Ultracold Bose Gases in
Optical Lattices:

Superfluidity, Interference, Disorder
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Boulder / Colorado — June 5th, 1995 — 10:54 am

BEC of Rubidium Atoms

e *"Rb (F=2,mr=2)

® Ninital ~ 10°
[ ) NBEC ~ 2000
e T. =~ 170nK

e absorption image after
60 ms expansion

0.2mm X 0.27mm
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E. Cornell, C. Wieman, et al. @
(JILA, NIST, U of Colorado)

Nobel Prize in Physics 2001
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Cambridge / Massachusetts — September 1995

BEC with Sodium Atoms

e 23Na (F=1,mp=—1)
® Ninitia = 10°

® Nprc = 5 x 10°

o T. =~ 2 uK

e absorption image after
60 ms expansion

W. Ketterle, et al.
(MIT)

Nobel Prize in Physics 2001



...over the Intervening Years

Dynamics of Dilute Quantum Gases

e amazing experimental achievements

e condensates of 1H, *He*, “Li, 2Na,
41K 85Rb 87Rb 133CS

e vortices, vortex lattices and their
dynamics

e bright and dark solitons and soliton
trains

e collective modes: monopole, dipole,
quadrupole, scissors,...

e atom laser

» all these phenomena are well described in the framework of a mean-field theory,
l.e., the Gross-Pitaevskii equation

» correlations (effects beyond mean-field) do not play a significant role...

Ketterle group, Science 292, 476-479 (2001)



...Today

The Advent of Correlations

correlations beyond the realm of a
mean-field description begin to play a role in
present day experiments

Feshbach Resonances Optical Traps

e allow to tune the scattering length e allow to build very tightly confining
(effective interaction strength) over traps with a multitude of geometries
several orders of magnitude and to (using AC Stark shift)

switch the sign

e quasi 1D and 2D traps: quantum
gases in low dimensions (Tonks gas,
boson-fermion mapping, ...)

e strong interaction regime, collapse
of the Bose gas due to attractive

interactions
e coherent molecule formation e optical lattices in 1P,.2D and 3D:
by sweeping through a Feshbach quantum phase transitions, Mott-

resonance insulator, disorder, ...



A Theoreticians’ View of

The Lattice Experiment

e produce a Bose-Einstein condensate of atoms in a magnetic trap

e load the condensate into an optical standing-wave lattice created by
counter-propagating laser beams by slowly increasing the laser intensity

e in a 3D lattice one ends up with few atoms per lattice site (favourable to
study quantum phase transitions) in a 1D lattice one can have thousands
of atoms

e by varying the lattice depth and the interaction strength one can probe
different physical regimes

e switch off the lattice and let the gas expand for some time and observe
the matter-wave interference pattern



Munich Experiment — January 2002
Interference Pattern

increasing lattice depth —

characteristic in-
terference pattern

o @ o
~of an array of
coherent BECs
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incoherent back-
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and peaks vanish
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superfluid to
Mott-insulator
transition
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M. Greiner, et al., Nature 415 (2002) 39
http://www.mpq.mpg.de/"haensch/bec/experiments/mott.html



Many Questions

e How to describe ultracold bosons in a lattice?

e What is the superfluid to Mott-insulator transition?

e How to define superfluidity?

e What is the relation between condensate and superfluidity?

e What does the interference pattern tell about superfluidity?

e Are there other quantum-phase transitions one can investigate?

e What happens if the lattice potential is irregular?



Bose-Hubbard Model




Bose-Hubbard Model

one-dimensional lattice with IN particles and I lattice sites

restricted Hilbert space: describe interacting many-body system in a basis of lo-
calised single-particle wave functions at the individual lattice sites

solid-state language: consider only the lowest band and use the localised Wan-
nier functions w;(x) as a basis

represent many-boson state in a basis of Fock states \nl, veey TV I> with occupation
numbers for the different localised Wannier states

creation and annihilation operators for a boson localised at site 2

é;-f ‘nl, cees i, ...,nI> =vn; +1 ‘nl, vees My + 1, ...,n1>

a; nl,...,ni,...,n1> = Jn; ‘nl,...,n,,; — 1,...,n1>




Bose-Hubbard Hamiltonian

e second gquantised many-body Hamiltonian in restricted Hilbert space

I I I
R L A \% o
HO = —J Z(a;.r+1a7; + h.a.) + Z €; 1; —+ E Z n,,;(nz- — 1)
i=1 i=1 i=1
tunnelling between adja- single-par- on-site two-body
cent lattice sites ticle energy interaction

e the parameters J, €¢;, and V are given by matrix elements of the different terms of
the continuous Hamiltonian in the Wannier basis

e assumptions: (a) only lowest band, (b) only nearest neighbour hopping, (c) only
short-range interactions

» Bose-Hubbard model is able to describe strongly correlated systems as well as
pure condensates



Exact Numerical Solution

e solve matrix eigenvalue problem for the Bose-Hubbard Hamiltonian in a complete
basis of Fock states |n§a), e n<;">> with a = 1, ..., D for given N

D
) =Y Ca n{®, ..., n{¥)
oa=1

e problem: the number D of basis states grows dramatically

1\6 8 10 12
1)\ 462 6435 92378 1352078

for N/T =1

e use efficient iterative Lanczos algorithm to compute the lowest eigenvalues and
eigenvectors of the sparse Hamilton matrix

» larger systems can be described by computationally very involved Monte Carlo
methods (typically up to I ~ 1000)

» there are several approximation schemes, each applicable in very restricted pa-
rameter regimes only; none can describe the phase transition correctly



Mott-Insulator Transition

Simple Quantities

calculate ground state ]\IJO> for a sequence of
values for V/J

mean occupation number
n; = <\IJO‘ n; |‘I’0>

number fluctuations
9 ) 511/2
oi = |(o| 1} |¥o) — (Wo| s |Wo)?|

largest coefficient
C? .. = max(C?)

max

small V/J: hopping dominates; superpositions
of many number states are favoured

large V' /J: interaction dominates; number
states with smallest occupation numbers are
preferred



Condensate &
Superfluidity




General Definition of the

Bose-Einstein Condensate

e What does BE condensation mean in a strongly correlated many-body system?

e eigenvectors of the one-body density matrix
1 AT A
piy = (Wo| ala; |wo)

define the natural orbitals and the eigenvalues the corresp. occupation numbers

e Onsager-Penrose criterion: if one of the eigenvalues of pf;;.) is of order IN, such

that No/IN remains finite in the thermodynamic limit, then a Bose-Einstein con-
densate is present

eigenvalue — Ng : number of condensed particles
eigenvector — ¢o; : condensate wave function

e existence of a condensate implies the presence of off-diagonal long range order

1 . :
pii #0 as |i—j|l— oo

e in a regular lattice the natural orbitals are quasi-momentum eigenstates



Mott-Insulator Transition

Condensate Fraction

—_ =
N

occupation number
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No/N
(@)
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— T T 4 e noninteracting system: only the condensate
I'=12,N =12 ] state is populated

-

— cond.
---T1st ex.

e with increasing V/J condensate is depleted
and higher orbitals (larger q) are successively
populated

e uniform population of the orbitals (band) in
the strong interaction limit

e significant finite size effects: condensate
fraction in a finite lattice always > 1/1

e one cannot judge about the absence of a
condensate in the Penrose-Onsager sense
in a finite size system

S
N

10 15 20
V/J



What is Superfluidity?

There is no “one-size-fits-all” definition of superfluidity!

Elliott H. Lieb, et al., cond-mat/0205570



What is Supertluidity?

e the term superfluidity describes a flow property

e macroscopically the superfluid flow is non-dissipative and irrotational, i.e., it is
stationary and described by the gradient of a scalar field

Usp x VO(T)
e classical two-fluid picture: if a velocity field v is imposed (moving walls), then only

the normal component responds, the superfluid component stays at rest

e the energy in the comoving frame differs from the ground state energy Ey in the
rest frame by the kinetic energy of the superflow

E(imposed @, comoving frame) = Eq + 3 Mgp §°
» these two ideas are the basis for the microscopic definition of superfluidity

» NB: this is not the Landau picture of superfluidity and we do not consider the sta-
bility of the superflow (critical velocity)



Microscopic

Definition of Supertfluidity

e the velocity field of the superfluid is defined by the gradient of the phase of the
condensate wavefunction ¢q (&)

h o -
= YO b0(®) = @ |g0()]

e to probe superfluidity (formally) we impose a linear phase variation onto the sys-

tem, e.g., by twisted boundary conditions for the many-body wave function

U (&1, ey @i + LEL, ey En) = €© O(Zq, ..., Ts, ..., BN) Vi

e the change in energy Ee — E( due to the phase twist is for small ® identified with
the kinetic energy of the superflow

1 2 1 2
Ee — Eo = 5 Msf v5p = 5mINsf Vs

e superfluid fraction is proportional to the energy change due to the phase twist

NSF o 2mL2 E@ — EO

— = Q) 0
sk N 2N o2 (@ — 0)




Superfluidity on the Lattice

e superfluid fraction for a one-dimensional lattice with I sites and N particles
I? Eg¢ — E,
fsr = 5
JN ©

e twisted boundary conditions not feasible for a discrete system: use a unitary trans-
formation to map the phase twist onto the Hamilton operator

e twisted Hamiltonian has a modified hopping term which contains the so called
Peierls phase factors

I
o = —J)» (e77al a;+ha) +
=1
» procedure: solve the eigenvalue problem for the original and the twisted Bose-

Hubbard Hamiltonian (with periodic BCs) to obtain Eqg and Eg

» phase factors can be engineered in experiment by accelerating the lattice or
adding a linear potential — basis for schemes to probe superfluidity directly



Perturbative Calculation of the

Superfluid Fraction

e calculate the energy difference Eg — Eg induced by a small phase twist ® in sec-
ond order perturbation theory

~ A @ A @2 A~ A~ A T = _J Zz(éj é.',, + ha.)
He ~ Hop+ —J— —T = Hgp+ Hpert - . G +A1
J=1iJ) ;(4;,,48 —ha)

e including all contributions to the energy difference up to order ®?2 gives for the su-
perfluid fraction

fsr = ' = f5¢)

A 1
f(l) — <\:[10’ T “I’0> f(2) —_
N =g ;’

(@] J[To)l?
E, — Eo

» 1st order term: depends only on the ground state expectation value of T

» 2nd order term: couples to the whole excitation spectrum of Hj

» the superfluid fraction measures the response of the system to an external pertur-
bation (phase twist)



Mott-Insulator Transition

Superfluid Fraction

fsk

1 2
Ao )

e superfluid fraction is the natural order pa-
rameter for the superfluid-insulator transition

e rapid decrease of fsg in a narrow window in
V' /J already for small systems

e transition region in good agreement with
Monte Carlo calculations for (V/J) it

° fs(g ) decreases only very slowly

e vanishing of fsg in the insulating phase is

due to a cancellation between fsf;) and fs(g)

e coupling to excited states is crucial for the

vanishing of fsg in the insulating phase



Summary

Condensate -vs- Superfluidity

condensate

e largest eigenvalue of the one-body
density matrix

e involves only the ground state

e measure for off-diagonal long-range
order in the system

Jo < fsr

e some non-condensed particles are
dragged along with the condensate

e liquid *He at T = OK:
Jo= 0.1, for=1

superfluid

e response of the system to an external
perturbation (phase gradient)

e depends crucially on the excited states
of the system

e measures a flow property

Jo > fsr

e part of the condensate is not super-
fluid, i.e., it has a reduced rigidity
against phase variations

e seems to occur in systems with defects
or disorder



Matter-Wave
Interference Pattern




Interference Pattern

e switch off the lattice and let the gas expand for some time r
e free expansion described by the spreading of a Gaussian wave packet G;(¥, t)

e intensity Z(y) observed at a point ¢ after expansion time
i 1
Z(%) = (Po| A (9)A(F) |¥o) A@) =) Gi(H,7) a
=1

e discard all information about the intensity envelope and take into account only the
phase terms in the far-field

Gz(ga 7—) — ei o)) ('.'7’7-) N ei 6¢('.’797-) T
e intensity as function of phase difference d¢

1
I(6¢) = - Y et 0P =) S\po\a}aj o)

1’7.7:1 (1)
Pi;

» interference pattern gives information on the one-body density matrix of the ground
state, e.g. the quasi-momentum distribution



Mott-Insulator Transition

Interference Pattern

Z(0¢)

12

10

0 02 04 06 08 1
0¢/(2m)

e peaks at 6¢p = 0, 2w, ... correspond to
the principal interference peaks seen in
experiment

e with increasing V/J principal peaks are
depleted and broadened; background
emerges

e equivalently: with increasing V/J the con-
densate is depleted and the band is filled
successively

» pronounced fringes still visible in the insu-
lating phase

» fringes are a measure for coherence prop-
erties not for superfluidity



Supertluid to
Mott-Insulator Transition




Commensurate Filling

Relevant Quantities

— I =10, N =10
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Non-Commensurate Filling

Relevant Quantities

I =10, N =11

superfluid ]

number || largest
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fsr ||

fluctuations A

O

- coefficient

visibility -

L energy gap

condensate |}
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Summary

Superfluid to Mott-Insulator Transition

e quantum phase transition for commensurate fillings governed by the competition
between kinetic energy (large fluctuations) and repulsive interactions (small occu-

pation numbers)

Mott-insulator regime

superfluid regime
ground state | superpos. of many FS
number fluctuations large
superfluid fraction finite
energy gap small
interference fringes present

almost pure FS
small
zero
increasing
slowly vanishing

e order parameter of the transition is the superfluid fraction fsg, which depends cru-

cially on the excited states

e ground state quantities (like interference pattern, fluctuations, etc.) cannot give di-
rect information on superfluidity or the phase transition

e one has to devise specialised experimental schemes to probe superfluidity directly



Two-Colour Superlattices




Two-Colour Superlattices

e start with the conventional standing wave
created by a laser with wavelength A\

U1 (w)
e add a second standing wave created by a
laser with wavelength A2 = 2\, and much
| | A smaller intensity (here 4%)
e potential exhibits a periodic modulation of
Ui 2(x) the well-depth with a period of 5 sites

e in the language of the Bose-Hubbard model

EFHDD_‘THHD_UHDD— this means varying on-site energies e;
€;

e amplitude A of the modulation is controlled
by the intensity of the second laser

» these completely controlled lattice irregularities open novel possibilities to study
fundamental “disorder” effects; more complex topologies easily possible



Two-Colour Superlattices

Interaction -vs- Lattice Irregularity
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Two-Colour Superlattices

V-A Phase Diagram

0 10 20 30 40 50 60
V/J
I=5N=5




Two-Colour Superlattices
More Phase Diagrams

0 10 20 30 40 50 600 10 20 30 40 50 600 10 20 30 40 50 60
V/J V/J V/J



Summary

Two-Colour Superlattices

» three competing terms in the Bose-Hubbard Hamiltonian generate a rich phase
diagram with various quantum phase transitions

e hopping: prefers wide distribution of occupation number
e interaction: favours small occupation numbers

e lattice irregularity: prefers large occupation numbers at deep wells

» several distinct insulating phases

e localised phase: all particles localised at the deepest wells of each unit cell;
large fluctuations

e quasi Bose glass: integer non-uniform occupation with small fluctuations; rear-
rangements between different configurations

e Mott insulator: whenever V- 2> A the uniform Mott-insulator phase appears for
commensurate fillings



The Bottom Line

e optical lattices open a new chapter in the book of degenerate
quantum gases

e ideal laboratory to study the physics of lattice systems

e full control over all relevant parameters: interaction strength, tun-
nelling coefficient, lattice topology

e powerful detection methods: momentum distribution, Bragg
diffraction

e different statistics: bosons, fermions, boson-fermion mixtures

e fascinating applications in quantum information processing
and in few-body physics



Supplements




Condensate and

Quasi-Momentum Distribution

e Bose-Hubbard model uses Wannier functions w(x — &;) as natural representation
of the state; Bloch functions v4(x) are obtained through

1
xr) = —— E e 1% w(x — &;
¢q( ) \/T — ( 62)

e define creation éfl and annihilation operators ¢, for bosons in Bloch states 1 4(x)
with quasi-momentum q
27

I
1 i
T — —ig&; 31 i — i
¢l = — e a with = — X Inteqger

e occupation numbers for the Bloch states, i.e., quasi-momentum distribution
1 1
fig = (Lo| 2feq|To) = 7 ) &5 (W] ala; |wo)
t,J=1

e quasi-momentum g = 0 Bloch state corresponds to the condensate state



Mott-Insulator Transition

Interference Pattern & Visibility

10

Z(0¢)

=

<— ]st min

<— abs min

={

d¢p/(27)

02 04 06 08 1

Ist min

10
V/J

15

20

e wanted: simple measure for the presence
or absence of fringes

e standard definition of fringe visibility
Imax — Imin

V —
Imax S Imin

m Z,;, = absolute minimum

e measures non-uniformity of quasi-
momentum distribution

e very insensitive

B Z,,;, = first minimum

e Mmeasures occupation difference between
condensate and 1st excited Bloch state

e better sensitivity but problematic
experimentally
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