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Boulder / Colorado — June 5th, 1995 — 10:54 am

BEC of Rubidium Atoms

e 8Rb (F=2,mp=2)

® Ninitial & 10°
® NBEC ~ 2000
o T. ~170nK

e absorption image after
60 ms expansion

0.2mm x 0.27mm

E. Cornell, C. Wieman, et al. §
(JILA, NIST, U of Colorado) |\

Nobel Prize in Physics 2001
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Cambridge / Massachusetts — September 1995

BEC with Sodium Atoms

o ®Na (F=1,mp=-1)

® Ninitial ~ 10°
® NBEC ~ 5 x 105
o T. ~2uK

e absorption image after
60 ms expansion

Imm X ITmm

W. Ketterle, et al. '
(MIT)

Nobel Prize in Physics 2001
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Ultracold Atomic Gases

Why are they so Attractive...

a macroscopic system which all relevant quantities are
exhibits quantum properties observable & tunable

size, density, particle
number, mass, statistic,
composition, temper-
ature, distributions,
interaction strength...

large composite
bosons/fermions

meta stable realization of a
many-body state dilute quantum gas
interatomic inter-
actions are “weak”
BE condensation BCS transition

Ipec ~ wHK Ipcs ~ nK

R. Roth — 11/2001



E Experimentalists” Toolbox

Trapping Cooling

e magneto-optical trap: absorption of e Doppler cooling: atom absorbs a red
counterpropagating photons and reemis- detuned photon and reemits an on-
sion leads to net restoring force resonance photon; energy difference is

] . . aid with kinetic ener
e magnetic trap: inhomogeneous magnetic P gy

field couples to the magnetic moment of e evaporative cooling: selective removal of
the atoms; trapped in field minimum high-energy atoms and thermalization re-

. sults in lower temperature of the remanent
e optical traps

Imaging Manipulation
e resonance absorption: shine resonant e Feshbach resonances allow tuning of
laser onto the cloud and observe shadow the strength of inter-atomic interactions

e phase-contrast: use off-resonant laser (scattering length) over a wide range

and observe interference of scattered and e optical tools: e.g. focused blue detuned
unscattered light lasers 'repel’ the atoms and can be used

e ballistic expansion: momentum distribu- to cut or stir the gas

tion can be determined
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Boulder / Colorado — September 1999

Trapped Degenerate Fermi Gas

Onset of Fermi Degeneracy in a
Trapped Atomic Gas

B. DeMarco and D. S. Jin*f

An evaporative cooling strategy that uses a two-component Fermi gas was
employed to cool a magnetically trapped gas of 7 X 10> “°K atoms to 0.5 of
the Fermi temperature T.. In this temperature regime, where the state occu-

* the lowest energies has increased from essentially zere
> nearly 60 percent, quantum degeneracy was ~ two-component mixture

Coo“qg il clobel @) tive cooling and a< » madification of the t’ r—2 _ 9
neutral 'K atoms kept . N M ] [F=3mp=3)

in a magnetic trap a5 g totg ZS;TF?SI;?(?L s IF=2,mp=1)

F=4+1/2=3,12
I s
N ~ 10°...10° p~ 10 um=3
¢ ~ 1um T ~ 300s
T ~ 300nK
~ 0.5 EF
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Houston / Texas — March 2001

Degenerate Boson-Fermion Mixtures

Observation of Fermi Pressure | |
. simultaneous trapping of
in a Gas of Trapped Atoms 7Li (F = 2) = boson

Andrew G. Truscott, Kevin E. Strecker, William I. McAlexander,* 61 i (F — §) — fermion
Guthrie B. Partridge, Randall G. Hulet} -

evaporative cooling of the
bosons — sympathetic
cooling of the fermions

5 6

e — ~ 0.25 ef

T =240nK
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Theoretical Description of
Trapped Ultracold (Fermi) Gases

e The Many-Body Problem

e Correlations & Effective Interaction
e Mean-Field & Thomas-Fermi Approximation

e Energy Functional



E Route Through the Many-Body Problem

Hamiltonian

. 1 .
H:ZU(Xl‘)—I—%ZPZ‘Z—i—ZV”‘
i i

i<j

Model Space

mean-field states: product
of single-particle states

Energy Functional

energy expectation value )
as functional of the density Thomas-Fermi Approx.

neglect all gradients of the
density in the energy functional

Functional Variation

ground state density is ob-
tained by energy minimization
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The Problem

Short-Range Correlations

Interaction

many realistic two-body
interactions show a strong
short-range repulsion
(e.g. nucleon-nucleon &
van der Waals interactions)

[Vmin] _l y T v T v T v T v I-
1 - -]
[ o(r
0.5 ( ) .
0
-0.51 .
-1F -
O 05 1 15 2 25
~1/3
r [Po ]

Correlations

core induces strong
short-range correlations
in many-body state
(e.g. correlation hole
in two-body density)

Product States

short-range correlations
cannot be described
by product-type states
(e.g. mean-field, superposition
of few product states,...)

[p%] | T T T T N [p%] [T T T T T T
0.75 . 0.75 1
L J L ) J
0.5] o) (r) 1 %) Pf)rid (r)
0.25 . 0.25r .
0‘ ! L L 1 L 1 L I 0 1 1 1 L 1 1 N
O 05 1 15 2 25 0O 05 1 15 2 25
-1/3 -1/3
r oy 7] r oy "]
nuclear matter po = 0.17 fm 3
liquid *He (bosonic) pg = 0.022 A°
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The Problem

Short-Range Correlations

Interaction Product States
many realistic two-body Correlations short-range correlations
interactions show a strong core induces strong cannot be described
short-range repulsion short-range correlations by product-type states
(e.9. nucleon-nucleon & in many-body state (e.g. mean-field, superposition
van der Waals interactions) (e.g. correlation hole of few product states,...)

in two-body density)

Effective Interaction Correlated States
replace the full potential by include correlations in
a tamed effective interaction many-body model-space

Effective Contact
Interaction
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A Suitable Effective Interaction...

system is very dilute and cold Effective Contact Interaction (ECI)

p~1/3 > range of interaction e zero-range potential (for each partial wave)

g~ ! > range of interaction . .
e expectation value in two-body model-

states equals the energy shift induced by
the full interaction
treat the many-body problem in mod | _ECI | +mody !
a restricted model-space that (P vo=" |@n%) = AE,

does not contain correlations

E without with
"1 interaction interaction
5 |
looking for the structure D e oo
of non-selfbound states T AE
. : /] — e n
in an external potential
3 em— I
2 ________________________ I
| — - =
hermitean interaction operator 0 project
that obeys standard symme- out
tries (translation, rotation,...) bound
states
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E Construction of the ECI

Energy Shift

e relative two-body wave function w/o and
with interaction for » > range of v(r)

Gnim (F) = Ry () Y1 (9, @)

Ry (r) o ji(quir)
Ry (r) o< ji(Gr) — tanny (o) 11 (Gor)

e auxiliary boundary condition R,;(A) = 0 to
obtain discrete momentum spectrum

gu/\ = m(n+ %)
Jui/\ = 7'((71 + %) - [Tn(%z) - ﬂn‘})ound]

e momentum shift
AquA = (Gu1 — Gn1)/\
= —[m(qu) — ") =t —fy(q)

e relative energy shift
AE, 2

E,, = g nl(CInl)

Interaction Operator

e ansatz for a nonlocal contact interaction for
the Ith partial wave

vic= (@ f)l g1 8% (® (

Vi
_ 3 7
= [ gy 5e0@)

e expectation value in non-interacting two-
body states

<d)nlm| VFCI ’(Pnlm> ; AEnl

-§)'

-]

C’il

e interaction strengths ¢; determined by f);(g)

o= [(2l+1>!!]2 f1(q)
2u I! q21+1

e parametrization of fj;(g) in terms of the
scattering lengths 4 for |g4;| < 1
7w (24+1) o
2u (2

81 =
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4 Trapped Degenerate Fermi Gas

A Model for a

e trapped gas of = distinguishable fermionic
species (£ = 1, ...,Z) interacting via the s-
and p-wave contact interaction

Hamiltonian

m

1l ey 4
H=Y U®) + 5 Y5 + — 2 ¥ 8%

i<j

Mean-Field States (homogeneous)

e N-body state |¥) is an antisymmetrized
product of single-particle momentum

eigenstates |k;, &;)
W) = A (k&) ©--© [ky,én))

e for each component & all momenta |k| up
to the Fermi momentum «; appear

e for simplicity: equal trapping potentials
and s- and p-wave scattering lengths, ag
and aq, for all components

. 12mad o /. T o (Yi
)+ L (d50) 00w (6

Thomas-Fermi Approximation

e energy density of the trapped gas is locally
given by the energy density of the homo-
geneous system

1

= (¥ Hipgn [ )

8hom(’<1/ ceey Kg)

e i.e. the Fermi momenta «; are replaced by
local Fermi momenta «; (X)
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_ >\ 3= _ 2\ [.3( 2 3 (2
= u(x) «’(x) —— trap — = 6?”(96) K7 (X) + 15 (X)]
1 5% L 1 5 5/
+ 5022m ~ (%) — kinetic — + 5072 &7 (X) 4 5 (%))
aop = .
X — s-wave — + 53 K3 (%) k5 (%)
i kS (%) — p-wave — i (K5 (%) + <5 (%) +
3073m 3073m U1 z
+ 33 (%) k3 (F) + 363 (%) K5 (7))
e energy expectation value e density e particle number

— S 1 . ~
E[Kl,..., KE] = /d3x gE[Kl,..., KE](X) pé(x) — ) Kg(x) N¢ [Kg] = /d3x pE(X)
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E Ground State — Variationally

Functional Variation

minimization of the energy E|kq, ..., k=]
for fixed numbers of particles Ny, ..., N=
gives the ground state density profile

e chemical potentials: implement con- e stationary points of the energy density are
straints on the particle numbers via a set solutions of the Euler-Lagrange equations
of Lagrange multipliers yy, ..., u= o

' o e (% F=[k1, .., k=] (X) =0, V&

e unconstraint minimization of the trans- Ke (X)

formed energy functional : :
9y e since F= is local (does not depend on gra-

Flky,...,k=] = E[Kk1, ... Z e Ng [ke] dients) the ground state has to minimize F=

for each ¥
_ /de Felk, s K E](55)

Recipe

ground-state densities at some X are
given by the minimum of the transformed
energy density F |k, ...k=](X) for this X
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Structure of a Trapped Degenerate
Two-Component Fermi Gas

e Energy Landscapes & Density Profiles
e Mean-Field Induced Collapse
e Component Separation

e Phase Diagram



Two-Component Fermi Gas

Density Profiles

e assume a spherical symmetric
parabolic trapping potential

2
mauw 1
2 2

HEE 2mbA

e determine the densities for uq, uo
chosen such that the desired parti-
cle numbers are reproduced

e a9 > 0: repulsive interactions flat-
ten the density profile

e 19 < 0: attractive interactions en-
hance the central density

e outside a certain range of scatter-
ing lengths agp no solutions of this
type exist anymore

ao/f

1 == —0.053

— —0.05

1 — —0.04

— —0.03

| — —0.02

0.0

| — +0.02
| — +0.04

— +0.06

{ == +0.095
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Two-Component Fermi Gas

Energy-Density Landscape: qp < 0

e minimum of %, is only local for attractive inter-

actions (ag < 0ora; <0 . : _
(70 ) attractive interactions can in-

e NB: physically the state is only metastable for duce a collapse of the Fermi
all signs of the scattering lengths gas towards high densities

e local minimum vanishes if the attractive s-wave
interaction exceeds a critical strength
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Two-Component Fermi Gas

Collapse — Stability Condition

o~ N 3= 1 5. a0 6/ a3 s
1 ' ' . e onset of instability is indicated by the appear-

ance of a saddle point in the energy density,
i.e., a vanishing first and second derivative

E . . .
e e stability condition: metastable states exist
a!
H only for
~ -1F . n < FLcr((ZO/ 611) and K<f) < Kcr(”O/ 611)
¥ | —240
O —270 . : .
& 300 e the critical Fermi momentum and the critical
21 ___ a3 . chemical potential are given by
' ' L ' —2ag Ker — 4 (a1 ’<cr)3 =7
0 20 410 60
K [0~
o e — L2 4 280 3 8 a; i
ag/l = —0.037, a;/{=0, X=0 Hor =5 Rar T g R T 95, Rar
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Two-Component Fermi Gas

Collapse — Critical Particle Number

e assume parabolic trapping potential with e obtain the density profile for the critical
mean oscillator length ¢ chemical potential u. and calculate N,

abs. stabilization due p-wave attraction p-wave induced
to p-wave repulsion lowers critical particle collapse and interfer-
a1 /|ag| > 2/(37%/3) number substantially ence with separation

a1/l

+0.030
+0.025
+0.020
+0.015
+0.010
+0.000
—0.010
—0.020
—0.030
—0.040
—0.050

v

_— _
_—
/ 1

012 0.

1 -008 -0.06 -004 002 0 002
ao/f
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Two-Component Fermi Gas

Energy-Density Landscape: a9 > 0

i [10/620.0

=)

wml? = 300
al/f =0

Ol

1

0 20 3 0 10 20 30 0 10
ko [7] ko [7] K1
e overlapping configuration: for moderate re-
pulsive s-wave interactions a unique minimum
exists at k1 = ko repulsive interactions can

induce a spatial separation

ion: ritical interaction
e separation: beyond a critical interactio of the two components

strength two separate minima emerge at

k1 =0, kp >0 and k1 >0, kp =0
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Two-Component Fermi Gas

Separation — Density Distributions

p1(r,z) = p2(r, —2)
ao/ﬁz a0/€:0.06 00/620.066

N1 =N,=107
611/6 =0

>
4 r // r // r
| \’ \/

a0/€:0.08 ao/f:O.lo

/’/ r 1 // r
- y y

\
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Two-Component Fermi Gas

Separation — Critical Particle Number

e assume parabolic trapping potential with e obtain the density profile for the critical
mean oscillator length ¢ chemical potential u. and calculate N,
interference with p-wave attraction abs. stabilization due
collapse induced by lowers critical particle to p-wave repulsion
p-wave attraction number substantially a1 /ag > 2%/3/(37%/3)
T ai /¢
' +0.05
o — +0.04
— 40.03
L 8T — +0.02
Z — +0.01
o 7T —  0.00
5 — —0.01
6 — 0.02
— —0.03
St — —0.04
[ 1 ! ! ! — —(0.05

0 002 004 006 008 01 012 014
ao/f
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4 Stability Map

il Two-Component Fermi Gas

p-wave
stabilized
high-density
phase
above N

mean-field
collapse
above critical
particle
number

XD
~—
i

.

0.05

-0.05

-0.1

overlapping conf.
is stable for all
particle numbers

01 005 0 005 01
ao/f

components
separate

above critical
particle
number
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il Two-Component Fermi Gas
4 Stability Map & Feshbach Resonances

e Feshbach resonances allow to tune e simultaneous s- and p-wave Feshbach res-
the strength of the atom-atom interaction onance predicted for a two-component *°K
(scattering lengths) via an external mag- system with F = 2, mp = —3, — 7
netic field J. Bohn, Phys. Rev. A61 (2000) 053409

0.05

al/é

-0.05

01 005 0 005 01
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il Two-Component Fermi Gas
4 Phase Diagram

a1/€ = 0.0
9'_ | T T T T
8 =
7_
Z |
@)
55 Of
2 =
5 |
4 -
3 [ | L | L L | L | i | L | L L | L | e | L | L L | L | -
-0.1 005 0 005 01 -01 -005 0O 005 01 -01 -005 0 0.05 0.1
ao/ ¢ ao/ ¢ ao/?
I I
identical overlap- spatial separation unstable against p-wave stabilized
ping density distri- of the components collapse towards high-density phase

butions high densities
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Jsummary

Strategy

e developed a simple framework to describe interacting
degenerate quantum gases

e effective contact interaction + mean-field states +
Thomas-Fermi approximation — energy functional

e investigated the influence of s- and p-wave interactions
on structure and stability of degenerate Fermi gases

Results

e s- and p-wave interactions have strong influence on the
density profiles and the stability of the gas

e collapse: attractive interactions can induce a collapse of
[ 3 the dilute gas towards high densities

e separation: repulsive interactions can cause a spatial
...have a look at separation of the different components

http://theory.gsi.de/ trap e in all cases a complex interplay between s- and p-wave

interactions is observed
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