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Overview

m Lecture 1: Hamiltonian

Prelude e Many-Body Quantum Mechanics e Nuclear Hamiltonian e Matrix Elements e
Two-Body Problem e Correlations & Unitary Transformations

m Lecture 2: Light Nuclei

Similarity Renormalization Group e Many-Body Problem e Configuration Interaction e
No-Core Shell Model e Basis Optimization

m Lecture 3: Medium-Mass Nuclei

Normal Ordering e Coupled-Cluster Theory e In-Medium Similarity Renormalization
Group e Many-Body Perturbation Theory

= Project: Do-It-Yourself NCSM

Three-Body Problem e Numerical SRG Evolution ¢ NCSM Eigenvalue Problem e
Lanczos Algorithm

m Lecture 4: Precision, Uncertainties, and Applications

Chiral Interactions for Precision Calculations e Uncertainty Quantification e
Applications to Nuclei and Hypernuclei
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Theoretical Context

m finite nuclel

m few-nucleon systems
m huclear interaction

Nuclear Structure

s hadron structure

m quarks & gluons
s deconfinement
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The Probl




The Problem

H ‘wn) = Ep ‘wn)

ab initio :=

solve nuclear many-body problem
based on realistic interactions
using controlled and improvable truncations
with quantified theoretical uncertainties
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The Problem

H ‘wn) = Ep ‘wn)

Assumptions
e use nucleons as effective degrees of freedom

e use non-relativistic framework, relativistic
corrections are absorbed in Hamiltonian

e use Hamiltonian formulation, i.e., conventional
many-body quantum mechanics

e focus on bound states, though continuum
aspects are very interesting
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The Problem

H ‘wn) = Ep wn)

What is this many-body What about these

Hamiltonian? many-body states?
nuclear forces, chiral effective many-body quantum mechanics,
_field th_eory, thre_e—body antisymmetry, second
Interactions, consistency, quantisation, many-body basis,
convergence,... truncations, ...

How to solve this
equation?

ab initio methods, correlations,
similarity transformations, large-
scale diagonalization, coupled-
cluster theory,...



Many-Body Quantum Mechanics

... @ very quick reminder




Single-Particle Basis

m effective constituents are nucleons characterized by position, spin and isospin
degrees of freedom

|a) = |position) ® |spin) ® |isospin)

m typical basis choice for configuration-type bound-state methods

spherical harmonic oscillator or other

| position) = [nIm;) . . . .
spherical single-particle potential

|spin) = |s =32, ms) eigenstates of s2 and s; with s=1/2

lisospin) = |t =32, m¢) eigenstates of t2 and tz with t=1/2

m yse spin-orbit coupling at the single-particle level
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Identical Particles & Spin-Statistics Theorem

m systems of identical particles: many-body states have to be eigenstates of
the transposition operator for any particle pair with eigenvalues *1

states symmetric under transposition of any pair

Ti|V)y=+1|V
jlV)y=+1]V) of particle indices

states antisymmetric under transposition of any

TylW)==11V) pair of particles

m simple product states are not suitable for systems of identical particles

|P)=[01)® |[02)®---® |aa)

m spin-statistics theorem connects transposition symmetry to particle spin:
e bosons = integer spin = symmetric states
e fermions = half-integer spin = antisymmetric states

m focus on fermions, i.e., antisymmetric states in the following



Slater Determinants

m antisymmetric states can be constructed via the antisymmetrization operator

m technically it is a projection operator onto the antisymmetric A-body Hilbert
space and has the same structure as a general determinant

m Slater determinants: antisymmetrized product states

|0102---GA):mA(|01)® o) ®---® |aa))
1
VAl

D sgn(m) Py (|o1) ® |az) @+ ® [aa))

= Pauli principle is a consequence of antisymmetry: you cannot
antisymmetrize a product state that contains two identical single-particle states




Slater Determinants as Basis

m given a complete single-particle basis {|a)} then the set of Slater determinants
formed by all possible combinations of A different single-particle states is a
complete basis of the antisymmetric A-body Hilbert space

m resolution of the identity operator

1= Z la10o...aa{a105...04] = - Z la10n...aa){a105...04]
01 <02<...<0p A a1,072,..., aa

m careful with double counting: Slater determinants that differ only by the order
of the single-particle states are identical up to a sign...

= expansion of general antisymmetric state in Slater determinant basis

Wy= > Coyap..as lO10z...aa) =) Ci [{o102...0a}¢)
i

a1<072<...<0A




Second Quantization: Basics

m define Fock-space as direct sum of A-particle Hilbert spaces

F=Ho®H1DHD---®BHAD -~

® vacuum state: the only state in the zero-particle Hilbert space

|0) € Ho (0]0) =1 0) #0

m creation operators: add a particle in single-particle state |a) to an A-body
Slater determinant yielding an (A+1)-body Slater determinant

a' |0) = |a)

+ laa1az...an) ; o€ {ai10z...04}
a laio...0a) = _ .
0 ;  otherwise

m resulting states are automatically normalized and antisymmetrized

m new single-particle state is added in the first slot, can be moved elsewhere
through transpositions



Second Quantization: Basics

= annihilation operators: remove a particle with single-particle state |a) from
an A-body Slater determinant yielding an (A-1)-body Slater determinant

O.alO) —_ O

(-1 o0...0im10ik1...04) 5 a=q;

Aq |01072...04) = :
al ) {O : otherwise

m annihilation operator acts on first slot, need transpositions to get correct single-
particle state there

m based on these definitions one can easily show that creation and annihilations
operators satisfy anticommutation relations

{dg, 0} =0 {al ,al,} =0 {aq, 0} = baar

m complication of handling permutations in "first quantization” are translated to
the commutation behaviour of strings of operators



Second Quantization: States

m Slater determinants can be written as string of creation operators acting on
vacuum state

_ At AT ...At
|or10(2...orA)—aalaO{2 a’ 10)

m alternatively one can define an A-body reference Slater determinant

_ —nt AT ...AT
|®) = |a1032...04) = Ay, Qg 7" Qg |0)

and construct arbitrary Slater determinants through particle-hole excitations
on top of the reference state

®P) =al a_ |®)

ap  Oq

PAy _ AT AT
|¢ab) _ aapaaqaabaaa )

index convention: a,b,c,... : hole states, occupied in reference state
p,q,r,... . particle state, unoccupied in reference states



Second Quantization: Operators

m operators can be expressed in terms of creation and annihilation operators as
well, e.g., for one-body kinetic energy and two-body interactions:

‘first quantization’ second quantization
A
T=>t T=> (altla’) a’aw
i=1 aa’
c 1 VAN B
V = Z Vi V= 2 Z (naz|viajos) al of agay
i<j=1 0{10{20{/10{3

m set of one or two-body matrix elements fully defines the one or two-body
operator in Fock space

m second quantization is extremely convenient to compute matrix elements of
operators with Slater determinants



Nuclear Hamiltonian




Nuclear Hamiltonian

m general form of many-body Hamiltonian can be split into a center-of-mass
and an intrinsic part

H=T+Vyn+Viny+:--=Tem+ Tint+Vynv+Vay+---
= Tem + Hint

m intrinsic Hamiltonian is invariant under translation, rotation, Galilei boost,
parity, time evolution, time reversal,...

Hint =Tint+VNN+V3N+"‘

A A
—Z—(pt B))° + ZVNN,U + Z V3N, ijk +

i<j i<j i<j<k

m these symmetries constrain the possible operator structures that can appear in
the interaction terms...

. but how can we really determine the nuclear interaction ?



Nature of the Nuclear Interaction

m nuclear interaction is not fundamental

m residual force analogous to van der Waals
interaction between neutral atoms

m based on QCD and induced via polarization
of quark and gluon distributions of nucleons

= encapsulates all the complications of the
QCD dynamics and the structure of nucleons

m acts only if the nucleons overlap, i.e. at
short ranges

~ 1.6fm m irreducible three-nucleon interactions are
important



Yesterday... from Phenomenology

Wiringa, Machleidt,...

m until 2005: high-precision phenomenological NN interactions were state-
of-the-art in ab initio nuclear structure theory

= Argonne V18: long-range one-pion exchange plus phenomenological
parametrization of medium- and short-range terms, local operator form

= CD Bonn 2000: more systematic one meson-exchange parametrization
including pseudo-scalar, scalar and vector mesons, inherently nonlocal

m parameters of the NN potential (~40) fit to NN phase shifts up to ~300 MeV
and reproduce them with high accuracy

m supplemented by phenomenological 3N interactions
consisting of a Fujita-Miyazawa-type term plus various hand- R
picked contributions

= fit to ground states and spectra of light nuclei, sometimes
up to A<8




Argonne V18 Potential

Wiringa, et al., PRC 51, 38 (1995)

Vi = SZT Ver(r) Mst + SZT v (r) L Msr

100/| v(r)L? ,
+ D VE(r) S12 Ty + ) VE(r) (L-8) Ty
S 0 T T
Q — =
s +> V() (L-8)2 Thr+...
T
100}
1001l v(r)L-S | v(r) (L-S)2 |
g 0 (S, T)
— —(1,0)
—(1,1)
100} —(0,0)
—(0,1)




Tomorrow... from Lattice QCD

Hatsuda, Aoki, Ishii, Beane, Savage, Bedaque,...

§ m first attempts towards construction of
< = nuclear interactions directly from
5 1= lattice QCD simulations
E =~
= o
2 lo = compute relative two-nucleon wave
; 5 function on the lattice
Z _
|+ winvert Schrodinger equation to
= extract effective two-nucleon potential
14z
S 400 | .. g : m only schematic results so far
= 8 1 (unphysical masses and mass
= D . sosss00an] dependence, model dependence,...)
S b I E
> _ 11
e 05 10 15 20 m alternatives: phase-shifts or low-
e T R R R energy constants from lattice QCD
1.0 1.5 2.0




Today... from Chiral EFT

Weinberg, van Kolck, Machleidt, Entem, MeiBner, Epelbaum, Krebs, Bernard,...

NN 3N 4N

m [ow-energy effective field theory for
relevant degrees of freedom (1,N) based
on symmetries of QCD

LO
>
|
|

m explicit long-range pion dynamics

m unresolved short-range physics absorbed
in contact terms, low-energy constants
fit to experiment ‘I '

NLO
|
|

m systematic expansion in a small parameter
with power counting enable controlled
improvements and error quantification H

m hierarchy of consistent NN, 3N, 4N,...
interactions

m consistent electromagnetic and weak
operators can be constructed in the same
framework
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Many Choices...

m standard chiral NN+3N
o NN: N3LO, Entem&MaChIeidt, n0n|Oca|, CUtOff 500 MeV first generation, most
e 3N: N2LO, Navratil, local, cutoff 500 (400) MeV widely used up to now J

® N2LO-opt, N2LO-sat, ...
e NN: N2LO, Ekstr6m+, nonlocal, cutoff 500 MeV improved fitting, also
e 3N: N2LO, Ekstrém+, nonlocal, cutoff 500 MeV many-body inputs J

= local N2LO
e NN: N2LO, Gezerlis+, local, cutoff 1.0...1.2 fm designed specifically forJ
e 3N: N2LO, Gezerlis+, local, cutoff 1.0...1.2 fm QMC applications

= nonlocal LO...N4LO
e NN: LO...N4LO, Machleidt, nonlocal, cutoff 450...550 MeV
e 3N: N2LO...N3LO, Huther+, nonlocal, cutoff 450...550 MeV

the future...

...systematic variation of
m semilocal LO...N4ALO+ chiral order enables

. : quantification of theory
e NN: LO...N4LO, Epelbaum, semilocal, cutoff 0.8...1.2 fm uncertainties
e 3N: N2LO..., LENPIC, semilocal, cutoff 0.8...1.2 fm

A




Momentum-Space Matrix Elements

(q(LS)M; TM7| v |’ (L'S)JM; TM7T) J

Argonne V18 chiral NN

(N3LO, E&M, 500 MeV)
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Matrix Elements




Partial-Wave Matrix Elements

m relative partial-wave matrix elements of NN and 3N interaction are
universal input for many-body calculations

m selection of relevant partial-wave bases in two and three-body space with all
M quantum numbers suppressed:

two-body relative momentum: q (LS)JT)

two-body relative HO: N (LS)JT)

three-body Jacobi momentum: m12; [(L1S1)J1, (L23)J21/12; (T13) T12)
three-body Jacobi HO: N1N2; [(L1S1)J1, (L23) )21 J12; (T15) T12)
antisym. three-body Jacobi HO: E120)7,T12)

m [ots of transformations between the different bases are needed in practice

m exception: Quantum Monte Carlo methods working in coordinate
representation need local operator form



Symmetries and Matrix Elements

m relative partial-wave matrix elements make maximum use of the symmetries
of the nuclear interaction

m consider, e.qg., the relative two-body matrix elements in HO basis

(N (LS)JM; TM7|vnn N (L'S") )'M7; T M)

m the matrix elements of the NN interaction
.. do not connect different J
.. do not connect different M and are independent of M
.. do not connect different parities
.. do not connect different S
.. do not connect different T
.. do not connect different Mr

= (N (LS)J; TM7|vnn N’ (L'S)); TMT)

m relative matrix elements are efficient and simple to compute




Transformation to Single-Particle Basis

® most many-body calculations need matrix elements with single-particle
quantum numbers (cf. second quantization)

(aroz| vy lagad) =

' ; /7 /7 / / /
= (n1lajimime, n2lajomamez| vun N7 177 myme,, ol

/7 / /
SJymymy,)

m obtained from relative HO matrix elements via Moshinsky-transformation

. . TS _
(n1laj1, n2l2j2; )T vun [N 7, NS 6150 )T) =

) v’)\’ln’ll’l, n’zl’z; L))

X (V(AS)jT|van [V (A'S)T)




Matrix Element Machinery

m beneath any ab initio many-body method there is a machinery for computing,
transforming and storing matrix elements of all operators entering the

calculation

compute and store relative compute and store Jacobi

two-body HO matrix elements three-body HO matrix elements
of NN interaction of 3N interaction

A .,

perform unitary transformations of the two- and three-body

relative matrix elements
(e.g. Similarity Renormalization Group)

A
transform to single-particle transform to single-particle
JT-coupled two-body HO matrix JT-coupled three-body HO matrix
elements and store elements and store

J Vv

same for 4N with
four-body matrix
elements



Two-Body Problem




Solving the Two-Body Problem

m simplest ab initio problem: the only two-nucleon bound state, the deuteron

m start from Hamiltonian in two-body space, change to center of mass and
intrinsic coordinates

H=Hcm + Hint = Tem + Tint + VNN

1 1
B2 4+ Vi

2M M 2u

m separate two-body state into center of mass and intrinsic part

|¢’): |¢cm)® |¢int)

m solve eigenvalue problem for intrinsic part (effective one-body problem)

Hint |¢int) =E | ¢int)




Solving the Two-Body Problem

m expand eigenstates in a relative partial-wave HO basis

Pint) = Y. Carsmrmy IN(LS)JM; TM7)
NLSJMT M7

IN(LS)M; TMr) = > (4, ic|2) INLML) ® |SMs) ® |TMr)
M; Ms

= symmetries simplify the problem dramatically:
e Hint does not connect/mix different J, M, S, T, Mt and parity n
e angular mom. coupling only allows J=L+1, L, L-1 for S=1 or J=L for 5=0
e total antisymmetry requires L+S+T=o0dd

m for given J7 at most two sets of angular-spin-isospin quantum numbers
contribute to the expansion



Deuteron Problem

m assume J7 = 1+ for the deuteron ground state, then the basis expansion
reduces to

pint, JT=1%) = Ci IN(01)1M; 00) + > Cy” IN(21) 1M; 00)
N N

m inserting into Schrodinger equation and multiplying with basis bra leads to
matrix eigenvalue problem

( (0> ) ( (0) \
(N’(01)...|Hint IN(01)...) (N’(01)...|Hint IN(21)...) & Cpr

(N'(21)...| Hint IN(O1)...) (N"(21) Chr
\ .
m eigenvectors ' lents and eigenvalues the energies

= truncate to N = Nmax and choose Nmax large enough so that
observables are converged, i.e., do not depend on Nmax anymore




Deuteron Solution

Argonne V18 chiral NN

o

N
'\
o

¢, (r) [arb. units]
o o
N W

o
=

¢, (r) [arb. units]

m deuteron wave function show two characteristics that are signatures of
correlations in the two-body system:

e suppression at small distances due to short-range repulsion

e L=2 admixture generated by tensor part of the NN interaction



Correlations &

Unitary Transformations




Correlations

correlations:
everything beyond the independent
particle picty

B many-body eigenstates of independent-particle models described by one-body
Hamiltonians are Slater determinants

m thus, a single Slater determinant does not describe correlations

m but Slater determinants are a basis of the antisym. A-body Hilbert space, so any
state can be expanded in Slater determinants

m to describe short-range correlations, a superposition of many Slater
determinants is necessary



Why Unitary Transformations ?

realistic nuclear interactions generate strong short-range
correlations in many-body states

r
Unitary Transformations

m adapt Hamiltonian to truncated low-
energy model space

m improve convergence of many-body
calculations

m preserve the physics of the initial
Hamiltonian and all observables

!

/

many-body methods rely on truncated Hilbert spaces J

not capable of describing these correlations




Unitary Transformations

m unitary transformations conserve the spectrum of the Hamiltonian, with a
unitary operator U we get

H|Y) =E|y) 1=U'U=uut
UtHU Ut |¢) = E UT o) with H=UtHU
HIg) =E|¢) §) = UT|¢)

m for other observables defined via matrix elements of an operator A with the
eigenstates we obtain

(WIA|g') = (g|UUTAU UT |¢’) = (| A|¢7)

unitary transformations conserve all
observables as long as the Hamiltonian and all other
operators are transformed consistently
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