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Problem 3: Van der Waals equation and the law of corresponding states

In the lecture we derived the Van der Waals equation of state by taking into account an excluded
volume of size b per particle due to the hard-core repulsion of particles at short distances and a
long-range mean field interaction term charaterized by the parameter a:

F (V, T ) = −NkBT log (V −Nb)− aN
2

V
, i.e. P =

NkBT

V −Nb
− N2a

V 2
. (1)

Due to its mean-field character, the Van der Waals equation is not able to correctly describe the critical
behavior of real fluids. However, it is possible to understand nontrivial fundamental properties of fluids
with very modest theoretical effort.

1. Study the equation of state around the critical point. Use the fact that at T = Tc the equation of
state has an inflection point (why?), i.e.

∂P

∂V

∣∣∣∣
T=Tc

=
∂2P

∂V 2

∣∣∣∣
T=Tc

= 0. (2)

Determine the critical temperature Tc, the critical pressure Pc and critical volume Vc by expressing
them in terms of the microscopic parameters a and b. Why is the result remarkable?

Hint: Use the fact that the equation of state can be written as a cubic polynomical in V and that
this polynomical must take the following form at the critical point (why?): (V − Vc)3 = 0.

2. Show that the equation of state can be expressed in the form(
PR +

3

V 2
R

)
(3VR − 1) = 8TR (3)

with PR = P/Pc, VR = V/Vc and T = T/Tc. This relation is called the law of corresponding states.
Discuss the significance of this law. What do you obtain for the ratio PcVc/(kBTc)?

3. Calculate the critical exponents of the liquid-gas phase transition and compare your results with
the exponents of the nearest neighbor Ising model in one dimension:

P − Pc ∼ |V − Vc|δ, κT = − 1

V

∂V

∂P

∣∣∣∣
T

∼ |T − Tc|−γ , Vgas − Vliquid ∼ |T − Tc|β. (4)
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Hint: To obtain the exponent β expand the equation of state around Vc and Tc and apply the
Maxwell construction for the coexistence region to determine the volumes Vgas and Vliquid. What’s
the underlying physics idea of the Maxwell construction?

Problem 4: Hubbard-Stratonovich transformation

The Hubbard-Stratonovich is a clever and very powerful method to handle interaction terms in many-
body problems. It is used frequently in modern many-body methods, like quantum Monte-Carlo and
lattice calculations. In this exercise we study an Ising model consisting of N spins with an infinite-
range interaction. That means each spin Si = ±1 interacts with every other spin in the system with
strength J . The Hamiltonian is hence given by

H = −J
2

N∑
i,j=1

SiSj −B
N∑
i=1

Si, (5)

where B is a constant external magnetic field.

1. Which condition has to be fulfilled for the coupling strength J in order to make this model
physically useful? Why is it useful to include a factor 1

2 in the interaction term?

2. Show that the canonical partition sum only depends on the total spin Stotal =
∑N

i=1 Si and write
down the explicit form. Why is it not possible to factorize the partition sum into a product of
single-particle partition sums?

3. Prove that

exp
[ a
N
x2
]

=

∫ ∞
−∞

dy√
4π/(Na)

exp

[
−Na

4
y2 + axy

]
. (6)

This is an example of a Hubbard-Stratonovich transformation. Use this result to show that the
partition sum can be written in the form

Z =

∫ ∞
−∞

dy
e−NL(y)√
2π/(NβJ̄)

with L(y) =
βJ̄

2
y2 − ln

[
2 cosh(β(B + J̄y))

]
. (7)

with J = J̄/N . What have we achieved by applying the Hubbard-Stratonovich transformation
Eq.(6)?

4. In the thermodynamic limit the partition sum can be evaluated using the method of steepest
descents. This method is based on the fact that for N →∞ the integral is given by the maximum
of the integrand at point ȳ:

limN→∞Z ∼ e−NL(ȳ). (8)

Explain why in the present case this methods leads to the exact solution and determine the
equation satisfied by ȳ. Does this relation look familiar?

5. For the interpretation of the quantity ȳ compute the magnetization per site: M = − 1
N

∂F
∂B

∣∣
y=ȳ

.
Interpret the results and study the magnetization by investigating the implicit equation for ȳ for
B = 0. Determine the critical temperature and show that the critical exponent β = 1/2.

6. Show that the the magnetic susceptibility χT = ∂M
∂B

∣∣
T

at B = 0 is given by the Curie-Weiss law:

χT =
(1−M2)

T − Tc(1−M2)
, i.e. γ = 1. (9)
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