particles created in the field theory system if in the dual quantum

mechanical system I switch on the electric field E0 for a very short time ∆t.

2 QED

An alternative way of regulating QED, rather than dimensional regularization, is called

Pauli-Villars regularization. In this regularization, in addition to the ordinary electron of

mass m, one introduces a “regulator” electron of mass Λ, with Λ much larger than any

physical scale one needs to consider. The regulator field is given “wrong” statistics in the

sense that there is not a −1 sign associated with a loop of the regulator field.

Calculate the 1-loop correction to the photon self-energy, and therefore to charge renor-

malization, in this regulator. Show that the result is finite when one adds the contributions

of the normal and regulator electron, but there is a log dependence on the mass ratio Λ/m.

What is the relation between e0 and emeas? Compare the result to dimensional regular-

ization; in particular, find the relation between the regulator mass Λ and the dimensional

regularization scale

ΛDR , ln
Λ2

DR

µ2
≡ 1

ǫ
+ ln 4π − γE . (1)
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3 Scalar field

Consider the example of a scalar field ϕ(x, t) in 1+1 dimensions with a Lagrangian that is

slightly different from the standard one in the following way:

L =
∫

dx





1

2
(∇0ϕ)2 − 1

2
(∇xϕ)2 − λ

4

(

ϕ2 − m2

λ

)2


 (2)

where λ and m are the parameters of the theory. Now using Eq. (2) answer the following

questions:

1. Show that the system has two kinds of classical solutions: a trivial vacuum solution

ϕ(x) = ϕ0 ≡ m/
√
λ and a non-trivial space dependent background solution ϕcl(x)

with ϕcl → −ϕ0 at x → −∞ and ϕcl → +ϕ0 at x → +∞. Neither solution is

time dependent. Quantize the small oscillations about these solutions and show that

there is a tower of harmonic oscillator states exactly as one would have expected for a

standard quantization of a field theory. To do this first define the small fluctuations

in the following way:

ϕ(x, t) = ϕcl(x) + η(x, t) (3)

where η(x, t) is the quantum field. Now split the (x, t) dependences of η(x, t) in the

following way:

η(x, t) =
∑

i

ci(t) ηi(x) (4)

where − and this is crucial − ηi(x) form the normal modes of oscillations in the system

because we are allowing only small fluctuations about the minima of the potential.

Show that these normal modes map to an equivalent quantum-mechanical system with

a potential

V (y) = 3 tanh2 y − 1 (5)

y being proportional to x coordinate, and with only two discrete levels followed by a

continuum of levels:

ψ0(y) = sech2y, ψ1(y) =
sinh y

cosh2y
, ψq(y) = eiqy

(

3tanh2y − 1 − q2 − 3iq tanh y
)

(6)

where ψi(y) are the wavefunctions, i = 0, 1, q with q forming the continuum levels.

Compare this procedure with the standard quantization of a free scalar field theory.

2. Argue that one of the discrete levels you found above, for the nontrivial classical

solution, corresponds to a harmonic oscillator with a “spring constant” of zero.

2



3. If we call the total zero-point energy from the tower of states of the first vacuum as

E1 and the total zero-point energy from the tower of states of the second non-trivial

vacuum as E2, then in general the difference

Edifference = E2 − E1 (7)

is formally divergent. In standard QFT such divergent energies are usually ignored

because we can always shift the potential energy by an arbitrary constant. However

here we are comparing two different sectors of the same QFT, so we cannot ignore

the divergent difference between the two zero-point energies. The analysis of this is

particularly involved so we will go in steps. For this assignment show that Edifference

can at least be brought to the following form

Edifference ∝
∫ +∞

−∞

dk
kδ(k)√
k2 + 2m

+ O(λ) (8)

where we have converted infinite sums to an integral using the standard procedure of
∑

kn
→ L

2π

∫

dk with a box size L→ ∞. The δ(k) factor appearing in Eq. (8) is a subtle

phase factor. This may require some careful analysis to extract this. Show that in the

limit L→ ∞, the non-zero phase factor is

δ(k)
∣

∣

∣

L→∞

= − 2 tan−1

(

3
√

2km

2m2 − 2k2

)

(9)

The next step is to regularize and renormalize the quantity by introducing counter-

terms in the original Lagrangian. We will address these details later.

If you need help on this section, BUG KESHAV.

4 Yukawa theory

Let us consider Dirac fermion field ψ interacting with a real scalar field φ of mass M . The

interaction term is

Sinteraction = − i
∫

d4x yψ̄γ5ψφ (10)

where y is a coupling constant.

Write the complete Lagrangian. Introduce all necessary counterterms. Compute all

counterterms at the 1-loop level, keeping only the log divergent behavior (that is, do not

attempt to find constants associated with 1-loop logarithmic divergences).
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