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Boulder / Colorado — June 5th, 1995 — 10:54 am

BEC of Rubidium Atoms

m 3"Rb

~ 6
B Ninitia =~ 10

| NBEC ~ 2000
m7. =~ 170nK

m absorption image after
60 ms expansion




Cambridge / Massachusetts — September 1995
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...over the Intervening Years

Dynamics of Dilute Quantum Gases

m amazing experimental achievements

e condensates of 'H, *He*, "1,
23Na 41K 85Rb 87Rb 133CS 174Yb

e vortices, vortex lattices and their
dynamics

e bright and dark solitons and soli-
ton trains

e collective excitations and collapse

e boson-fermion mixtures and ultra-
cold fermions

[W. Ketterle et al.; Science 292 (2001) 476]
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everything well described within
mean-field theory (Gross-Pitaevskii equation)



...JToday

The Advent of Correlations

correlations beyond
mean-field begin to play a role

Feshbach
Resonances

m tuning of the scattering length
over several orders of magnitude

m coherent molecule formation:
molecular condensates, ultracold
chemistry

m BEC-BCS crossover:
generalized Cooper pairing,
fermionic superfluidity

Optical Traps

m tightly confining traps with a multi-
tude of geometries

m quasi 1D and 2D traps: quantum
gases in low dimensions

m optical lattices in 1-3D: band
structure, quantum phase tran-
sitions, disorder, ...



A Theoreticians’ View of

The Lattice Experiment

m produce a Bose-Einstein condensate of atoms in a magnetic trap

m load the condensate into an optical standing-wave lattice created
by counter-propagating laser beams

m in a 3D lattice one ends up with few atoms per lattice site ina 1D
lattice one can have thousands of atoms

m probe different physical regimes by varying lattice depth and inter-
action strength

m switch off the lattice, let the gas expand, and observe the matter-
wave interference pattern
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m How to describe ultracold bosons in a lattice?

s How to define superfluid and condensate?

s What is the superfluid to Mott-insulator transition?

m Are there other quantum-phases one can investigate?
s What happens if the lattice is irregular?

s What about fermions?



Bose-Hubbard Model




Bose-Hubbard Model

m one-dimensional lattice with IN particles and I lattice sites at T' = 0K
m restrict Hilbert space to the lowest energy band

m localized Wannier wavefunctions w;(x) with associated occupation nhum-
bers n; for the individual sites z = 1...1

m represent N-boson state in complete basis of Fock states |{n,...,nr}a)

W)= 3 Calfr k)

m basis dimension D grows dramatically with I and N

I/ 6 8 10 12
D | 462 6435 92378 1352078

for N/T =1



Bose-Hubbard Hamiltonian

m second quantized Hamiltonian with respect to Wannier basis [Fisher et al.
(1989); Jaksch et al. (1998)]

I I I
\%4
H, = —J Z(az+1ai + h.a.) —+ Z € n; -+ o Z n;(n; — 1)
tunneling between ad- single-par- on-site two-body
jacent lattice sites ticle energy interaction

m assumptions: (a) only lowest band, (b) constant nearest-neighbor hopping,
(c) only short-range interactions

» describes strongly correlated systems as well as pure condensates

» exact solution: compute lowest eigenstates using Lanczos algorithms



Simple Physical Quantities

m consider a regular lattice = ¢; =0

m solve eigenproblem for various V/J

m mean occupation numbers
n; = <\Il0’ 1n; ’\Ijo>

m humber fluctuations

o, — \/<wa n? [@o) — (To|n; | W)

m ehergy gap

Egap = FEistexcited — Fo

10 15 20
V/)J



Condensate &
Superfluidity




Bose-Einstein Condensation

m eigensystem of the one-body density matrix
Py’ = (Lol afa; | To)

defines natural orbitals and the corresponding occupation numbers

m Onsager-Penrose criterion: Bose-Einstein condensate is present if one of
the eigenvalues of p,,(:gl-) Is of order IN (in the thermodynamic limit)

eigenvalue — Ny : number of condensed particles
eigenvector —  ¢o; : condensate wave function

m existence of a condensate implies off-diagonal long range order

piy) # 0 as |i—j|— oo

m in a regular lattice the natural orbitals are quasimomentum eigenstates



Condensate & Quasimomentum Distribution
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What is Supertluidity?

m macroscopically the superfluid flow is hon-dissipative and irrotational, i.e.,
it is described by the gradient of a scalar field

Tsr x VO(Z)

m classical two-fluid picture: only normal component responds to an im-
posed velocity field v (moving walls), the superfluid stays at rest

m energy in the comoving frame differs from ground state energy in the rest
frame by the kinetic energy of the superflow

E(imposed ¥, comoving frame) = E(at rest) + 5 Msp

» these two ideas are basis for the microscopic definition of superfluidity



Definition of Supertfluidity

m the velocity field of the superfluid is defined by the gradient of the phase of
the condensate wavefunction ¢ ()

h o o B
Usr = —VO(Z) bo(Z) = @ |y ()]

m employ twisted boundary conditions to impose a linear phase variation

V(L1 ., & + LE1y e, &) = €'© U(ZTq, oeey Tjyeuny TN) Vi

m the change in energy Ee — E, due to the phase twist is for small ® identified
with the kinetic energy of the superflow

_ 1 2 _ 1 2
Ee — Eq = 5 Mg vgp = 5mNsp v

m superfluid fraction = stiffness with respect to phase variations

NSF . 2mL2 E@ — EO
N N ©?2

FSFZ OL T




Superfluid Fraction

m solve eigenvalue problem with & with-
out imposed phase twist and directly
compute Eg — Ey and fsr

m fsr IS the natural order parameter for
il the superfluid-insulator transition

m rapid decrease of fsg in a narrow win-
T dow in V/J already for small systems

0 V1/0J 15 20 g coupling to excited states is crucial
for the vanishing of fsg in the insulat-
ing phase



Condensate -vs- Superfluid

Condensate Superfluid

m largest eigenvalue of the one- m response of the system to an
body density matrix external perturbation

m involves only the ground state m depends crucially on the excited

. states of the system
m measure for off-diagonal long- y

range order / coherence m measures a flow property
Jo < fsk Jo > fsr
m non-condensed particles are m part of the condensate has a
dragged along with condensate reduced stiffness under phase
variations

m liquid *He at T' = 0K:

fy 01, f 1 m seems to occur in systems with
0~ Y.l SF —

defects or disorder



Superfluid to Mott-Insulator Transition
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Superfluid to Mott-Insulator Transition
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Two-Color
Superlattices




Two-Color Superlattices

m start with a standing wave created by a
laser with wavelength A,

m add a second standing wave created by
‘ ‘ a laser with wavelength A, = 2A; and
3 -\ n much smaller intensity (here 4%)

m potential exhibits a periodic modulation
Ui y2(x) of the well-depth with a period of 5 sites

m Bose-Hubbard model: varying on-site
€; II II II energies €; € [0, —A]

» controlled lattice irregularities open novel possibilities to study “disorder”
related effects; more complex topologies easily possible
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V-A Phase Diagrams
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Boson-Fermion
Mixtures in Lattices




Bose-Fermi-Hubbard Hamiltonian

m second quantized Hamiltonian containing boson (B) and fermion (F) opera-
tors [Albus et al. (2003)]

I I
Vi
Hy = — Jp Z(a?jrla? + h.a.) + % Z n’(n} — 1)
1=1 1=1

I I
— Jr Z(afilaf; + h.a.) 4+ Vg Z nE’ nf
=1

=1
m exact solution of eigenvalue problem in combined Fock-state representation

m in addition to ground state observables we employ two stiffnesses to charac-
terize the various phases

e bosonic phase stiffness = boson superfluid fraction

e fermionic phase stiffness = Drude weight, fermionic conductivity



VBB-VBr Phase Diagrams

A: alternating boson-
fermion occupation

-> crystalline diagonal
long-range order

B: continuous boson and
fermion blocks

- component
separation




VBB-VBr Phase Diagrams

A: alternating boson-
fermion occupation

-> crystalline diagonal
long-range order

B: continuous boson and
fermion blocks

- component
separation

MI: bosonic Mott insulator

-> fermions not
affected
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= superfluidity

e stiffness under phase twists; depends crucially on the excitation
spectrum

s condensate & coherence

e property of the one-body density matrix of the ground state

s two-color superlattices

e rich phase diagram with several insulating phases: localized,
quasi Bose-glass, Mott-insulator

m boson-fermion mixtures in lattices

e novel class of lattice systems with largely unexplored phase
diagram



Epilogue

= Unique degree of experimental control makes ultracold
atomic gases in optical lattices...

e ideal model systems to study strong correlation effects (quantum
phase transitions) and other solid-state questions

e promising “hardware” for quantum information processing

= many fascinating questions still open...
e fermions in lattices, attractive interactions & Cooper pairing
e Bragg spectroscopy & dynamic structure factor

e simulation of time-dependent optical lattices



Epilogue
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