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Overview

m Ultracold Atomic Gases

s [he Lattice Experiment

m Bose-Hubbard Model

s Condensate & Superfluid

s Superfluid to Mott-Insulator Transition
s Two-Colour Superlattices

m Boson-Fermion Mixtures in Lattices



Boulder / Colorado — June 5th, 1995 — 10:54 am

BEC of Rubidium Atoms

m %"Rb (F=2,mr=2)

B Nipitial = 10°
| NBEC ~ 2000
m 7. =~ 170nK

m absorption image after
60 ms expansion

B 0.2mm X 0.27mm




Cambridge / Massachusetts — September 1995

BEC with Sodium Atoms

INBECx
mT. =~ 2uK

m absorption image af-

W. Ketterle, et al.
(MIT) &

Nobel Prize in Physics 2001




...over the Intervening Years

Dynamics of Dilute Quantum Gases

m amazing experimental achievements

e condensates of 'H, *He*, "1,
23Na 41K 85Rb 87Rb 133CS 174Yb

e vortices, vortex lattices and their
dynamics

e bright and dark solitons and soli-
ton trains

e collective excitations and collapse

e boson-fermion mixtures and ultra-
cold fermions

[W. Ketterle et al.; Science 292 (2001) 476]
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m amazing experimental achievements

e condensates of 'H, *He*, "1,
23Na 41K 85Rb 87Rb 133CS 174Yb

e vortices, vortex lattices and their
dynamics

e bright and dark solitons and soli-
ton trains

e collective excitations and collapse

e boson-fermion mixtures and ultra-
cold fermions

[R. Hulet et al.; Science 291 (2001) 2570]

» all these phenomena are well described in the framework of a mean-field
theory (Gross-Pitaevskii equation for bosons)
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...JToday

The Advent of Correlations

correlations beyond mean-field
begin to play a role

Feshbach
Resonances

m tuning of the scattering length
over several orders of magnitude

m strong interaction regime:
mean-field collapse, three-body
losses,...

m coherent molecule formation:
molecular condensates, ultracold
chemistry

Optical Traps

m tightly confining traps with a multi-
tude of geometries

m quasi 1D and 2D traps: quan-
tum gases in low dimensions

m optical lattices in 1D, 2D and
3D: band structure, quantum
phase transitions, disorder, ...



A Theoreticians’ View of

The Lattice Experiment

m produce a Bose-Einstein condensate of atoms in a magnetic trap

m load the condensate into an optical standing-wave lattice created
by counter-propagating laser beams

m in a 3D lattice one ends up with few atoms per lattice site
(favourable to study quantum phase transitions) in a 1D lattice one
can have thousands of atoms

m probe different physical regimes by varying lattice depth and inter-
action strength

m switch off the lattice, let the gas expand, and observe the matter-
wave interference pattern



Munich Experiment

Interference Pattern

increasing lattice depth —

characteristic
interference pat-
tern of array of
coherent BECs

incoherent back-
ground emerges
and peaks van-
ish

[M. Greiner et al.; Nature 415 (2002) 39]



m How to describe ultracold bosons in a lattice?

s How to define superfluid and condensate?

s What is the superfluid to Mott-insulator transition?

s Are there other quantum-phases one can investigate?
s What happens if the lattice is irregular?

s What about fermions?



Bose-Hubbard Model




Bose-Hubbard Model

m one-dimensional lattice with IN particles and I lattice sites at T' = 0K
m restrict Hilbert space to the lowest energy band

m localised Wannier wavefunctions w;(x) with associated occupation num-
bers n; for the individual sites z = 1...1



Bose-Hubbard Model

m one-dimensional lattice with IN particles and I lattice sites at T' = 0K
m restrict Hilbert space to the lowest energy band

m localised Wannier wavefunctions w;(x) with associated occupation num-
bers n; for the individual sites z = 1...1

m represent N-boson state in complete basis of Fock states |{n,...,nr}a)

W)= 3 Cul s i)



Bose-Hubbard Model

m one-dimensional lattice with IN particles and I lattice sites at T' = 0K
m restrict Hilbert space to the lowest energy band

m localised Wannier wavefunctions w;(x) with associated occupation num-
bers n; for the individual sites z = 1...1

m represent N-boson state in complete basis of Fock states |{n,...,nr}a)

W)= 3 Cul s i)

m basis dimension D grows dramatically with I and N

I/ 6 8 10 12
D | 462 6435 92378 1352078

for N/T =1



Bose-Hubbard Hamiltonian

m second quantised Hamiltonian with respect to Wannier basis |[Fisher et al.
(1989); Jaksch et al. (1998)]

I I I

A o ) Vv R

Hy, = —J Z(al;rlai + h.a.) —+ Z € n; + B Z n;(n; — 1)
tunnelling between single-par- on-site two-body
adjacent lattice sites ticle energy interaction

m assumptions: (a) only lowest band, (b) constant nearest-neighbour hopping,
(c) only short-range interactions



Bose-Hubbard Hamiltonian

m second quantised Hamiltonian with respect to Wannier basis |[Fisher et al.
(1989); Jaksch et al. (1998)]

I I I

A o ) Vv R

HO = —J Z(aLrlai + h.a.) —+ Z €; 1N; + E Z H,,;(n,,; — 1)
tunnelling between single-par- on-site two-body
adjacent lattice sites ticle energy interaction

m assumptions: (a) only lowest band, (b) constant nearest-neighbour hopping,
(c) only short-range interactions

» Bose-Hubbard model is able to describe strongly correlated systems as
well as pure condensates

» exact solution: compute the lowest eigenstates of H, using iterative Lanc-
zos algorithms



Simple Physical Quantities

m consider a regular lattice = ¢; =0

m solve eigenproblem for various V/J

m mean occupation numbers
n; = (Yol 0; | ¥o)

m humber fluctuations

7s = /(o] 02 [@o) — (Wo| i | W)’

m enhergy gap

Egap = Eist excited — Eo

10 15 20
V/)J



Condensate &
Superfluidity
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General Definition of the

Bose-Einstein Condensate

m eigensystem of the one-body density matrix
P = (o ala [@o)

defines natural orbitals and the corresponding occupation numbers

m Onsager-Penrose criterion: Bose-Einstein condensate is present if one of
the eigenvalues of pg) is of order IN (in the thermodynamic limit)

eigenvalue — Ny : number of condensed particles
eigenvector —  ¢o; : condensate wave function

m existence of a condensate implies off-diagonal long range order

p'l,g 740 as |Z—]|—>OO

m in a regular lattice the natural orbitals are quasimomentum eigenstates



Condensate & Quasimomentum Distribution

0o 5 10 15 20
V/J

m pure condensate for V/J = 0

m rapid depletion of the condensate with
increasing V/J

m finite size effect: condensate fraction
in a finite lattice always > 1/1



Condensate & Quasimomentum Distribution

’
> 0.8 m pure condensate for V/J = 0
E 0.6 m rapid depletion of the condensate with
- | increasing V/J
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m macroscopically the superfluid flow is nhon-dissipative and irrotational, i.e.,
it is described by the gradient of a scalar field

Tsr x VO(Z)

m classical two-fluid picture: only normal component responds to an imposed
velocity field ¥ (moving walls), the superfluid stays at rest

m energy in the comoving frame differs from ground state energy in the rest
frame by the kinetic energy of the superflow

E(imposed @, comoving frame) = E(at rest) + 5 Msp ¥

» these two ideas are basis for the microscopic definition of superfluidity
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Microscopic

Detinition of Superfluidity

m the velocity field of the superfluid is defined by the gradient of the phase of
the condensate wavefunction ¢ (&)

h o o B
Usr = —VO(Z) bo(Z) = @ |y ()]

m employ twisted boundary conditions to impose a linear phase variation
\Il(.’.l_fl, ceey fz -+ Lé&, coes .’EN) = ei@ \I’(fl, coes {E,,;, ceey fN) V1
m the change in energy Eg— E, due to the phase twist is for small © identified
with the kinetic energy of the superflow

— 1 2 __ 1 2
E@ — E() = §MSF Ugp = EmNSF Ugp

m superfluid fraction = stiffness with respect to phase variations

Nez  2mL? Eg — E,

For =
TN n2IN 2

OL
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Superfluidity on the Lattice

m express Fgg in terms of the parameters of the Bose-Hubbard model

m I2 E@—EO I:L/a,

e JSF J¢ =38 o J = h?/(2m*a?)

Fsp =

» - ! reduction of flow by the lattice itself

» fsp . interaction-induced depletion relevant for quantum phase transitions

m solve eigenvalue problem with and without imposed phase twist and directly
compute Eg — Ey and fsr

m closely related to helicity modulus [Fisher, Barber, Jasnow (1973)] and winding
number [Pollock, Ceperley (1987)]

m this is not the Landau picture of superfluidity = we do not consider the sta-
bility of the superflow (critical velocity)



Mott-Insulator Transition

Superfluid Fraction

0 10
V/J
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m superfluid fraction is the natural order
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transition
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Mott-Insulator Transition

Superfluid Fraction

m superfluid fraction is the natural order
parameter for the superfluid-insulator
transition

m rapid decrease of fsg in a narrow win-
dow in V/J already for small systems

m 7Y decreases only very slowly

m vanishing of fsg is due to a cancella-

tion between £+ and 7%

m coupling to excited states is crucial
for the vanishing of fsr in the insulat-
ing phase
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Condensate -vs- Superfluid

Condensate

m largest eigenvalue of the one-
body density matrix

m involves only the ground state

m measure for off-diagonal long-
range order / coherence

Jo < fsk

m non-condensed particles are
dragged along with condensate

m liquid *He at T = 0K:
Jo= 0.1, fo=1

Superfluid

m response of the system to an
external perturbation

m depends crucially on the excited
states of the system

m measures a flow property

Jo > fsr

m part of the condensate has a
reduced stiffness under phase
variations

m seems to occur in systems with
defects or disorder



Summary

Superfluid to Mott-Insulator Transition
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Superfluid to Mott-Insulator Transition
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Two-Colour Superlattices

m start with a standing wave created by a
laser with wavelength A,

m add a second standing wave created by
‘ ‘ a laser with wavelength A, = 2X; and
3 -\ n much smaller intensity (here 4%)

m potential exhibits a periodic modulation
Ui y2(x) of the well-depth with a period of 5 sites

m Bose-Hubbard model: varying on-site
€; II II II energies €; € [0, —A]

» controlled lattice irregularities open novel possibilities to study “disorder”
related effects; more complex topologies easily possible



Two-Colour Superlattices
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Two-Colour Superlattices

V-A Phase Diagrams

Umax

O n u IR M n n n n
0 10 20 30 40 50 O 10 20 30 40 50 0 10 20 30 40 50 60
V/J V/J V/J




Boson-Fermion
Mixtures in Lattices




Bose-Fermi-Hubbard Hamiltonian

m second quantised Hamiltonian containing boson (B) and fermion (F) opera-
tors [Albus et al. (2003)]

I I

5 VBB

Hy = — J, aPT 3% 4 h.a. PN /8@ — 1
0 B;( i+1 f,,"‘ ) + 2 Z 7,( i )

I I
— Jp ) (81,8 +ha) + Vg ) A) A
=1

=1
m exact solution of eigenvalue problem in combined Fock-state representation

m in addition to ground state observables we employ two stiffnesses to charac-
terise the various phases

e bosonic phase stiffness = boson superfluid fraction

e fermionic phase stiffness = Drude weight, fermionic conductivity



Boson-Fermion Mixtures

V- VBr Phase Diagrams
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Boson-Fermion Mixtures

V- VBr Phase Diagrams

A: alternating boson-
fermion occupation

-> crystalline diagonal
long-range order

B: continuous boson and

o_l

10 20 30 40
Vig/J

40 fermion blocks

- component
separation

I=28
Ng = 8 . .
Ny = 4  MI: bosonic Mott insulator

-> fermions not
affected



Conclusions

= Superfluidity

e stiffness under phase twists; depends crucially on the excitation spectrum

s Condensate & Coherence
e property of the one-body density matrix of the ground state

e ground state quantities (interference pattern, fluctuations, etc.) cannot
give direct information on the superfluid fraction

= Two-Colour Superlattices

e rich phase diagram with several insulating phases: localised, quasi Bose-
glass, Mott-insulator

m Boson-Fermion Mixtures in Lattices

e novel class of lattice systems with largely unexplored phase diagram



Epilogue

= unique degree of experimental control makes ultracold
atomic gases in optical lattices...

e ideal model systems to study strong correlation effects (quantum
phase transitions) and other solid-state questions

e promising “hardware” for quantum information processing

s many fascinating questions still open...

e fermions and boson-fermion mixtures in lattices, spinor Bose gases

e long-range interactions, Cooper pairs, molecules, dynamics,...



Epilogue
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