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Overview
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n The World of Trapped Ultracold Atomic Gases

n Theoretical Description of Trapped Ultracold Gases

• The Many-Body Problem

• Correlations & Effective Interaction

• Mean-Field & Thomas-Fermi Approximation

• Energy Functional

n Structure of a Trapped Degenerate Fermi Gas
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BEC of Rubidium Atoms
Boulder / Colorado — June 5th, 1995 — 10:54 am

R. Roth – 11/2001

T > Tc

T . Tc

T � Tc

• 87Rb (F=2, mF =2)

• Ninitial ≈ 106

• NBEC ≈ 2000

• Tc ≈ 170nK

• absorption image after
60 ms expansion

• 0.2mm × 0.27mm

E. Cornell, C. Wieman, et al.
(JILA, NIST, U of Colorado)

Nobel Prize in Physics 2001
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BEC with Sodium Atoms
Cambridge / Massachusetts — September 1995
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T > Tc

T . Tc

T � Tc

• 23Na (F=1, mF =−1)

• Ninitial ≈ 109

• NBEC ≈ 5 × 105

• Tc ≈ 2 µK

• absorption image after
60 ms expansion

• 1mm × 1mm

W. Ketterle, et al.
(MIT)

Nobel Prize in Physics 2001
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Why are they so Attractive...
Ultracold Atomic Gases

R. Roth – 11/2001

a macroscopic system which
exhibits quantum properties

all relevant quantities are
observable & tunable

size, density, particle
number, mass, statistic,

composition, temper-
ature, distributions,

interaction strength...

large composite
bosons/fermions

meta stable
many-body state

realization of a
dilute quantum gas

interatomic inter-
actions are “weak”

BE condensation
TBEC ∼ µK

BCS transition
TBCS ∼ nK

5



Experimentalists’ Toolbox
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Trapping

• magneto-optical trap: absorption of
counterpropagating photons and reemis-
sion leads to net restoring force

• magnetic trap: inhomogeneous magnetic
field couples to the magnetic moment of
the atoms; trapped in field minimum

• optical traps

Cooling

• Doppler cooling: atom absorbs a red
detuned photon and reemits an on-
resonance photon; energy difference is
paid with kinetic energy

• evaporative cooling: selective removal of
high-energy atoms and thermalization re-
sults in lower temperature of the remanent

Imaging

• resonance absorption: shine resonant
laser onto the cloud and observe shadow

• phase-contrast: use off-resonant laser
and observe interference of scattered and
unscattered light

• ballistic expansion: momentum distribu-
tion can be determined

Manipulation

• Feshbach resonances allow tuning of
the strength of inter-atomic interactions
(scattering length) over a wide range

• optical tools: e.g. focused blue detuned
lasers ’repel’ the atoms and can be used
to cut or stir the gas
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Trapped Degenerate Fermi Gas
Boulder / Colorado — September 1999

R. Roth – 11/2001

Science 285 (1999) 1703

cooling a cloud of
neutral 40K atoms kept

in a magnetic trap
40K has fractional

total spin: fermion

F = 4
I
± 1/2

S
= 9

2 , 7
2

two-component mixture
∣

∣F = 9
2 , mF = 9

2
〉

∣

∣F = 9
2 , mF = 7

2
〉

N ≈ 105...106

` ≈ 1 µm

T ≈ 300 nK
≈ 0.5εF

τ ≈ 300 s

ρ ≈ 10 µm−3
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Degenerate Boson-Fermion Mixtures
Houston / Texas — March 2001
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Science 291 (2001) 2570

7Li 6Li

T = 810 nK

T = 510 nK

T = 240 nK

simultaneous trapping of
7Li (F = 2) ⇒ boson
6Li (F = 3

2 ) ⇒ fermion

evaporative cooling of the
bosons → sympathetic
cooling of the fermions

NB ≈ NF ≈
105...106

T ≈ 240 nK
≈ 0.25εF
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Theoretical Description of
Trapped Ultracold (Fermi) Gases

• The Many-Body Problem

• Correlations & Effective Interaction

• Mean-Field & Thomas-Fermi Approximation

• Energy Functional
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Route Through the Many-Body Problem
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Hamiltonian
H = ∑

i
U(~xi) +

1
2m ∑

i
~p2

i + ∑
i< j

Vi j

Model Space
mean-field states: product

of single-particle states

Energy Functional
energy expectation value

as functional of the density Thomas-Fermi Approx.
neglect all gradients of the

density in the energy functional

Functional Variation
ground state density is ob-

tained by energy minimization
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Short-Range Correlations
The Problem

R. Roth – 11/2001

Interaction
many realistic two-body

interactions show a strong
short-range repulsion
(e.g. nucleon-nucleon &

van der Waals interactions)

Product States
short-range correlations

cannot be described
by product-type states

(e.g. mean-field, superposition
of few product states,...)

Correlations
core induces strong

short-range correlations
in many-body state
(e.g. correlation hole
in two-body density)
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nuclear matter ρ0 = 0.17 fm−3

liquid 4He (bosonic) ρ0 = 0.022 Å−3
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Short-Range Correlations
The Problem

R. Roth – 11/2001

Interaction
many realistic two-body

interactions show a strong
short-range repulsion
(e.g. nucleon-nucleon &

van der Waals interactions)

Product States
short-range correlations

cannot be described
by product-type states

(e.g. mean-field, superposition
of few product states,...)

Correlations
core induces strong

short-range correlations
in many-body state
(e.g. correlation hole
in two-body density)

Effective Interaction
replace the full potential by
a tamed effective interaction

Correlated States
include correlations in

many-body model-space

Effective Contact
Interaction
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A Suitable Effective Interaction...
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system is very dilute and cold
ρ−1/3 � range of interaction

q−1 � range of interaction

treat the many-body problem in
a restricted model-space that
does not contain correlations

looking for the structure
of non-selfbound states

in an external potential

hermitean interaction operator
that obeys standard symme-
tries (translation, rotation,...)

Effective Contact Interaction (ECI)

• zero-range potential (for each partial wave)

• expectation value in two-body model-
states equals the energy shift induced by
the full interaction

〈

φmod
n

∣

∣ vECI ∣

∣φmod
n

〉 !
= ∆En

En

0

without
interaction

with
interaction

∆En

project
out
bound
states

1
2

3

4

5
n
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Construction of the ECI
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Energy Shift

• relative two-body wave function w/o and
with interaction for r > range of v(r)

φnlm(~r) = Rnl(r)Ylm(ϑ,ϕ)

Rnl(r) ∝ jl(qnlr)

R̄nl(r) ∝ jl(q̄nlr) − tan ηl(q̄nl) nl(q̄nlr)

• auxiliary boundary condition Rnl(Λ) = 0 to
obtain discrete momentum spectrum

qnlΛ = π(n + l
2 )

q̄nlΛ = π(n + l
2 )− [ηl(q̄nl) − π nbound

l ]

• momentum shift
∆qnlΛ = (q̄nl − qnl)Λ

= −[ηl(qnl) − π nbound
l ] =: −η̂l(qnl)

• relative energy shift
∆Enl
Enl

= −
2

qnlΛ
η̂l(qnl)

Interaction Operator

• ansatz for a nonlocal contact interaction for
the lth partial wave

vECI
l = (~q · ~rr )

l gl δ(3)(~r) (~rr ·~q)l

=
∫

d3r
∣

∣~r
〉

�
∂ l

∂rl gl δ(3)(~r)

�
∂ l

∂rl

〈

~r
∣

∣

• expectation value in non-interacting two-
body states

〈

φnlm
∣

∣ vECI
l

∣

∣φnlm
〉 !

= ∆Enl

• interaction strengths gl determined by η̂l(q)

gl = −
4π

2µ

[

(2l + 1)!!
l!

]2
η̂l(q)
q2l+1

• parametrization of η̂l(q) in terms of the
scattering lengths al for |q al | � 1

gl =
4π

2µ

(2l + 1)

(l!)2 a2l+1
l +O(q2)
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Trapped Degenerate Fermi Gas
A Model for a
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• trapped gas of Ξ distinguishable fermionic
species (ξ = 1, ..., Ξ) interacting via the s-
and p-wave contact interaction

• for simplicity: equal trapping potentials
and s- and p-wave scattering lengths, a0
and a1, for all components

Hamiltonian

H = ∑
i

U(~xi) +
1

2m ∑
i

~p2
i +

4πa0

m ∑
i< j

δ(3)(~ri j) +
12πa3

1
m ∑

i< j

(

~qi j ·
~ri j

ri j

)

δ(3)(~ri j)
(~ri j

ri j
·~qi j

)

trap kinetic s-wave p-wave

Mean-Field States (homogeneous)

• N-body state
∣

∣Ψ
〉

is an antisymmetrized
product of single-particle momentum
eigenstates

∣

∣~ki ,ξi
〉

∣

∣Ψ
〉

= A
( ∣

∣~k1,ξ1
〉

⊗ · · · ⊗
∣

∣~kN ,ξN
〉)

• for each component ξ all momenta |~k| up
to the Fermi momentum κξ appear

Thomas-Fermi Approximation

• energy density of the trapped gas is locally
given by the energy density of the homo-
geneous system

Ehom(κ1, ...,κΞ) =
1
V

〈

Ψ
∣

∣ Hhom
∣

∣Ψ
〉

• i.e. the Fermi momenta κξ are replaced by
local Fermi momenta κξ(~x)
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Energy-Density for Trapped Fermions
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—— trap ——

—— kinetic ——

—— s-wave ——

—— p-wave ——

Single-Component System

E1[κ](~x) =

=
1

6π2 U(~x) κ3(~x)

+
1

20π2m
κ5(~x)

+
a3

1
30π3m

κ8(~x)

7

Two-Component System

E2[κ1,κ2](~x) =

=
1

6π2 U(~x)
[

κ3
1(~x) +κ3

2(~x)
]

+
1

20π2m
[

κ5
1(~x) +κ5

2(~x)
]

+
a0

9π3m
κ3

1(~x)κ3
2(~x)

+
a3

1
30π3m

[

κ8
1(~x) +κ8

2(~x)+

+ 1
2κ

3
1(~x)κ5

2(~x) + 1
2κ

5
1(~x)κ3

2(~x)
]

• energy expectation value

E[κ1, ...,κΞ] =
∫

d3x EΞ[κ1, ...,κΞ](~x)

• density

ρξ(~x) =
1

6π2 κ3
ξ(~x)

• particle number

Nξ [κξ ] =
∫

d3x ρξ(~x)
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Ground State — Variationally
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Functional Variation
minimization of the energy E[κ1, ...,κΞ]
for fixed numbers of particles N1, ..., NΞ

gives the ground state density profile

• chemical potentials: implement con-
straints on the particle numbers via a set
of Lagrange multipliers µ1, ..., µΞ

• unconstraint minimization of the trans-
formed energy functional

F[κ1, ...,κΞ] = E[κ1, ...,κΞ]−
Ξ

∑
ξ=1

µξ Nξ [κξ ]

=
∫

d3x FΞ[κ1, ...,κΞ](~x)

• stationary points of the energy density are
solutions of the Euler-Lagrange equations

∂
∂κξ(~x)

FΞ[κ1, ...,κΞ](~x) = 0 , ∀ξ

• since FΞ is local (does not depend on gra-
dients) the ground state has to minimize FΞ

for each ~x

Recipe
ground-state densities at some ~x are

given by the minimum of the transformed
energy density F [κ1, ...κΞ](~x) for this ~x
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Structure of a Trapped Degenerate
Two-Component Fermi Gas

• Energy Landscapes & Density Profiles

• Mean-Field Induced Collapse

• Component Separation

• Phase Diagram
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Density Profiles
Two-Component Fermi Gas

R. Roth – 11/2001

• assume a spherical symmetric
parabolic trapping potential

U(~x) =
mω2

2
x2 =

1
2m`4 x2

• determine the densities for µ1, µ2
chosen such that the desired parti-
cle numbers are reproduced

• a0 > 0: repulsive interactions flat-
ten the density profile

• a0 < 0: attractive interactions en-
hance the central density

• outside a certain range of scatter-
ing lengths a0 no solutions of this
type exist anymore

0 5 10 15 20
x [`]

0

50

100

150

200

250

300

.
ρ

1(
~ x)

=
ρ

2(
~ x)

[`
−

3 ]

a0/`

−0.053
−0.05
−0.04
−0.03
−0.02

0.0
+0.02
+0.04
+0.06
+0.095

N1 = N2 = 106 a1/` = 0
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Energy-Density Landscape: a0 < 0
Two-Component Fermi Gas
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0 20 40 60
κ1 [`−1]

0

20

40

60

.

κ
2

[`
−

1 ]

a0/` = 0

0 20 40 60
κ1 [`−1]

a0/` = −0.035

0 20 40 60
κ1 [`−1]

a0/` = −0.040

F2[κ1,κ2](~x = 0) , µ1 = µ2
F2 = 0

F2 < 0

µ m`2 = 300

a1/` = 0

• minimum of F2 is only local for attractive inter-
actions (a0 < 0 or a1 < 0)

• NB: physically the state is only metastable for
all signs of the scattering lengths

• local minimum vanishes if the attractive s-wave
interaction exceeds a critical strength

attractive interactions can in-
duce a collapse of the Fermi

gas towards high densities
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Collapse — Stability Condition
Two-Component Fermi Gas

R. Roth – 11/2001

F2[κ,κ](~x) =
1

3π2

[

U(~x)−µ
]

κ3(~x) +
1

10π2m
κ5(~x) +

a0

9π3m
κ6(~x) +

a3
1

10π3m
κ8(~x)

0 20 40 60
κ [`−1]

-2

-1

0

1

.

F
2[

κ
,κ

]
[a

rb
.u

ni
ts

]

µ m`2

240
270
300
330

a0/` = −0.037, a1/` = 0, ~x = 0

• onset of instability is indicated by the appear-
ance of a saddle point in the energy density,
i.e., a vanishing first and second derivative

• stability condition: metastable states exist
only for

µ < µcr(a0, a1) and κ(~x) < κcr(a0, a1)

• the critical Fermi momentum and the critical
chemical potential are given by

−2 a0 κcr − 4 (a1 κcr)
3 = π

m µcr =
1
2

κ2
cr +

2 a0

3π
κ3

cr +
8 a3

1
15π

κ5
cr
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Collapse — Critical Particle Number
Two-Component Fermi Gas

R. Roth – 11/2001

• assume parabolic trapping potential with
mean oscillator length `

• obtain the density profile for the critical
chemical potential µcr and calculate Ncr

abs. stabilization due
to p-wave repulsion
a1/|a0| > 2/(3π2/3)

p-wave attraction
lowers critical particle
number substantially

p-wave induced
collapse and interfer-
ence with separation

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
a0/`

4

5

6

7

8

9

.

lo
g 10

N
cr

a1/`

+0.030

+0.025

+0.020

+0.015

+0.010

+0.000

−0.010

−0.020

−0.030

−0.040

−0.050
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Energy-Density Landscape: a0 > 0
Two-Component Fermi Gas
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0 10 20 30
κ1 [`−1]

0
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a0/` = 0.0

0 10 20 30
κ1 [`−1]

a0/` = 0.06

0 10 20 30
κ1 [`−1]

a0/` = 0.12

F2[κ1,κ2](~x = 0) , µ1 = µ2
F2 = 0

F2 < 0

µ m`2 = 300

a1/` = 0

• overlapping configuration: for moderate re-
pulsive s-wave interactions a unique minimum
exists at κ1 = κ2

• separation: beyond a critical interaction
strength two separate minima emerge at

κ1 = 0, κ2 > 0 and κ1 > 0, κ2 = 0

repulsive interactions can
induce a spatial separation

of the two components
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Separation — Density Distributions
Two-Component Fermi Gas
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ρ1(r, z) = ρ2(r,−z)

a0/` = 0 a0/` = 0.06 a0/` = 0.066

a0/` = 0.07 a0/` = 0.08 a0/` = 0.10

N1 = N2 =107

a1/` = 0
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Separation — Critical Particle Number
Two-Component Fermi Gas
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• assume parabolic trapping potential with
mean oscillator length `

• obtain the density profile for the critical
chemical potential µcr and calculate Ncr

interference with
collapse induced by

p-wave attraction

p-wave attraction
lowers critical particle
number substantially

abs. stabilization due
to p-wave repulsion

a1/a0 > 24/3/(3π2/3)
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Stability Map
Two-Component Fermi Gas
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Stability Map & Feshbach Resonances
Two-Component Fermi Gas
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a 1
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191.6

191.7

193 194 195.5196.5 197.5 200

• Feshbach resonances allow to tune
the strength of the atom-atom interaction
(scattering lengths) via an external mag-
netic field

• simultaneous s- and p-wave Feshbach res-
onance predicted for a two-component 40K
system with F = 9

2 , mF = − 9
2 ,− 7

2
J. Bohn, Phys. Rev. A61 (2000) 053409
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Phase Diagram
Two-Component Fermi Gas
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N

-0.1 -0.05 0 0.05 0.1
a0/`

-0.1 -0.05 0 0.05 0.1
a0/`

a1/` = 0.0 a1/` = 0.025 a1/` = −0.025

identical overlap-
ping density distri-
butions

spatial separation
of the components

unstable against
collapse towards
high densities

p-wave stabilized
high-density phase
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Summary
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Strategy

• developed a simple framework to describe interacting
degenerate quantum gases

• effective contact interaction + mean-field states +
Thomas-Fermi approximation → energy functional

• investigated the influence of s- and p-wave interactions
on structure and stability of degenerate Fermi gases

Results

• s- and p-wave interactions have strong influence on the
density profiles and the stability of the gas

• collapse: attractive interactions can induce a collapse of
the dilute gas towards high densities

• separation: repulsive interactions can cause a spatial
separation of the different components

• in all cases a complex interplay between s- and p-wave
interactions is observed

...have a look at
http://theory.gsi.de/˜trap
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