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Overview

!Lecture 1: Hamiltonian 
Prelude ● Many-Body Quantum Mechanics ● Nuclear Hamiltonian ● Matrix Elements ● 
Two-Body Problem ● Correlations & Unitary Transformations 

!Lecture 2: Light Nuclei 
Similarity Renormalization Group ● Many-Body Problem ● Configuration Interaction ● 
No-Core Shell Model ● Basis Optimization 

!Lecture 3: Medium-Mass Nuclei 
Normal Ordering ● Coupled-Cluster Theory ● In-Medium Similarity Renormalization 
Group ● Many-Body Perturbation Theory 

!Project: Do-It-Yourself NCSM 
Three-Body Problem ● Numerical SRG Evolution ● NCSM Eigenvalue Problem ● 
Lanczos Algorithm 

!Lecture 4: Precision, Uncertainties, and Applications 
Chiral Interactions for Precision Calculations ● Uncertainty Quantification ● 
Applications to Nuclei and Hypernuclei
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Similarity Renormalization Group

! start with an explicit unitary transformation of the Hamiltonian with a 
unitary operator Uα  with continuous flow parameter α

4

continuous unitary transformation to 
pre-diagonalize the Hamiltonian with respect  

to a given basis

H� = U�
†H U�

! differentiate both sides with respect to flow parameter
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Similarity Renormalization Group

! define the antihermitian generator of the unitary transformation via

5

! we thus obtain for the derivative of the transformed Hamiltonian

where the antihermiticity follows explicitly from differentiating the unitarity 
condition 1 = U�

†U�

d

d�
H� = ��H� �H���

=
⇥
��,H�
⇤

thus, that change of the Hamiltonian as function of the flow parameter is 
governed by the commutator of the generator with the Hamiltonian

! this is the SRG flow equation, which has a close resemblance to the 
Heisenberg equation of motion 

�� = �U�
†
✓ d
d�

U�

◆
=
✓ d
d�

U�
†
◆
U� = ���†



Robert Roth - TU Darmstadt - March 2021

Glazek, Wilson, Wegner, Perry, Bogner, Furnstahl, Hergert, Roth,...

Similarity Renormalization Group

! consistent unitary transformation of Hamiltonian and observables

6

continuous unitary transformation to 
pre-diagonalize the Hamiltonian with respect  

to a given basis

H� = U�
†H U� O� = U�

†O U�

d

d�
H� = [��,H�]

d

d�
O� = [��,O�]

d

d�
U� = �U���

! the physics of the transformation is governed by the dynamic generator ηα 
and we choose an ansatz depending on the type of “pre-diaognalization” we 
want to achieve

! flow equations for Hα and Uα  with continuous flow parameter α
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SRG Generator & Fixed Points

7

! standard choice for antihermitian generator: commutator of intrinsic kinetic 
energy and the Hamiltonian

! this generator vanishes if  

! kinetic energy and Hamiltonian commute 

! kinetic energy and Hamiltonian have a simultaneous eigenbasis 

! the Hamiltonian is diagonal in the eigenbasis of the kinetic energy, i.e., in a 
momentum eigenbasis

! a vanishing generator implies a trivial fix point of the SRG flow equation — the 
r.h.s. of the flow equation vanishes and the Hamiltonian is stationary

! SRG flow drives the Hamiltonian towards the fixed point, i.e., towards the 
diagonal in momentum representation

�� = (2�)2
⇥
Tint,H�
⇤
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Solving the SRG Flow Equation

! convert operator equations into a basis representation to obtain coupled 
evolution equations for n-body matrix elements of the Hamiltonian

8

! note: when using n-body matrix elements, components of the evolved 
Hamiltonian with particle-rank > n are discarded

|q (LS) JTi

!matrix-evolution equations for n=3 with antisym. three-body Jacobi HO states:

d

d�
hE�J�T |H� |E0�0J�Ti = (2�)2

ESRGX

E00,�00

ESRGX

E000,�000

h

hE�...|Tint |E00�00...i hE00�00...|H� |E000�000...i hE000�000...|H� |E0�0...i
�2hE�...|H� |E00�00...i hE00�00...|Tint |E000�000...i hE000�000...|H� |E0�0...i
+hE�...|H� |E00�00...i hE00�00...|H� |E000�000...i hE000�000...|Tint |E0�0...i

i

n=2: two-body relative momentum

n=3: antisym. three-body Jacobi HO |E� J�Ti
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SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space
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SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space

α = 0.160 fm4

Λ = 1.58 fm−1
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SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space

chiral NN
Entem & Machleidt. N3LO, 500 MeV

Jπ = 1+, T = 0

m
o
m
e
n
tu
m
-s
p
a
c
e
m
a
tr
ix

e
le
m
e
n
ts

3S1

3S1−
3D1

deuteron wave-function

0 2 4 6 8
r [fm]

0

0.1

0.2

0.3

0.4

.

ϕ
L
(r
)
[a
rb
.
u
n
it
s]

L = 0
L = 2

30



Robert Roth - TU Darmstadt - March 2021 12

SRG Evolution in Two-Body SpaceSRG Evolution in Two-Body Space

α = 0.160 fm4

Λ = 1.58 fm−1

Jπ = 1+, T = 0
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SRG Evolution in Three-Body SpaceSRG Evolution in Three-Body Space

chiral NN+3N
N3LO + N2LO, triton-fit, 500 MeV
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SRG Evolution in Three-Body SpaceSRG Evolution in Three-Body Space
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SRG Evolution in A-Body Space

! assume initial Hamiltonian and intrinsic kinetic energy are two-body operators 
written in second quantization

15

! perform single Euler-type evolution step       in Fock-space operator form

! SRG evolution induces many-body contributions in the Hamiltonian

H0 =
X

...�†�†�� , Tint = T� Tcm =
X

...�†�†��

H�� = H0 + ��
⇥⇥
Tint,H0
⇤
,H0
⇤

=
X

...�†�†��+ ��
X

...
⇥⇥
�†�†��,�†�†��

⇤
,�†�†��
⇤

=
X

...�†�†��+ ��
X

...�†�†�†�†����+ ��
X

...�†�†�†���+ ...

��

! induced many-body contributions are the price to pay for the pre-diagonalization 
of the Hamiltonian
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SRG Evolution in A-Body Space 

! decompose evolved Hamiltonian into irreducible n-body contributions Hα[n] 

! truncation of cluster series formally destroys unitarity and invariance of 
energy eigenvalues (independence of α)  

! flow-parameter variation provides diagnostic tool to assess neglected 
contributions of higher particle ranks

16

 SRG-Evolved Hamiltonians

NNonly : use initial NN, keep evolved NN

NN+3Nind : use initial NN, keep evolved NN+3N

NN+3Nfull : use initial NN+3N, keep evolved NN+3N

NN+3Nfull+4Nind : use initial NN+3N, keep evolved NN+3N+4N

H� = H[1]� +H[2]� +H[3]� +H[4]� + · · ·



Many-Body Problem



Configuration Interaction  
Approaches
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Configuration Interaction (CI)

! select a convenient single-particle basis

19

! construct A-body basis of Slater determinants from all possible combinations of 
A different single-particle states

! convert eigenvalue problem of the Hamiltonian into a matrix eigenvalue 
problem in the Slater determinant representation

|��i = |{�1�2...�A}�i

|�ni =
X

�
C(n)� |��i

0
BBB@

...
... h��|Hint |��0 i ...

...

1
CCCA

0
BBB@

...
C(n)�0
...

1
CCCA = En

0
BBB@

...
C(n)�
...

1
CCCA

Hint |�ni = En |�ni

<latexit sha1_base64="/CLeyrl4MrRt5Vfp88nwZO8NbVg="></latexit>

|�i = |n � jmmti
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Model Space Truncations

! have to introduce truncations of the single/many-body basis to make the 
Hamilton matrix finite and numerically tractable 

• full CI:  
truncate the single-particle basis, e.g., at a maximum single-particle energy 

• particle-hole truncated CI: 
truncate single-particle basis and truncate the many-body basis at a 
maximum n-particle-n-hole excitation level 

• interacting shell model: 
truncate single-particle basis and freeze low-lying single-particle states (core) 

20

! in order to qualify as ab initio one has to demonstrate convergence with 
respect to all those truncations  

! there is freedom to optimize the single-particle basis, instead of HO states 
one can use single-particle states, e.g., from a Hartree-Fock calculation
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Variational Perspective

! solving the eigenvalue problem in a finite model space is equivalent to a 
variational calculation with a trial state

21

! formally, the stationarity condition for the energy expectation value directly 
leads to the matrix eigenvalue problem in the truncated model space

|�n(D)i =
DX

�=1
C(n)� |��i

! Ritz variational principle: the ground-state energy in a D-dimensional model 
space is an upper bound for the exact ground-state energy 

!Hylleraas-Undheim theorem: all states of the spectrum have a monotonously 
decreasing energy with increasing model space dimension

E0(D) � E0(exact)

En(D) � En(D+ 1)
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Theory Uncertainties

!model-space truncation is the sole source of uncertainties in the solution of 
the many-body problem 

! absolute energies are protected by the variational principle, i.e., smooth 
and monotonic dependence on model-space size (not so for other observables)

22

convergence with respect to 
model-space size is the only thing we 

have to worry about

! efficient truncations: get closer to convergence with smaller model-space 
dimension, i.e., physics-informed truncation scheme 

! extrapolations: extrapolate observables to infinite model-space from a 
sequence of finite-space calculations  

! uncertainty quantification: extract many-body uncertainty from residual 
model-space dependence or extrapolation



No-Core Shell Model
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No-Core Shell Model (NCSM)

! technical advantages of the NCSM: 

• many-body energy truncation (Nmax) truncation is much more efficient than 
single-particle energy truncation (emax, cf. FCI) 

• equivalent NCSM formulation in relative / Jacobi coordinates for each Nmax 

• explicit separation of center of mass and intrinsic motion for each Nmax

24

! special case of a CI approach: 

• single-particle basis is a  
spherical HO basis 

• truncation in terms of the total 
number of HO excitation quanta 
Nmax in the many-body states

6 Many-Body Calculation

After the SRG transformation of the initial �EFT interaction and the subsequent transformation to the JT-coupled
scheme, we want to solve the stationary Schrödinger equation,

H
�� i
↵
= Ei

�� i
↵

, (6.1)

for a given nucleus, where we are interested in the eigenvalues Ei . We only focus on the lowest eigenvalue, the
ground-state energy, which we use to investigate our new interactions that include irreducible four-body parts from
the SRG evolution.

An completely exact calculation would in principle require an infinite model space, and is therefore not possible.
However, our many-body methods, i.e., the NCSM and IT-NCSM, converge to the exact results when increasing
the model space size. Therefore, the calculation can be performed for any desired accuracy, as long as the model
space stays small enough to handle it. For simplicity we first discuss the no-core shell model (NCSM) without any
importance truncation.

The most prominent feature of the NCSM is its model space. It uses antisymmetric HO states for building the model
space. In principal, different kinds of HO bases are possible, but we focus on the m-scheme (Sec. 4.2), i.e., Slater-
determinants of single-particle HO states. First, the possible unperturbed Slater determinants are constructed, i.e.,
all m-scheme basis states with the lowest HO energy possible are included. For example, 4He would have two
protons and two neutrons in the s-shell. The total HO energy quantum number is E = 0 in this case and there is
only one Slater determinant that can be constructed. In the case of 5He, an additional neutron can be found in the
p-shell, raising the total HO energy quantum number to E = 1. Since we have multiple single-particle states in the
p-shell with the same HO energy, we have to add all the possible Slater determinants to our model space that have
one neutron in one of the p-shell single-particle states while the other two neutrons occupy the s-shell.

In a second step, excited HO configurations are added. We find these configurations by taking one of the unper-
turbed Slater determinants and moving one or multiple nucleons to states in upper shells. The relevant parameter
in this case is the excitation energy: As the energy difference between adjacent shells is always ~h!, we simply count
the total number of shells we lift the particles. For example, Fig. 6.1 shows a 6 ~h! configuration for 16O. This num-
ber is limited by Nmax, e.g., a model space with Nmax = 2 includes all the unperturbed Slater determinants, all
configurations where one particle has been lifted one or two shells and all configurations where two particles have
been lifted one shell each.

0s

0p

0d, 1s

0f, 1p

0g, 1d, 2s
�E = ~h!

Figure 6.1: Configuration for 16O with an excitation energy of 5 ~h!. Neutrons are depicted as blue dots, whereas protons are
red.

For a given nucleus and Nmax truncation, we can construct the necessary energy truncation E4
max, which we use for

the four-body m-scheme representations of the interaction. For instance, a consistent Nmax = 2 calculation of 4He
needs four-body m-scheme matrix elements with E4

max = 2. An 16O calculation, on the other hand, would require
matrix elements with E4

max = 6, as picking four particles out of a 16-body NCSM model space with Nmax = 2 can
at most yield a total HO energy quantum number of E = 6 for these four particles.

38
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NCSM Model-Space ConvergenceSRG Evolution in Three-Body Space
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N3LO + N2LO, triton-fit, 500 MeV
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NCSM Model-Space ConvergenceSRG Evolution in Three-Body Space
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Vary et al.; J. Phys.: Conf. Series 180, 012083 (2009)

27

NCSM Basis Dimension

CI calculations – main challenge

Single most important computational issue:
exponential increase of dimensionality with increasing H.O. levels
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Ab Initio No Core Full Configuration approach – p.9/40

not converged

not feasible
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Computational Strategy

! key properties of the computational problem: 

• only interested in a few low-lying eigenstates 

• Hamilton matrix is very sparse (typically <0.01% non-zeros) 

! Lanczos-type algorithms for an iterative solution of the eigenvalue problem 

! amount of fast storage for non-zero matrix elements & a few eigenvectors sets 
the limits and drives parallelization strategies

28
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Lanczos Algorithm

! Lanczos Algorithm: convert the eigenvalue problem of a huge matrix H in an 
iterative process to eigenvalue problems of small matrices Tm that converge to 
the same extremal eigenvalues

29
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Lanczos Algorithm

! Lanczos Algorithm: convert the eigenvalue problem of a huge matrix H in an 
iterative process to eigenvalue problems of small matrices Tm that converge to 
the same extremal eigenvalues

30

Convergence of Eigenvalues

Extreme eigenvalues converge fastest

Duplicates of eigenvalues emerge

Tobias Wolfgruber – October 25, 2016 – 9
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Importance Truncation

! converged NCSM calculations 
limited to lower & mid p-shell 
nuclei 

! example: full Nmax=10 calculation 
for 16O would be very difficult, 
basis dimension D > 1010

32

Importance Truncated NCSM

9

Roth, PRC 79, 064324 (2009); PRL 99, 092501 (2007)

! converged NCSM calcula-
tions essentially restricted
to lower/mid p-shell

! full Nmx = 10 calculation
for 16O very difficult
(basis dimension > 1010)
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Importance Truncated NCSM

9

Roth, PRC 79, 064324 (2009); PRL 99, 092501 (2007)

! converged NCSM calcula-
tions essentially restricted
to lower/mid p-shell

! full Nmx = 10 calculation
for 16O very difficult
(basis dimension > 1010)
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Importance Truncation

! converged NCSM calculations 
limited to lower & mid p-shell 
nuclei 

! example: full Nmax=10 calculation 
for 16O would be very difficult, 
basis dimension D > 1010

33

Importance 
Truncation 

reduce model space to the 
relevant basis states using an a 
priori importance measure 

derived from MBPT  

Roth, PRC 79, 064324 (2009) 
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Importance Truncation

34

Importance Truncation: Basic Idea

13

! starting point: approximation ∣Ψref⟩ for the target state within a
limited reference spaceMref

∣Ψref⟩ = ∑
ν∈Mref

C
(ref)
ν ∣ν⟩

! measure the importance of individual basis state ∣ν⟩ ∉Mref via
first-order multiconfigurational perturbation theory

κν = −
⟨ν ∣H ∣Ψref⟩

Δεν

! construct importance-truncated spaceM(κmin) from all basis
states with ∣κν ∣ ≥ κmin

! solve eigenvalue problem in importance truncated space
MIT(κmin) and obtain improved approximation of target state

13

Roth, PRC 79, 064324 (2009) 
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Threshold Extrapolation
Threshold Extrapolation

21
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! repeat calculations for a
sequence of importance
thresholds κmin

! observables show smooth
threshold dependence and
systematically approach the
full NCSM limit

! use a posteriori extrapola-
tion κmin → 0 of observables to
account for effect of excluded
configurations

! uncertainty quantification
via set of extrapolations

21

Roth, PRC 79, 064324 (2009) 



Basis Optimization
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Single-Particle Basis

!Harmonic-Oscillator Basis 

! essential for computation of matrix elements, always first step 

! separation of center of mass and intrinsic states, translational invariance 

! wrong asymptotic behavior, slow convergence of long-range observables  

!Hartree-Fock Basis 

! spherical Hartree-Fock calculation to optimize single-particle basis 

! adapt basis to typical size of nuclear ground state  

! only for soft interactions, pathological asymptotics for unbound states  

!Natural-Orbital Basis 

! one-body density matrix obtained from second-order MBPT calculation 

! natural orbital basis adapted to size of correlated ground state   

! correct asymptotic behavior, independence of underlying basis 

37
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NCSM Convergence: Energies

N
N

+
3N

(4
00

),
 α

=
0.

08
 f
m

4 ,
 e

m
ax

=
12

 

Harmonic Oscillator

Nmax=2

10

4

6

Hartree-Fock

�� [MeV]

E
[M
eV

]

12 14 16 18 20 22 24 26 28

-130

-120

-110

-100

-90

8

16O

! MBPT natural-orbital basis eliminates frequency dependence 
and accelerates convergence of NCSM 
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NCSM Convergence: Radii

Natural Orbitals
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! MBPT natural-orbital basis eliminates frequency dependence 
and accelerates convergence of NCSM 
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NCSM Convergence: Spectroscopy

NN+3N(500), α=0.08 fm4, emax=12
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Oxygen Isotopes

Nmax

E
[M
eV

]

2 4 6 8 10 12 14
-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

14O

15O

16O

..
.

24O

chiral NN+3N 
Λ3N=400 MeV 
α=0.08 fm4

ħΩ=20 MeV 
emax=12

! excellent convergence with 
natural-orbital basis for all 
oxygen isotopes
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Oxygen Isotopes
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⦁ NAT-NCSM, explicit 3N

⦁ NAT-NCSM, NO2B

! excellent convergence with 
natural-orbital basis for all 
oxygen isotopes 

! very good agreement with 
experimental systematics and 
dripline  

! NO2B instead of explicit 3N 
causes ~1% overbinding



Robert Roth - TU Darmstadt - March 2021

The NCSM Family

!NCSM 
HO Slater determinant basis with Nmax truncation 

! Jacobi NCSM 
relative-coordinate Jacobi HO basis with Nmax truncation 

! Importance Truncated NCSM 
HO Slater determinant basis with Nmax and importance truncation 

!Natural-Orbital NCSM 
use optimized single-particle basis to accelerate convergence 

! Symmetry Adapted NCSM 
group-theoretical basis with SU(3) deformation quantum numbers & truncations 

! Gamow NCSM/CI 
Slater determinant basis including Gamow single-particle resonance states 

!NCSM with Continuum 
NCSM for sub-clusters with explicit RGM treatment of relative motion 
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Overview

!Lecture 1: Hamiltonian 
Prelude ● Many-Body Quantum Mechanics ● Nuclear Hamiltonian ● Matrix Elements ● 
Two-Body Problem ● Correlations & Unitary Transformations 

!Lecture 2: Light Nuclei 
Similarity Renormalization Group ● Many-Body Problem ● Configuration Interaction ● 
No-Core Shell Model ● Basis Optimization 

!Lecture 3: Medium-Mass Nuclei 
Normal Ordering ● Coupled-Cluster Theory ● In-Medium Similarity Renormalization 
Group ● Many-Body Perturbation Theory 

!Project: Do-It-Yourself NCSM 
Three-Body Problem ● Numerical SRG Evolution ● NCSM Eigenvalue Problem ● 
Lanczos Algorithm 

!Lecture 4: Precision, Uncertainties, and Applications 
Chiral Interactions for Precision Calculations ● Uncertainty Quantification ● 
Applications to Nuclei and Hypernuclei
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