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n Ultracold Atomic Gases

n The Lattice Experiment

n Bose-Hubbard Model

n Condensate & Superfluid

n Superfluid to Mott-Insulator Transition

n Two-Colour Superlattices

n Boson-Fermion Mixtures in Lattices
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BEC of Rubidium Atoms
Boulder / Colorado — June 5th, 1995 — 10:54 am

T > Tc

T . Tc

T � Tc

n
87Rb (F =2, mF =2)

n Ninitial ≈ 106

n NBEC ≈ 2000

n Tc ≈ 170nK

n absorption image after
60 ms expansion

n 0.2mm × 0.27mm

E. Cornell, C. Wieman, et al.
(JILA, NIST, U of Colorado)

Nobel Prize in Physics 2001
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BEC with Sodium Atoms
Cambridge / Massachusetts — September 1995

T > Tc

T . Tc

T � Tc

n
23Na (F = 1, mF =

−1)

n Ninitial ≈ 109

n NBEC ≈ 5 × 105

n Tc ≈ 2 µK

n absorption image af-
ter 60 ms expansion

n 1mm × 1mm

W. Ketterle, et al.
(MIT)

Nobel Prize in Physics 2001
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Dynamics of Dilute Quantum Gases
...over the Intervening Years

[W. Ketterle et al.; Science 292 (2001) 476]

n amazing experimental achievements

• condensates of 1H, 4He?, 7Li,
23Na, 41K, 85Rb, 87Rb, 133Cs, 174Yb

• vortices, vortex lattices and their
dynamics

• bright and dark solitons and soli-
ton trains

• collective excitations and collapse

• boson-fermion mixtures and ultra-
cold fermions

5



Dynamics of Dilute Quantum Gases
...over the Intervening Years

[R. Hulet et al.; Science 291 (2001) 2570]

7Li 6Li

810 nK

510 nK

240 nK

n amazing experimental achievements

• condensates of 1H, 4He?, 7Li,
23Na, 41K, 85Rb, 87Rb, 133Cs, 174Yb

• vortices, vortex lattices and their
dynamics

• bright and dark solitons and soli-
ton trains

• collective excitations and collapse

• boson-fermion mixtures and ultra-
cold fermions
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The Advent of Correlations
...Today

correlations beyond mean-field
begin to play a role

Feshbach
Resonances Optical Traps

n tuning of the scattering length
over several orders of magnitude

n strong interaction regime:
mean-field collapse, three-body
losses,...

n coherent molecule formation:
molecular condensates, ultracold
chemistry

n tightly confining traps with a multi-
tude of geometries

n quasi 1D and 2D traps: quan-
tum gases in low dimensions

n optical lattices in 1D, 2D and
3D: band structure, quantum
phase transitions, disorder, ...
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The Lattice Experiment
A Theoreticians’ View of

n produce a Bose-Einstein condensate of atoms in a magnetic trap

n load the condensate into an optical standing-wave lattice created
by counter-propagating laser beams

n in a 3D lattice one ends up with few atoms per lattice site
(favourable to study quantum phase transitions) in a 1D lattice one
can have thousands of atoms

n probe different physical regimes by varying lattice depth and inter-
action strength

n switch off the lattice, let the gas expand, and observe the matter-
wave interference pattern
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Interference Pattern
Munich Experiment

increasing lattice depth −→

[M. Greiner et al.; Nature 415 (2002) 39]

characteristic
interference pat-
tern of array of
coherent BECs

incoherent back-
ground emerges
and peaks van-
ish

superfluid to
Mott-insulator

transition
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Questions...

n How to describe ultracold bosons in a lattice?

n How to define superfluid and condensate?

n What is the superfluid to Mott-insulator transition?

n Are there other quantum-phases one can investigate?

n What happens if the lattice is irregular?

n What about fermions?
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Bose-Hubbard Model
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Bose-Hubbard Model

n one-dimensional lattice with N particles and I lattice sites at T = 0K

n restrict Hilbert space to the lowest energy band

n localised Wannier wavefunctions wi(x) with associated occupation num-
bers ni for the individual sites i = 1...I

n represent N -boson state in complete basis of Fock states
∣

∣{n1, ..., nI}α

〉

∣

∣Ψ
〉

=
D

∑

α=1

Cα

∣

∣{n1, ..., nI}α

〉

n basis dimension D grows dramatically with I and N

I 6 8 10 12
D 462 6435 92 378 1 352 078

for N/I = 1
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Bose-Hubbard Hamiltonian

n second quantised Hamiltonian with respect to Wannier basis [Fisher et al.
(1989); Jaksch et al. (1998)]

Ĥ0 = −J
I

∑

i=1

(â†
i+1âi + h.a.) +

I
∑

i=1

εi n̂i +
V

2

I
∑

i=1

n̂i(n̂i − 1)

tunnelling between
adjacent lattice sites

single-par-
ticle energy

on-site two-body
interaction

n assumptions: (a) only lowest band, (b) constant nearest-neighbour hopping,
(c) only short-range interactions

I Bose-Hubbard model is able to describe strongly correlated systems as
well as pure condensates

I exact solution: compute the lowest eigenstates of Ĥ0 using iterative Lanc-
zos algorithms
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Simple Physical Quantities
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n consider a regular lattice Ô εi = 0

n solve eigenproblem for various V/J

n mean occupation numbers

n̄i =
〈

Ψ0

∣

∣ n̂i

∣

∣Ψ0

〉

n number fluctuations

σi =

√

〈

Ψ0

∣

∣ n̂2
i

∣

∣Ψ0

〉

−
〈

Ψ0

∣

∣ n̂i

∣

∣Ψ0

〉2

n energy gap

Egap = E1st excited − E0
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Condensate &
Superfluidity
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Bose-Einstein Condensate
General Definition of the

n eigensystem of the one-body density matrix

ρ
(1)
ij =

〈

Ψ0

∣

∣ â†
j âi

∣

∣Ψ0

〉

defines natural orbitals and the corresponding occupation numbers

n Onsager-Penrose criterion: Bose-Einstein condensate is present if one of
the eigenvalues of ρ

(1)
ij is of order N (in the thermodynamic limit)

eigenvalue → N0 : number of condensed particles
eigenvector → φ0,i : condensate wave function

n existence of a condensate implies off-diagonal long range order

ρ
(1)
ij →/ 0 as |i − j| → ∞

n in a regular lattice the natural orbitals are quasimomentum eigenstates
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Condensate & Quasimomentum Distribution

0 5 10 15 20
V/J

0

0.2

0.4

0.6

0.8

1

.

f
0

=
N

0
/
N

N = I = 8
10
12

n pure condensate for V/J = 0

n rapid depletion of the condensate with
increasing V/J

n finite size effect: condensate fraction
in a finite lattice always ≥ 1/I
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What is Superfluidity?

n macroscopically the superfluid flow is non-dissipative and irrotational, i.e.,
it is described by the gradient of a scalar field

~vSF ∝ ~∇θ(~x)

n classical two-fluid picture: only normal component responds to an imposed
velocity field ~v (moving walls), the superfluid stays at rest

n energy in the comoving frame differs from ground state energy in the rest
frame by the kinetic energy of the superflow

E(imposed ~v, comoving frame) = E(at rest) + 1
2
MSF ~v2

I these two ideas are basis for the microscopic definition of superfluidity
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Definition of Superfluidity
Microscopic

n the velocity field of the superfluid is defined by the gradient of the phase of
the condensate wavefunction φ0(~x)

~vSF =
~

m
~∇θ(~x) φ0(~x) = eiθ(~x) |φ0(~x)|

n employ twisted boundary conditions to impose a linear phase variation

Ψ(~x1, ..., ~xi + L~e1, ..., ~xN) = eiΘ Ψ(~x1, ..., ~xi, ..., ~xN) ∀i

n the change in energy EΘ−E0 due to the phase twist is for small Θ identified
with the kinetic energy of the superflow

EΘ − E0 = 1
2
MSF v2

SF = 1
2
mNSF v2

SF

n superfluid fraction = stiffness with respect to phase variations

FSF =
NSF

N
=

2m L2

~2N

EΘ − E0

Θ2
Θ � π
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Superfluidity on the Lattice

I = L/a

J = ~
2/(2m?a2)

n express FSF in terms of the parameters of the Bose-Hubbard model

FSF =
m

m?
fSF fSF =

I2

JN

EΘ − E0

Θ2

I m

m? : reduction of flow by the lattice itself

I fSF : interaction-induced depletion relevant for quantum phase transitions

n solve eigenvalue problem with and without imposed phase twist and directly
compute EΘ − E0 and fSF

n closely related to helicity modulus [Fisher, Barber, Jasnow (1973)] and winding
number [Pollock, Ceperley (1987)]

n this is not the Landau picture of superfluidity Ô we do not consider the sta-
bility of the superflow (critical velocity)
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Superfluid Fraction
Mott-Insulator Transition

0 5 10 15 20
V/J

0

0.2

0.4

0.6

0.8

1

.

f
SF

N = I = 8
10
12

n superfluid fraction is the natural order
parameter for the superfluid-insulator
transition

n rapid decrease of fSF in a narrow win-
dow in V/J already for small systems
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ing phase
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Condensate -vs- Superfluid

Condensate

n largest eigenvalue of the one-
body density matrix

n involves only the ground state

n measure for off-diagonal long-
range order / coherence

Superfluid

n response of the system to an
external perturbation

n depends crucially on the excited
states of the system

n measures a flow property

6=

f0 < fSF

n non-condensed particles are
dragged along with condensate

n liquid 4He at T = 0K:

f0 ≈ 0.1, fSF = 1

f0 > fSF

n part of the condensate has a
reduced stiffness under phase
variations

n seems to occur in systems with
defects or disorder
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Superfluid to Mott-Insulator Transition
Summary
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Superfluid to Mott-Insulator Transition
Summary
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Two-Colour
Superlattices
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Two-Colour Superlattices

U1(x)

n start with a standing wave created by a
laser with wavelength λ1

U1+2(x)

n add a second standing wave created by
a laser with wavelength λ2 = 5

7
λ1 and

much smaller intensity (here 4%)

n potential exhibits a periodic modulation
of the well-depth with a period of 5 sites

εi

n Bose-Hubbard model: varying on-site
energies εi ∈ [0, −∆]

I controlled lattice irregularities open novel possibilities to study “disorder”
related effects; more complex topologies easily possible
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Interaction -vs- Lattice Irregularity
Two-Colour Superlattices
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V-∆ Phase Diagrams
Two-Colour Superlattices
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Boson-Fermion
Mixtures in Lattices
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Bose-Fermi-Hubbard Hamiltonian

n second quantised Hamiltonian containing boson (B) and fermion (F) opera-
tors [Albus et al. (2003)]

Ĥ0 = − JB

I
∑

i=1

(âB†
i+1â

B
i + h.a.) +

VBB

2

I
∑

i=1

n̂B
i (n̂

B
i − 1)

− JF

I
∑

i=1

(âF†
i+1â

F
i + h.a.) + VBF

I
∑

i=1

n̂B
i n̂F

i

n exact solution of eigenvalue problem in combined Fock-state representation

n in addition to ground state observables we employ two stiffnesses to charac-
terise the various phases

• bosonic phase stiffness Ô boson superfluid fraction

• fermionic phase stiffness Ô Drude weight, fermionic conductivity
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VBB-VBF Phase Diagrams
Boson-Fermion Mixtures
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VBB-VBF Phase Diagrams
Boson-Fermion Mixtures
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Conclusions

n Superfluidity
• stiffness under phase twists; depends crucially on the excitation spectrum

n Condensate & Coherence
• property of the one-body density matrix of the ground state

• ground state quantities (interference pattern, fluctuations, etc.) cannot
give direct information on the superfluid fraction

n Two-Colour Superlattices
• rich phase diagram with several insulating phases: localised, quasi Bose-

glass, Mott-insulator

n Boson-Fermion Mixtures in Lattices
• novel class of lattice systems with largely unexplored phase diagram
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Epilogue

n unique degree of experimental control makes ultracold
atomic gases in optical lattices...

• ideal model systems to study strong correlation effects (quantum
phase transitions) and other solid-state questions

• promising “hardware” for quantum information processing

n many fascinating questions still open...

• fermions and boson-fermion mixtures in lattices, spinor Bose gases

• long-range interactions, Cooper pairs, molecules, dynamics,...
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Epilogue
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