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Problem 5: Dimensional analysis

Dimensional analysis is a powerful tool and can be applied to various problems in physics. It is based
on the fact that in any problem involving a number of dimensionful quantities, the relationship between
them can be expressed by forming all possible independent dimensionless quantities Π,Π1,Π2, ...Πn.
The solution for Π can then be expressed in the form

Π = f(Π1, ...,Πn). (1)

1. Assume there is only one dimensionless combination of variables in a given problem. What follows
for Π? Can we say anything about the value of Π?

2. Derive the characteristic size of the radius and ground state energy for a hydrogen atom using
dimensional analysis. Compare your results with the exact values. Are the dimensionless constants
of natural size?

3. Prove Pythagoras’ theorem using dimensional analysis. For this task, use only the fact that the
area of a right-angle triangle can be expressed as a function of the hypothenuse and one of the
acute angles of the triangle (don’t use trigonometry!). What happens if you consider non-Euclidian
geometries?

Hint: It is useful to add a well-chosen line to the right-angle triangle.

Problem 6: Ginzburg-Landau-Wilson effective field theory

The construction of effective field theories is key for understanding the basic ideas that lie at the
heart of Wilson’s Renormalization Group formulation. There exist cases for which this task can be
performed exactly starting from a microscopic theory. Here we will perform this exercise via the
Hubbard-Stratonovich transformation (see problem 4) for a general Ising model for N spins on a three-
dimensional lattice with a lattice spacing a:

H = −1

2

N∑
i,j=1

SiJijSj −
N∑
i=1

BiSi. (2)

Here Jij = Jji is a positive symmetric matrix which denotes the couplings between spins i and j and
Bi is the external magnetic field at site i.
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1. Prove the following relation for the interaction term:

exp
(1

2

∑
i,j

SiJijSj
) ∫
D[z] exp

(
−1

2

∑
i,j

ziJ
−1
ij zj

)
=

∫
D[z] exp

(
−1

2

∑
i,j

ziJ
−1
ij zj +

∑
i

ziSi
)

(3)

with ∫
D[z] =

∏
i

∫ ∞
−∞

dzi√
2π
.

Hint: Introduce new integration variables z′i = zi −
∑

j JijSj .

2. Show that the partition function can be expressed in the following form:

Z =

[∫
D[z] exp (−S[z])

]∫ D[z] exp
(
− 1

2β

∑
i,j

ziJ
−1
ij zj

)−1

=
1√

detβJ

∫
D[z] exp (−S[z]) ,

(4)
with

S[z] =
1

2β

∑
i,j

ziJ
−1
ij zj −

∑
i

ln[2 cosh(βBi + zi)].

3. Show that the expectation values of the variables zi are given by the following relation:

〈
β
∑
j

JijSj
〉

= Z−1Tr
∑
j

(βJijSj)e
−βH = 〈zi〉 ≡

∫
D[z]zi exp

(
−S[z]

)∫
D[z] exp

(
−S[z]

) . (5)

Based on this result, show that the expectation values of the new variables φi defined by

φi ≡ β−1
∑
j

J−1
ij zj , i.e. zi = β

∑
j

Jijφj (6)

corresponds to the magnetization per lattice site. Show that the partition function can be written
in terms of the effective action S[φ] in the following form:

Z =
√

detβJ

∫
D[φ]e−S[φ] with S[φ] =

β

2

∑
i,j

φiJijφj −
∑
i

ln

2 cosh
(
β(Bi +

∑
j

Jijφj
)) . (7)

Hint: For the derivation of relation (5) you can use the technique of external sources:

zi = lim
a→0

∂

∂ai
exp
(∑
j

ajzj
)
. (8)

4. The relation (7) is an exact representation of the partition function of the Ising model and hence
is in general very complicated to solve. In order to simplify the expression we consider a system
close to the critical point and assume that the partition function is dominated by small values of
φi. Show that the effective action takes the following form up to order O(φ6

i ):

S[φ] = −N log 2 +
β

2

∑
i,j

φiJijφj −
β2

2

∑
i

(
Bi +

∑
j

Jijφj
)2

+
β4

12

∑
i

(
Bi +

∑
j

Jijφj
)4

(9)
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Perform the continuum limit N →∞ : φi → φ(r), Jij → J(r− r′), and represent the variables in
momentum space, i.e.:

φ(r) =

∫
d3p

(2π)3
φ(p)eip·r, δ(r) =

∫
d3p

(2π)3
eip·r (10)

Show that the effective action takes the following form up to order O(φ6, B2, Bφ3) for a homoge-
neous external field Bi → B(r) = B:

S[φ(p)] = −N log 2− β2 B

(2π)3
J(0)φ(0) +

β

2

∫
d3p

(2π)3
J(p)(1− βJ(p))φ(p)φ(−p) (11)

+
β4

12

1

(2π)9

( 4∏
i=1

∫
d3pi

)
J(p1)J(p2)J(p3)J(p4)φ(p1)φ(p2)φ(p3)φ(p4)δ(p1 + p2 + p3 + p4)

5. We are particularly interested in the long-wavelength contributions to the partition function. For
this we limit the momentum integrals to wave numbers below a scale Λ and expand the function
J(p) for small momenta in powers of p. Show that the final form of the partition function can be
written in the form Z =

∫
D[φ]e−SΛ[φ] with:

SΛ[φ(p)] = aV + bBφ(0) +
1

2

∫
p
(c0 + c1p

2)φ(p)φ(−p)

+
d

4!

∫
p1

∫
p2

∫
p3

∫
p4

δ(p1 + p2 + p3 + p4)φ(p1)φ(p2)φ(p3)φ(p4) (12)

Here we used the notation
∫
p =

∫ d3p
(2π)3 Θ(Λ − |p|). Discuss the physical meaning of the scale Λ.

How are the couplings constants a, b, c0, c1 and d related to the constants in (11). Show that in
coordinate space the effective action takes the following form:

SΛ[φ(r)] =

∫
d3r

[
a+ bBφ(r) +

c0

2
φ2(r) +

c1

2
(∇φ(r))2 +

d

4!
φ4(r)

]
. (13)
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