Physics 731 Homework 7

Due Friday 13 April, 2007

1 Yukawa interactions

Write out *all* of the Yukawa interactions which arise from the superpotential of the MSSM. Explicitly show generational, SU(2), SU(3), and spinorial indices.

2 Scalar top quark mass

Assume that the Lagrangian coefficient (matrices) Y_u and A_u are diagonal and only have nonzero entries in their (3,3) components. Also assume that $m_{\tilde{Q}}^2$ and $m_{\tilde{U}}^2$ are proportional to the identity matrix. Name the upper SU(2) component of the 3'rd generation \tilde{Q} field \tilde{t}_L and name the 3'rd generation element of the \tilde{U} field \tilde{t}_R .

First suppose that $A_u = \mu = 0$. Write all Lagrangian terms giving rise to masses for \tilde{t}_L and \tilde{t}_R . Then write all *D*-term and *F*-term couplings between \tilde{t}_L or \tilde{t}_R and H_U or H_D . Replace H_U and H_D by their VEV's. Find the masses for the \tilde{t}_L and \tilde{t}_R fields, showing that they do *not* mix with each other.

Now allow μ and A_u to be nonzero. Write out the terms involving these quantities, \tilde{t}_L and \tilde{t}_R , and H_U or H_D . Explicitly find the mass matrix

$$\begin{bmatrix} \tilde{t}_{L}^{\dagger} & \tilde{t}_{R}^{\dagger} \end{bmatrix} \begin{bmatrix} m_{LL}^{2} & m_{LR}^{2} \\ m_{RL}^{2} & m_{RR}^{2} \end{bmatrix} \begin{bmatrix} \tilde{t}_{L} \\ \tilde{t}_{R} \end{bmatrix}$$
(1)

and diagonalize it to find its eigenvalues. How do the masses differ from the $\mu = A_u = 0$ case?

3 Extra credit

What is the coefficient of the coupling between the H^+ , the anti-top quark, and the bottom quark, in terms of m_t , m_b , v, and $\sin \beta$? If you can, determine the partial width for the decay process $H^+ \to t\bar{b}$ in terms of m_{H^+} , $\tan \beta$, v, m_t , and m_b . (Neglect m_b in the kinematics of the decay.)