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Boulder / Colorado — September 1999

Trapped Degenerate Fermi Gas

Onset of Fermi Degeneracy in a
Trapped Atomic Gas

B. DeMarco and D. S. Jin*f

An evaporative cooling strategy that uses a two-component Fermi gas was
employed to cool a magnetically trapped gas of 7 X 10> “°K atoms to 0.5 of
the Fermi temperature T.. In this temperature regime, where the state occu-
'+ the lowest energies has increased from essentially zere
"o nearly 60 percent, quantum degeneracy was two-component mixture
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Houston / Texas — March 2001

Degenerate Boson-Fermion Mixtures

Observation of Fermi Pressure , |
. simultaneous trapping of
in a Gas of Trapped Atoms i - F—2 — boson

Andrew G. Truscott, Kevin E. Strecker, William I. McAlexander,* 61i — F = % — fermion
Guthrie B. Partridge, Randall G. Hulet}

evaporative cooling of the
bosons — sympathetic
cooling of the fermions

T — 510 1K 10°...10°

T ~ 240nK

LTt ~0.25¢p

T = 240nK




E Fermion Experiments — Today

Two-Component Fermi Gases

09/1999 WK T =0.5ep Np ~ 10 JILA, Boulder/Colorado,
B. DeMarco, D.S. Jin

11/2001 OLi T =0.5ep Np ~ 10° Duke Univ., Durham/North Carolina,
S.R. Granade,..., J.E. Thomas

Binary Boson-Fermion Mixtures

03/2001 "Li/CLi T =0.25ep  Np~10° Rice Univ., Houston/Texas,
A.G. Truscott,..., R.G. Hulet

07/2001 "Li/OLi T =02¢p Nr ~10*  ENS, Paris
F. Schreck,..., C. Salomon

08/2001 STRb /4K — Nr ~ 107  JILA, Boulder/Colorado
J. Goldwin,..., D.S. Jin

12/2001 >3Na/°Li T=05¢ep Np ~ 108 MIT, Cambridge/Massachusetts
Z. Hadzibabic,..., W. Ketterle



Theoretical Description of
Trapped Degenerate (Fermi) Gases

The Many-Body Problem

Correlations & Effective Interaction

e Mean-Field & Thomas-Fermi Approximation

e Energy Functional



E Route Through the Many-Body Problem

Hamiltonian

HZZU(fi)Jr%ZﬁfJFZVM

i i<j

Model Space

mean-field states: antisym.
product of single-particle states

Energy Functional

energy expectation value as )
functional of the density Thomas-Fermi Approx.

neglect all gradients of the
density in the energy functional

Functional Variation

ground state density is obtained
by energy minimization



The Problem

Short-Range Correlations

Interaction

many realistic two-body
interactions show a strong
short-range repulsion

(e.g. atom-atom or nucleon-
nucleon interactions)
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Correlations

core induces strong
short-range correlations
in many-body state

(e.g. correlation hole in
two-body density)
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Product States

short-range correlations
cannot be described
by product-type states

(e.g. mean-field, superposition
of few product states,...)
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The Problem

Short-Range Correlations

Interaction Product States
many realistic two-body Correlations short-range correlations
interactions show a strong core induces strong cannot be described
short-range repulsion short-range correlations by product-type states
(e.g. atom-atom or nucleon- in many-body state (e.g. mean-field, superposition

nucleon interactions) of few product states,...)

(e.g. correlation hole in
two-body density)

Effective Interaction Correlated States
replace the full potential by a include correlations in
tamed effective interaction many-body model-space

Effective Contact
Interaction



A Suitable Effective Interaction...

system is very dilute and cold Effective Contact Interaction (ECI)

p~ /3 > range of interaction e zero-range potential (for each partial wave)

1 . .
> range of interaction , ,
¢ 9 e expectation value in two-body model-

states equals the energy shift induced by
the full interaction
treat the many-body problem in mod | ECL | vmod\ !
a restricted model-space that (Br| v [9R°°) = AE,

does not contain correlations

E without with
"1 interaction interaction
5 |
looking for the structure of O e
non-selfbound statgs in an — T I AE,
external potential
D m— I
2 ........................ I
| — - =
hermitean interaction operator 0 oroject
that obeys standard symmetries out
(translation, rotation,...) bound
states




Ll Construction of an
o ° °
M Effective Contact Interaction

Energy Shift

e relative two-body wave function w/o and
with interaction (outside the range of v(r))

Prim () = Rni(1)Yim (9, )
Rnl (T’) X jl (inr)
Ry (1) o< §i(Gmr) — tanm(Gnr) ni(gnir)

e auxiliary boundary condition R,,;(A) = 0 to
obtain discrete momentum spectrum

g\ = w(n + %)

(jnlA — 7T(n T %) - [nl(q_nl) - ﬂ_n?ound]

e momentum shift
Agni\ = (Gt — qn1)A

= —mi(gn) — T n® =1 =i (gunr)
e relative energy shift
AElnl 2 A
= — M1 (Gnt)

E. g1\

Interaction Operator

e ansatz for a nonlocal contact interaction
for the [th partial wave

v = (G- 5 g o®(F) (E-q)

L0 L
:/d3r‘r>w g1 03 (7) %@“}

e expectation value in non-interacting two-

body states
<¢nlm| V?CI ‘¢nlm> ; AEnl

e interaction strengths g; determined by 7;(q)

CdAr [0+ DI de)
2Mred I q2l+1

g =

e parametrization of 7;(q) in terms of the
scattering lengths a; for |ga;| < 1
4w (2041
g AT @D
2mred (l)

+0(q°)



A Model for a

4 Trapped Degenerate Fermi Gas

e trapped gas of = distinguishable fermionic
species (£ = 1, ..., =) interacting via the s-
and p-wave contact interaction

Hamiltonian

H=) U&) + ﬁZﬁ? + 0S5O () +

7 1<J

Mean-Field States (homogeneous)

e N-body state |¥) is an antisymmetrized
product of single-particle momentum

eigenstates |k;,&;)
) = A (kL&) @ @ |kn.En))

e for each component ¢ all momenta |k| up
to the Fermi momentum x. appear

e for simplicity: equal trapping potentials
and s- and p-wave scattering lengths, ag
and a4, for all components

Thomas-Fermi Approximation

e energy density of the trapped gas is locally
given by the energy density of the homo-
geneous system

1

= 77 (7| Hiom [ )

ghom(lfla TP HE)

e i.e. the Fermi momenta ~, are replaced by
local Fermi momenta ~¢ (%)



e energy expectation value

EE[K/la ...,KLE] = /d3£E‘ gg[lil,

— trap — =+ 2U(@) 13 (Z2) + k5 (T)]
1 — —
— kinetic — + 555 (K3 (Z) + k5 (7)]
ao 3/ 30
— s-wave — + o5 K@) Ra(T)
ay 8 (= 8 (=
—pwave —  + oo [W1(7) + Ry (0)+
+ 5R7 () w3 (T) + 547 (T) K5 (T)]
e density e particle number
~ N S L[5 3/~
Rel@)  pel@) =gz d@) Nk = 5y [0 2@



E Ground State — Variationally

Functional Variation

minimization of the energy E=[k1, ..., k=] for
fixed numbers of particles N, ..., N= gives
the ground state density profile

e chemical potentials: implement con- e stationary points of the energy density are
straints on the particle numbers via a set solutions of the Euler-Lagrange equations
of Lagrange multipliers u1, ..., u= O

= fg[lﬂl,...,lﬂlg](f) :O, Vf
e unconstraint minimization of the trans- Okig (T)

form nergy functional : -
ormed energy functiona e since F= is local (does not depend on gra-

F[k1, ..., k] = Bzlk1, ..., k2] — > peNke] dients) the ground state has to minimize F=
¢=1 for each ¥
_ / B Felrn, ..., k2] (F)
Recipe

ground-state densities at some & are given
by the minimum of the transformed energy
density Fz(k1, ...k=](Z) for this &



Structure of a Trapped Degenerate
Two-Component Fermi Gas

Energy Landscapes & Density Profiles

e Mean-Field Induced Collapse

Component Separation

Phase Diagram



Two-Component Fermi Gas

Density Profiles

e assume a spherical symmetric 300 ao /4
parabolic trapping potential 250 [ -= —0.053
L mw? 1, _ — —0.05
U(Z) = T = €4$ & - 1 — oo
2 2m S 900 0,03
e determine the densities for 1, o & i ] :0-02
chosen such that the desired parti- & 150 -
cle numbers are reproduced i i 0.0
= 100 — +0.02
< { =— +0.04
e ao > 0: repulsive interactions flat- a0 | — +0.06
ten the density profile 0 -— +0.095

e ap < 0: attractive interactions en-
hance the central density

e outside a certain range of scatter- _ _
ing lengths a, no solutions of this for a typical trap with £ = 1 ym:

type exist anymore ao = 200 agohy — a0/ = 0.01
ap = 2000 agorr — ao/¢ =0.1



Two-Component Fermi Gas

Energy-Density Landscape: ay < 0

e minimum of F; is only local for attractive inter-
actions (agp < 0 or a; < 0)

e NB: physically the state is metastable for all
signs of the scattering lengths

e local minimum vanishes if the attractive s-wave
interaction exceeds a critical strength

attractive interactions can
induce a collapse of the
Fermi gas towards high
densities



Two-Component Fermi Gas

Collapse — Critical Particle Number

e assume parabolic trapping potential with e obtain the density profile for the critical
mean oscillator length ¢ chemical potential u., and calculate N,

abs. stabilization due p-wave attraction p-wave induced
to p-wave repulsion lowers critical particle collapse and inter-
a1/|ao| > 2/(3mw2/3) number substantially ference with separation

/ .
/ N - 10.015
_— -

\
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1 -008 -0.06 -004 002 0 002
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Two-Component Fermi Gas

Energy-Density Landscape: ay > 0

40

i CLO/E = 0.0

10 20 30 0 10 20 30 0

30t
T
— 20F Fa <0
10‘ / pmtl? = 300
R al/f =0
0 : |
0 0
[ k1o [077]

0.
K1

e overlapping configuration: for moderate re-

pulsive s-wave interactions a unique minimum

exists at k1 = ko repulsive interactions can
induce a spatial separation

separation: beyond a critical interaction
* S°p y of the two components

strength two separate minima emerge at

k1 =0, ke >0 and k1 >0, kg =0



Two-Component Fermi Gas

Separation — Density Distributions

P1 (Ta Z) — ,02(7“, _Z)
CL()/KZO a0/€:006 a0/€:0066

N1 =N,=10"
a1/€ =0




Two-Component Fermi Gas

Separation — Critical Particle Number

e assume parabolic trapping potential with e obtain the density profile for the critical
mean oscillator length ¢ chemical potential u., and calculate N,
interference with p-wave attraction abs. stabilization
collapse induced by lowers critical particle due to p-wave repulsion
p-wave attraction number substantially a1/ag > 24/3/(37%/3)
: ai/l

' +0.05

or — 40.04

— 40.03

. 81 — +0.02
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4 Stability Map

il Two-Component Fermi Gas

p-wave
stabilized
high-density
phase above
Ner

mean-field
collapse
above critical
particle
number

S

~—
—
]

0.05

-0.05

-0.1

overlapping conf.
is stable for all
particle numbers

01 005 0 005 01
ao/f

components
separate

above critical
particle
number



il Two-Component Fermi Gas
4 Stability Map & Feshbach Resonances

e Feshbach resonances allow to tune e simultaneous s- and p-wave Feshbach res-
the strength of the atom-atom interaction onance predicted for a two-component “°K
(scattering lengths) via an external mag- system with F = 2, mp = -5, -1
netic field [J. Bohn, Phys. Rev. A61 (2000) 053409]

0.05

a1/€

-0.05

01 005 0 005 01



Jsummary

Strategy

e developed a simple framework to describe interacting
degenerate quantum gases

e effective contact interaction + mean-field states +
Thomas-Fermi approximation — energy functional

e investigated the influence of s- and p-wave interactions
on structure and stability of degenerate Fermi gases

Results

e s- and p-wave interactions have strong influence on the
density profiles and the stability of the gas

e collapse: attractive interactions can induce a collapse of
[ 3 the dilute gas towards high densities

e separation: repulsive interactions can cause a spatial
...have a look at separation of the different components

http://theory.gsi.de/ trap e in all cases a complex interplay between s- and p-wave

interactions is observed
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