
Physics 742 Homework 5

1 Crossing symmetry

Use the results in the book for the differential Møller cross-section and crossing symmetry to

derive the differential cross-section for Bhabha scattering in the ultrarelativistic limit, but

still at s�M2
Z :

dσ

dudt
(e−e+ → e−e+) =

−2πα2

s2

(∣∣∣∣us +
u

t

∣∣∣∣2 +
t2

s2
+
s2

t2

)
δ(s+ t+ u) .

(Hint: this is easy.)

2 Diagram drawing practice

For each proposed process:

• If it can occur at tree level, draw all diagrams contributing at tree level.

• If it can occur but only at the loop level, find one loop-level diagram giving rise to the

process.

• If the rate or cross-section in the standard model is zero, write down the symmetry

principle which forbids the process.

1. bs̄→ sb̄ (involved in Bs meson oscillation)

2. bµ+ → cνµ scattering

3. ud→ e+νe scattering

4. The decay b→ sγ

5. e−u→ νec

6. ud→ udh Higgs production in up-down scattering
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3 Narrow resonances

This problem is easy and will involve little calculating. It illustrates how some of the things

we have learned about resonances and initial state radiation apply even for particles about

which you have no theoretical understanding.

The Υ(4s) is a narrow resonance, interpreted to be a bb̄ bound state. Its mass and

width are mΥ(4s) = 10.580 GeV, ΓΥ(4s) = 14 MeV, with a branching fraction to electrons

of Br(Υ(4s) → e+e−) = 2.8 × 10−5. It is experimentally useful because the Υ(4s) decays

with almost 100% probability via Υ(4s) → BB̄, with B a meson containing a b̄ quark and

B̄ a meson containing a b quark. This gives a convenient way to produce B meson pairs

approximately at rest, which has been exploited by the B-factories, BaBar and Belle.

What is the cross-section for e+e− → BB̄ on the Υ(4s) resonance? Hint: the spin of the

Υ(4s) is 1. Use Equation (6.4.17).

What, approximately, is the correction to this cross-section formula due to the radiation

of soft photons from the e+ and e−? Hint: examine the argument leading to Equation

(6.7.19).

4 Beta functions

The mass of the b quark, as listed in the book, is 4.24 GeV. In a previous homework assign-

ment, in computing the Higgs decay rate, I advocated using a much smaller value. Let us

see why.

The scale dependence of the strong coupling g3(µ) and of h33(µ) (the Yukawa coupling

responsible for the bottom mass) are, in the regime mb < µ < mt,

µ∂

∂µ
g3(µ) =

−23

3

g3
3(µ)

16π2
, (1)

and
µ∂

∂µ
h33(µ) = −8

h33(µ)g2
3(µ)

16π2
. (2)

In both cases, I have assumed that the strong coupling is the largest coupling and I have

simply ignored terms involving other couplings. I have also ignored higher orders, that is,

g5
3/(16π2)2 and h33g

4
3/(16π2)2 terms.

The value of g3(µ) is such that α3(µ = MZ) = 0.118. The value of h33 is determined

by the tree level expression, mb = h33v/
√

2, IF you evaluate h33(µ) using µ = mb, that is,

h33(µ = mb) = mb

√
2/v.

The Higgs decay process involves the Hbb̄ vertex at a large energy scale 'MH . Therefore,

it is h33(µ = MH) which is relevant in evaluating the Higgs decay width.
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Evaluate h33(µ = MH), assuming MH = 126 GeV. You should be able to solve for

h33(µ = MH) explicitly (that is, analytically without resort to numerical methods). However,

if you get frustrated, solve the differential equations by numerical means.

Using the tree level relation mb = h33

√
2/v, evaluate what b mass you should use, to

evaluate the Higgs decay width.

5 Higgs to Gluon Gluon

There is no Lagrangian interaction between a Higgs boson and two gluons, but one is induced

by loops. The dominant diagrams are:
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5.1 Only top quarks

Explain why the large top quark mass allows us to neglect the contribution of all other

quarks in the loop.

5.2 Operator analysis

Explain why the lowest-order gauge invariant, CP invariant, scalar operator by which two

gluons can couple to a Higgs field is Gα
µνG

µν
α φ

†φ. Therefore the diagrams above should

converge in the UV by 6 − 4 = 2 powers of the loop momentum. On the other hand,

since there are 3 external lines which are each dimension-1 fields, we expect naively linearly

divergent behavior in any diagram giving rise to this coupling.

5.3 Matrix element

Consider the top-loop diagrams shown above. Write an expression for each diagram, labeling

the incoming Higgs momentum P , the outgoing gluon momenta P1 and P2 = P − P1, the

external gluon gauge indices µ, ν, and the loop momentum Q. Remember to include the top

quark mass in the propagators. Argue that the integral is naively linearly large Q divergent,

but that after taking the Dirac traces, the UV behavior at large Q is at worst logarithmically

divergent.
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5.4 Gauge invariance and finiteness

In fact, our operator dimension argument shows that the integrals should converge as∫
d4Q/Q6 at large Q. And because the loop should reproduce field strengths Gµν

α , we expect

that the loop should vanish if either P1 or P2 is exactly zero.

To see that this behavior actually occurs, consider the diagrams in the simplifying case

P, P1 = 0, which also captures the dominant large-Q behavior. Perform the numerator traces

in D = 4− 2ε dimensions, and show that the sum of the diagrams reduces to

M(P = 0, P1 = 0) = −i4m
2
tg

2
3

v
δαβεµε

′
ν

∫ dDQ

(2π)D
(Q2 +m2

t )η
µν − 4QµQν

(Q2 +m2
t−iε)3

≡ δαβεµε
′
νMµν ,

(3)

where δαβ contracts the color indices on the gluons, ε and ε′ are the polarization vectors of

the gluons, and mt/v is the Higgs Yukawa coupling to a top quark. Argue that Mµν must

be proportional to ηµν : Mµν = Mηµν . Therefore,

ηµνMµν = DM = −i4m
2
tg

2
3

v

∫ dDQ

(2π)D
(D − 4)Q2 +Dm2

t

(Q2 +m2
t−iε)3

. (4)

Evaluate this expression in D = 4 − 2ε dimensions, with ε > 0, and show that it vanishes.

Therefore the loop integral at vanishing P, P1 vanishes, and the behavior at large Q will be

softer than d4Q/Q4.

Also check gauge invariance by replacing εµ with P µ
1 in the expression for M (before

expanding in small P ). Show, using the shift symmetry of the integrand, that the diagram

gives exactly zero (for any values of P1, P2).

5.5 Extra credit: evaluation

Assume that the loop momentum Q ∼ mt, and treat mt � mH, which allows one to expand

in P1, P2 � Q,mt. EvaluateMµν explicitly to second order in P1, P2. This can be done, for

instance, by Taylor expanding in P . The previous section shows that the zero-order term

vanishes on integration. Show that the linear term vanishes and that the quadratic term is

Mµν =
α3

3πv

(
ηµνP1 · P2 − P µ

2 P
ν
1

)
. (5)

Confirm that this result is transverse in P1 and P2.

Hint: show that the only possible tensor structure which is second-order and transverse

in P1 and P2 is (ηµνP1 · P2 − P µ
2 P

ν
1 ). Find the coefficient by evaluating ηµνM

µν .

5.6 Partial width

Use the result found above to show that the partial width of a Higgs boson to decay to a

gluon pair is ΓH→gg =
m3

Hα
2
3

72π3v2
. Compare the decay width to the decay width to bb̄.
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You should find that the partial decay width is significantly smaller than the decay width

to the bb̄ final state. Therefore this decay channel is not very important. But will see that the

inverse process, gg → H, dominates Higgs boson production in hadron colliders. Similarly,

loops involving t and W allow the decay H → γγ, which has a small branching fraction but

a clean signature and which was the other process by which the Higgs boson was discovered.
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