Physics 742 Homework 1

1 Lorentz transform warmup

Consider a boost by amount b_1 in the *x*-direction. Take b_1 to be small and write out $\Lambda^{\mu}{}_{\nu} = \exp \omega^{\mu}{}_{\nu}$ to second order in b_1 .

Now consider a boost by b_2 in the *y*-direction. Again, write out the matrix form of $\Lambda^{\mu}{}_{\nu}$ to second order in b_2 .

Find the product $\Lambda(b_1)\Lambda(b_2)$ and the product $\Lambda(b_2)\Lambda(b_1)$, to second order in b's. Show that the difference is of order b_1b_2 , and looks like an $\omega^{\mu}{}_{\nu}$ which generates a rotation. What axis is the rotation about?

2 Commutation relations

Show that the commutation relations

$$\left[J_i, J_j\right] = i\epsilon_{ijk}J_k, \qquad (1)$$

$$\left[J_i, K_j\right] = i\epsilon_{ijk}K_k, \qquad (2)$$

$$\begin{bmatrix} K_i, K_j \end{bmatrix} = -i\epsilon_{ijk}J_k, \qquad (3)$$

together with the definitions

$$L_i \equiv \frac{J_i + iK_i}{2}, \qquad R_i \equiv \frac{J_i - iK_i}{2} \tag{4}$$

give rise to the commutation relations

$$\begin{bmatrix} L_i, L_j \end{bmatrix} = i\epsilon_{ijk}L_k, \qquad (5)$$

$$\left[R_i, R_j\right] = i\epsilon_{ijk}R_k, \qquad (6)$$

$$\left[L_i, R_j\right] = 0. \tag{7}$$

3 Majorana identities

Using the following relations for γ matrices,

$$\beta \gamma_{\mu}^{\dagger} = -\gamma_{\mu} \beta , \qquad (8)$$

$$C\gamma^{T}_{\mu} = -\gamma_{\mu}C, \qquad (9)$$

as well as

$$\bar{\psi}_1 = \psi_1^{\dagger} \beta \,, \tag{10}$$

$$\bar{\psi}_1^T = -C\psi_1, \qquad (11)$$

$$\psi_1^T C = \bar{\psi}_1, \qquad (12)$$

prove these useful relations for Majorana spinors ψ_1 , ψ_2 ,

$$\begin{split} \bar{\psi}_{1}\psi_{2} &= +\bar{\psi}_{2}\psi_{1}, \\ \bar{\psi}_{1}\gamma^{5}\psi_{2} &= +\bar{\psi}_{2}\gamma^{5}\psi_{1}, \\ \bar{\psi}_{1}\gamma^{\mu}\psi_{2} &= -\bar{\psi}_{2}\gamma^{\mu}\psi_{1}, \\ \bar{\psi}_{1}\gamma^{\mu}\gamma^{5}\psi_{2} &= +\bar{\psi}_{2}\gamma^{\mu}\gamma^{5}\psi_{1}, \\ \bar{\psi}_{1}[\gamma^{\mu},\gamma^{\nu}]\psi_{2} &= -\bar{\psi}_{2}[\gamma^{\mu},\gamma^{\nu}]\psi_{1}. \end{split}$$

Hint: you can reverse the order of the operators by transposing: $\bar{\psi}_1 \gamma_\mu \psi_2 = -\psi_2^T \gamma_\mu^T \bar{\psi}_1^T$. The – sign is from the anticommutation of fermionic operators.

Next, show that

$$\begin{pmatrix} \bar{\psi}_1 \psi_2 \end{pmatrix}^{\dagger} = + \bar{\psi}_1 \psi_2 , \begin{pmatrix} \bar{\psi}_1 \gamma^5 \psi_2 \end{pmatrix}^{\dagger} = - \bar{\psi}_1 \gamma^5 \psi_2 , \begin{pmatrix} \bar{\psi}_1 \gamma^{\mu} \psi_2 \end{pmatrix}^{\dagger} = + \bar{\psi}_1 \gamma^{\mu} \psi_2 , \begin{pmatrix} \bar{\psi}_1 \gamma^{\mu} \gamma^5 \psi_2 \end{pmatrix}^{\dagger} = - \bar{\psi}_1 \gamma^{\mu} \gamma^5 \psi_2 , \begin{pmatrix} \bar{\psi}_1 [\gamma^{\mu}, \gamma^{\nu}] \psi_2 \end{pmatrix}^{\dagger} = + \bar{\psi}_1 [\gamma^{\mu}, \gamma^{\nu}] \psi_2 .$$

Hint: Hermitian conjugation reverses the order of operators and daggers them. The matrix β is Hermitian, $\beta^{\dagger} = \beta$. You will also need the relations you found in the first half.

Use these to justify the requirements on the coefficients A, B, C, D, and E mentioned in the book under Eq. (1.102).

4 Scalars and symmetries

The kinetic term $\frac{1}{2}\partial_{\mu}\varphi_{i}\partial^{\mu}\varphi_{i}$ for N real scalar fields is invariant under a symmetry $\varphi_{i} \to \mathcal{O}_{ij}\varphi_{j}$, where $\mathcal{O}^{\top}\mathcal{O} = 1$, i, j = 1, ..., N. These form the group of $N \times N$ real orthogonal matrices $\mathcal{O}(N)$.

- 1. Write down the most general renormalizable Lagrangian for two real scalar fields, φ_1 and φ_2 , subject to the discrete symmetries $(\varphi_1, \varphi_2) \rightarrow (-\varphi_1, \varphi_2)$ and $(\varphi_1, \varphi_2) \rightarrow (\varphi_1, -\varphi_2)$.
- 2. Re-express this Lagrangian in terms of the complex variables $\psi = \frac{1}{\sqrt{2}}(\varphi_1 + i\varphi_2)$ and $\psi^* = \frac{1}{\sqrt{2}}(\varphi_1 i\varphi_2).$
- 3. The group $\mathcal{O}(2)$ is equivalent to the group U(1). If the $\mathcal{O}(2)$ transformations are written

$$\begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} \to \mathcal{O}(\theta) \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}, \qquad \mathcal{O}(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix},$$

find the transformation rules for ψ and ψ^* .

4. What further restrictions are placed on the Lagrangian by requiring that it be $\mathcal{O}(2)$ invariant (including interaction terms)?

Write the resulting Lagrangian in terms of both the variables (φ_1, φ_2) and (ψ, ψ^*) .

5 Adjoint representation

Any matrices T_a satisfying the Lie algebra of a group,

$$\left[T_a, T_b\right] = i f_{abc} T_c \,, \tag{13}$$

generate a representation of the group. This problem shows that the structure functions themselves provide one such set of matrices. Define $F^a{}_{bc} = -if_{abc}$ and consider the first index a to be a label and the second and third indices to be a row and column position.

Using SU(2), because it is simpler, write out the three 3×3 matrices ϵ^1 , ϵ^2 , and ϵ^3 . (For SU(2), the structure function $f_{abc} = \epsilon_{abc}$.) Verify that these matrices in fact satisfy the commutation relations of the Lie algebra, that is, that

$$\left[\epsilon^a, \epsilon^b\right] = i\epsilon_{abc}\epsilon^c.$$
(14)

Next, prove the Jacobi identity,

$$\left[\left[T^{a}, T^{b}\right], T^{c}\right] + \left[\left[T^{b}, T^{c}\right], T^{a}\right] + \left[\left[T^{c}, T^{a}\right], T^{b}\right] = 0, \qquad (15)$$

which is just a consequence of writing out every term longhand and canceling like terms. What condition does the Jacobi identity imply on the coefficients f_{abc} ?

Finally, show that the antisymmetry of the f_{abc} , together with the Jacobi identity, proves that

$$\left[F^a, F^b\right] = i f_{abc} F^c \tag{16}$$

holds in any group. Therefore the structure functions themselves provide a representation, called the *adjoint* representation.