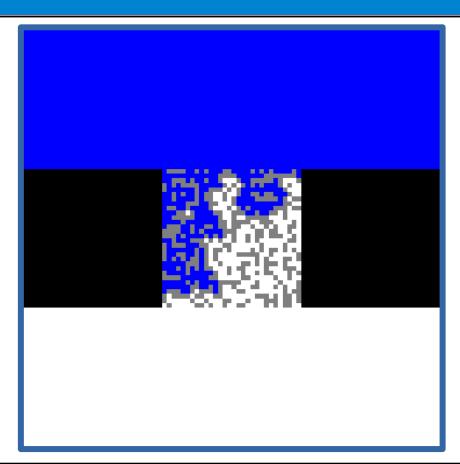
Perkolation Zusammenhang mit RG



Agenda

- 1.1 Einführung und Motivation
- 1.2 Grundlagen
- 2.1 Erzeugende Funktion
- 2.2 Perkolation in einer Dimension
- 2.3 Perkolation auf einem Cayley-Baum
- 3.1 RG hierarchisches Gitter
- 3.2 RG Dreiecksgitter

Einführung

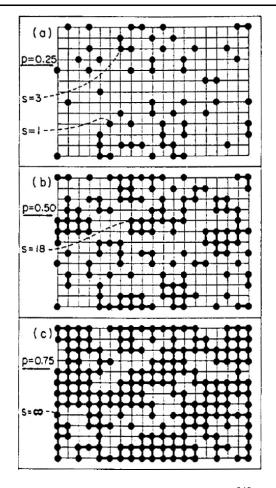
Was ist Perkolation?

- → geometrisches Objekt
 - ~> Gitter
- \rightarrow Wahrscheinlichkeit p:

Teilstück des Objekts existiert

- ~> besetzter Gitterpunkt (Besetzungsperkolation;
 - → Verbindungsperkolation)
- → Untersuchung der entstehenden Strukturen
 - ~> Clustergröße, Perkolationsschwelle

Anwendungen?



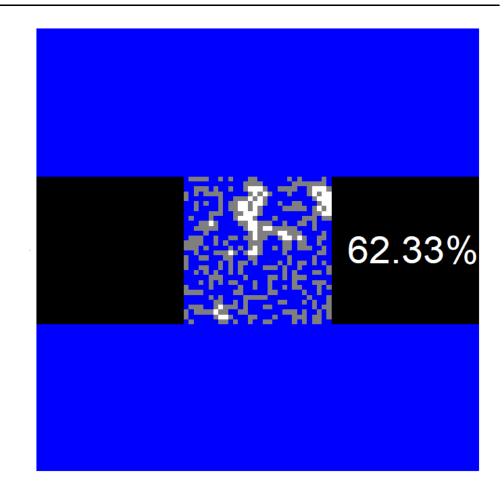
[1]

Motivation

Anwendbar auf viele chemische und physikalische Phänomene

- → Eindringen einer Flüssigkeit in ein poröses Medium
- → Ausbreitung eines Feuers
- → Elektrische Leitfähigkeit zusammengesetzer Stoffe
- → Sol-Gel Übergang

→ ...



Grundlagen - Begriffe

Besetzungswahrscheinlichkeit p

Perkolationsschwelle p_c

Größenverteilung
$$n_s(p) = \sum g_{sb} p^s (1-p)^b$$
 \rightarrow Skalierung: $|p-p_c|^{2-\alpha}$

- \rightarrow Anteil Cluster Größe s^{-b}
- \rightarrow Anordnungen $g_{sb} \sim$ "lattice Animals"
- → Wichtig: ohne unendlichen Cluster

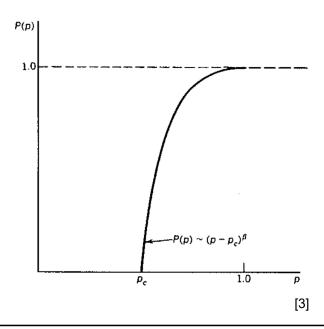
Anteil des unendlichen Clusters P

- → Ordnungsparameter
- \rightarrow Skalierung: $(p-p_c)^{\beta}$
 - \sim Kritischer Exponent β

$$\rightarrow P + \sum_{s} sn_{s}(p) = p$$

Clusterzahl
$$\Gamma = \sum_s n_s(p)$$

 \sim Kritischer Exponent α



Grundlagen - weitere Größen

Wkt. Knoten ist Teil eines s-Clusters: $sn_s(p)$

Wkt. Knoten eines endlichen Clusters

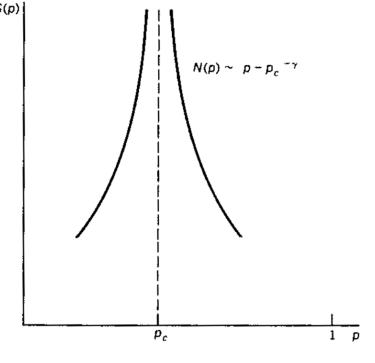
ist Teil eines
$$s\text{-Clusters: }\omega_s(p) = \frac{sn_s(p)}{\sum\limits_{s'} s' n_{s'}(p)}$$

Mittlere Anzahl Knoten in endlichen Clustern

$$S = \sum_{s} \omega_{s}(p)s = \frac{\sum_{s} s^{2}n_{s}(p)}{\sum_{s} sn_{s}(p)}$$

 \rightarrow Skalierung: $|p-p_c|^{-\gamma}$

 \sim Kritischer Exponent γ



Grundlagen - weitere Größen

Radius eines s-Clusters $R_s \sim s^{1/D}$

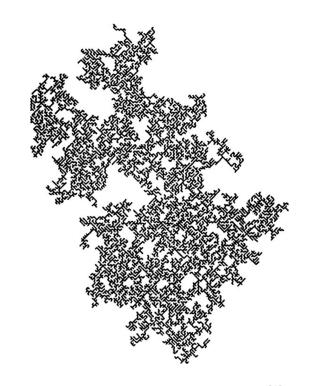
$$R_s^2 = \frac{1}{s^2} \sum_{i < j} |r_i - r_j|^2$$

Korrelationslänge ξ

$$\xi^2 = \frac{\sum\limits_s R_s^2 s^2 n_s(p)}{\sum\limits_s s n_s(p)}$$
 \rightarrow Skalierung: $|p-p_c|^{-\nu}$

 \sim Kritischer Exponent ν

→ Fraktale Dimension D des Clusters



[1]

Grundlagen - Skalierungshypothese

Allgemeines Problem:

Exakte Bestimmung von $n_s(p)$

Ansatz:

Skalierungshypothese $n_s(p) \sim s^{-\tau} f \left[(p - p_c) s^{\sigma} \right]$

- $\rightarrow f(x)$ a priori unbekannt
- $\rightarrow p$ nahe p_c und $s \gg 1$
- ightarrow Kritische Exponenten durch τ, σ ausdrückbar

Erzeugende Funktion

Hilfsmittel zur Berechnung

Gegeben über
$$\ G(\lambda,p)=\sum_s \lambda^s n_s(p)$$

Moment der Ordnung k von $n_s(p)$ über Differenziation

$$\sum_{s} s^{k} n_{s}(p) = \left(\lambda \frac{\partial}{\partial \lambda}\right)^{k} G(\lambda = 1, p)$$

Perkolation in einer Dimension

Clustergrößenverteilung gegeben über $n_s(p) = p^s(1-p)^2$

- → Lösung exakt möglich
- $\rightarrow \text{Erzeugende Funktion} \quad G(\lambda,p) = \sum_s \lambda^s p^s (1-p)^2 \quad \overset{\lambda p < 1}{=} \quad (1-p)^2 \frac{\lambda p}{1-\lambda p} \\ \sum_s s^k n_s(p) = \left(\lambda \frac{\partial}{\partial \lambda}\right)^k G(\lambda = 1,p)$
 - ~> 0. Moment: Clusterzahl $\Gamma(p) = G(1,p) = p(1-p)$
 - ~> 1. Moment: Ordnungsparameter $\sum_{s} sn_{s}(p) = p(1-p) + p^{2} = p$

$$\text{Vergleich: } P + \sum_s sn_s(p) = p \ \Rightarrow P = \begin{cases} 0, & p < p_c = 1 \\ 1, & p = p_c = 1 \end{cases}$$

~> ...

Perkolation auf einem Cayley-Baum

Jeder Knoten hat f nächste Nachbarn

Keine Schleifen

Selbstähnlich

Betrachte Verbindungsperkolation

Bestimmung der Perkolationsschwelle

- → Wähle Startpunkt, gehe nach außen
- $\rightarrow p(f-1)$ Verbindungen existieren
- → Statistische Unabhängigkeit der Schritte

$$\rightarrow p(f-1) < 1 \implies$$
 kein unendlicher Cluster

$$\Rightarrow p_c = \frac{1}{f-1}$$

→ Weitere Berechnungen möglich

Caley tree f = 3

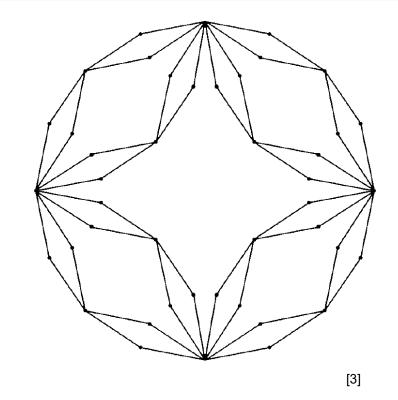
[3]

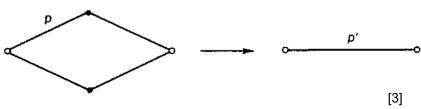
Renormierungsgruppe – hierarchisches Gitter

Hierarchisches Diamantgitter

- → unendlich viele nächste Nachbarn
- → selbstähnlich
- → exakte RG-Transformation
- → selbst wenig physikalische Bedeutung
 - ~> ähnelt RG-Transformation des quadratischen Bravais-Gitters

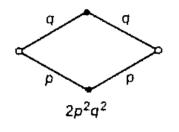
→ RG-Schritt invertiert Konstruktion

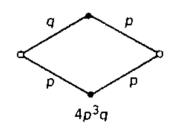


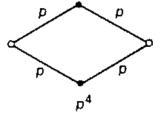


Renormierungsgruppe – hierarchisches Gitter

Mögliche Zustände und statistische Gewichte







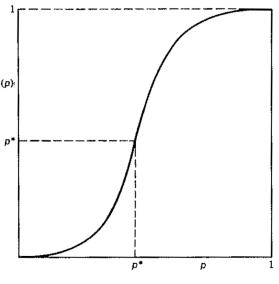
[3]

$$(q = 1 - p)$$

$$\Rightarrow p' = R(p) = 2p^2 - 4p^4 \quad \text{mit} \ \ R(p^*) = p^*$$

Drei Fixpunkte

- $\rightarrow p < p^*$ Fixpunkt bei p = 0
- $\rightarrow p > p^*$ Fixpunkt bei p = 1
- $\rightarrow p = p^* = p_c$ kritischer Fixpunkt

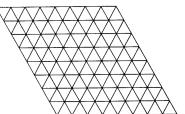


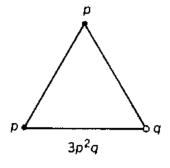
Renormierungsgruppe – Dreiecksgitter

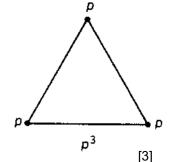
Betrachte Besetzungsperkolation

Mehrheitsprinzip-RG-Transformation

Mögliche Zustände und statistische Gewichte



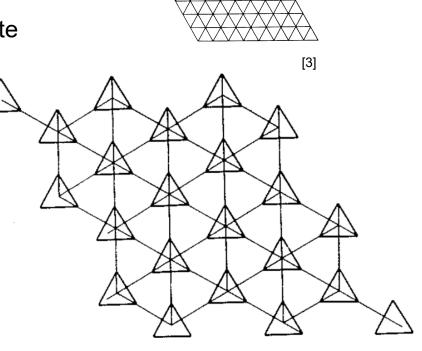




$$\Rightarrow p' = R(p) = 3p^2 - 2p^3$$

Perkolationsschwelle $p_c = 0.5$

→ Selbstähnlich ⇒ exakt

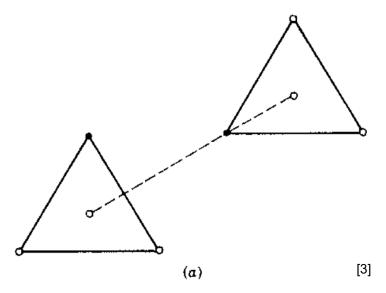


[3]

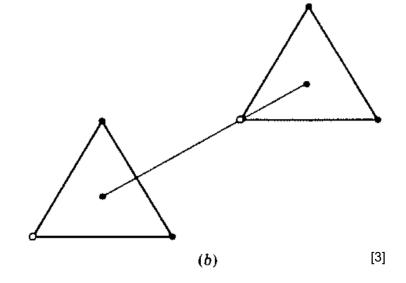
Renormierungsgruppe – Dreiecksgitter

Kritischer Exponent $\nu = 1.3547...$

- \rightarrow Theoriewert: $\nu_T = 1.\overline{3}$
- → gute Übereinstimmung nicht selbstverständlich



verbunden → nicht verbunden



nicht verbunden → verbunden

Quellen

[1] Drossel, Barbara: Komplexe dynamische Systeme, Manuskript zur Vorlesung, Darmstadt, 2016

[2] eigene Arbeit

- [3] R. J. Creswick, Horacio A. Farach, Charles P. Poole: Introduction to renormalization group methods in physics, John Wiley and Sons Ltd, New York (1992)
- [3] R. J. Creswick, Horacio A. Farach, Charles P. Poole: Introduction to renormalization group methods in physics, John Wiley and Sons Ltd, New York (1992) überarbeitet