New Frontiers in Nuclear Structure Theory

From Realistic Interactions to the Nuclear Chart

Robert Roth

Institut für Kernphysik Technical University Darmstadt

Overview

- Motivation
- Nucleon-Nucleon Interactions
- Solving the Many-Body Problem
- Correlations & Unitary Correlation Operator Method
- Applications

Nuclear Structure in the 21st Century

new frontiers in nuclear structure physics

Experiment

- fundamental astrophysical questions need nuclear input
- possibilities to investigate nuclei far off stability
- new nuclear structure facilities: RIA, FAIR@GSI,...

Theory

- improved understanding of fundamental degrees of freedom / QCD
- high-precision realistic nucleonnucleon potentials
- ab initio treatment of the manybody problem

Astrophysical Challenges

Theoretical Context

Quantum Chromo Dynamics

Nuclear Structure

finite nuclei

- few-nucleon systems
- nucleon-nucleon interaction

hadron structure

- quarks & gluons
- deconfinement

Theoretical Context

Quantum Chromo Dynamics

Nuclear Structure

"solve" the quantum many-body problem with this interaction

"derive" a realistic nucleon-nucleon interaction from QCD

Realistic Nucleon-Nucleon Potentials

Nature of the NN-Interaction

 $\rho_0^{-1/3} = 1.8 \text{fm}$

- NN-interaction is not fundamental
- induced via mutual polarization of quark & gluon distributions
- analogous to van der Waals interaction between neutral atoms
- short-ranged: acts only if the nucleons overlap
- genuine NNN-interaction is important

How to Construct the NN-Potential?

QCD input

- symmetries
- meson-exchange picture
- chiral perturbation theory

short-range phenomenology

• ansatz for short-range behavior

experimental two-body data

- scattering phase-shifts & deuteron properties
- reproduced with $\chi^2/{
 m datum} pprox 1$

Argonne V18 Potential

Nuclear Many-Body Problem

solve the quantum many-body problem for A nucleons interacting via a realistic NN-potential

- exact numerical solution possible for small systems at an enormous computational cost
- Green's Function Monte Carlo: Monte Carlo sampling of the Abody wave function in coordinate space; imaginary time cooling
- No-Core Shell Model: large-scale diagonalization of the Hamiltonian in a harmonic oscillator basis

Green's Function Monte Carlo

nuclear structure calculations across the whole nuclear chart based on realistic NN-potentials

bound to **simple Hilbert spaces** for large particle numbers

need to deal with strong interactioninduced correlations

Correlations in Nuclei

What are Correlations?

the quantum state of A independent (non-interacting) fermions is a Slater determinant

$$\left|\psi
ight
angle=\mathcal{A}(\left|\phi_{1}
ight
angle\otimes\left|\phi_{2}
ight
angle\otimes\cdots\otimes\left|\phi_{A}
ight
angle)$$

Slater determinants cannot describe correlations by definition

Deuteron: Manifestation of Correlations

$$M_S=0 \ rac{1}{\sqrt{2}}(\left|\uparrow\downarrow
ight
angle+\left|\downarrow\uparrow
ight
angle)$$

- spin-projected two-body density
 ρ⁽²⁾_{1,Ms}(r)
- uncorrelated two-body state

Deuteron: Manifestation of Correlations

 $M_S=0 \ rac{1}{\sqrt{2}}(\left|\uparrow\downarrow
ight
angle+\left|\downarrow\uparrow
ight
angle)$

■ spin-projected two-body density $\rho_{1,M_S}^{(2)}(\vec{r})$

exact deuteron solution for Argonne V18 potential

two-body density fully suppressed at small particle distances $|\vec{r}|$ **central correlations** angular distribution depends strongly on relative spin orientation **tensor correlations**

Central Correlations

- strong repulsive core in central part of realistic interactions
- suppression of the probability density for finding two nucleons within the core region → central correlations

can be described by "shifting" the nucleons out of the core region

Tensor Correlations

analogy with dipole-dipole interaction

$$V_{ ext{tensor}} \sim - \Bigl(3 \, rac{(ec{\sigma}_1 ec{r})(ec{\sigma}_2 ec{r})}{r^2} - ec{\sigma}_1 ec{\sigma}_2 \Bigr)$$

 ■ couples the relative spatial orientation of two nucleons with their spin orientation → tensor correlations

> can be described by "rotating" nucleons towards pole or equator depending on spin

Unitary Correlation Operator Method (UCOM)

Unitary Correlation Operator Method

Correlation Operator

introduce correlations by means of an unitary transformation with respect to the relative coordinates of all pairs

$$\begin{split} \mathbf{C} &= \exp[-\mathrm{i}\,\mathrm{G}] = \exp\Big[-\mathrm{i}\sum_{i < j} \mathrm{g}_{ij}\Big] \\ &= \mathrm{g}(\vec{\mathrm{r}},\vec{\mathrm{q}};\vec{\sigma}_1,\vec{\sigma}_2,\vec{\tau}_1,\vec{\tau}_2) \end{split}$$

 $\mathbf{G}^{\dagger} = \mathbf{G}$ $\mathbf{C}^{\dagger}\mathbf{C} = 1$

Correlated States $\left| \widehat{\psi}
ight
angle = \mathbf{C} \; \left| \psi
ight
angle$

Correlated Operators $\widehat{\mathbf{O}} = \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C}$

$$ig\langle \widehat{\psi} ig| \, \mathrm{O} ig| \widehat{\psi'} ig
angle = ig\langle \psi ig| \, \mathbf{C^\dagger} \, \, \mathrm{O} \, \, \mathbf{C} ig| \psi' ig
angle = ig\langle \psi ig| \, \widehat{\mathrm{O}} ig| \psi' ig
angle$$

Central and Tensor Correlators

 $\mathrm{C}=\mathrm{C}_{\Omega}\mathrm{C}_{r}$

Central Correlator C_r

 radial distance-dependent shift in the relative coordinate of a nucleon pair

$$egin{aligned} \mathbf{g}_r &= rac{1}{2} ig[s(\mathbf{r}) \; \mathbf{q}_r + \mathbf{q}_r \; s(\mathbf{r}) ig] \ \mathbf{q}_r &= rac{1}{2} ig[rac{ec{\mathbf{r}}}{\mathbf{r}} \cdot ec{\mathbf{q}} + ec{\mathbf{q}} \cdot rac{ec{\mathbf{r}}}{\mathbf{r}} ig] \end{aligned}$$

Tensor Correlator C_{Ω}

 angular shift depending on the orientation of spin and relative coordinate of a nucleon pair

$$egin{aligned} &\mathbf{g}_\Omega = rac{3}{2} artheta(\mathbf{r}) ig[(ec{\sigma}_1 \cdot ec{\mathbf{q}}_\Omega) (ec{\sigma}_2 \cdot ec{\mathbf{r}}) + (ec{\mathbf{r}} \leftrightarrow ec{\mathbf{q}}_\Omega) ig] \ & ec{\mathbf{q}}_\Omega = ec{\mathbf{q}} - rac{ec{\mathbf{r}}}{\mathbf{r}} \, \mathbf{q}_r \end{aligned}$$

s(r) and $\vartheta(r)$ encapsulate the physics of short-range correlations

Correlated States

Simplistic "Shell-Model" Calculation

- expectation values for harmonic osc.
 Slater determinant
- nuclei unbound without inclusion of correlations
- central and tensor correlations essential to obtain bound system

Application I: Hartree-Fock Calculations

UCOM-Hartree-Fock Approach

Standard Hartree-Fock + Matrix Elements of Correlated Realistic NN-Interaction V_{UCOM}

- many-body state is a Slater determinant of single-particle states obtained by energy minimization
- correlations cannot be described by Hartree-Fock states
- bare realistic NN-potential leads to unbound nuclei

Correlated Argonne V18

long-range correlations

Ab Initio Strategy

- improve many-body states such that long-range correlations are included
- many-body perturbation theory (MPT), configuration interaction (CI), coupled-cluster (CC),...

Long-Range Correlations

many-body perturbation theory: second-order energy shift gives estimate for influence of long-range correlations

$$\Delta E^{(2)} = -rac{1}{4}\sum_{i,j}^{ ext{occu. unoccu.}} rac{|ig\langle \phi_a \phi_b ig| \operatorname{V}_{ ext{UCOM}} ig| \phi_i \phi_j ig
angle|^2}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}$$

Correlated Argonne V18 + Correction

Charge Distributions

Application II Fermionic Molecular Dynamics (FMD)

UCOM-FMD Approach

Gaussian Single-Particle States

$$egin{aligned} q &> = \sum_{
u=1}^n c_{
u} \; \left| a_{
u}, ec{b}_{
u}
ight
angle \otimes \; \left| \chi_{
u}
ight
angle \otimes \; \left| m_t
ight
angle \ &\langle ec{x} | a_{
u}, ec{b}_{
u}
ight
angle = \exp igg[- rac{(ec{x} - ec{b}_{
u})^2}{2 \; a} igg] \end{aligned}$$

 $a_
u$: complex width $\chi_
u$: spin orientation $ec{b}_
u$: mean position & momentum

Slater Determinant

$$oldsymbol{Q}ig
angle = oldsymbol{\mathcal{A}} \left(ig| oldsymbol{q_1}ig
angle \,\otimes\, ig| oldsymbol{q_2}ig
angle \,\otimes\, \cdots\,\otimes\, ig| oldsymbol{q_A}ig
angle
ight)$$

Correlated Hamiltonian

$$\widehat{\mathbf{H}} = \mathbf{T} + \mathbf{V}_{\mathrm{UCOM}} \left[+ \delta \mathbf{V}_{c+p+ls} \right]$$

 $\frac{\langle \boldsymbol{Q} | \, \widehat{\boldsymbol{\mathrm{H}}} - \boldsymbol{\mathrm{T}}_{\mathsf{cm}} \, | \boldsymbol{Q} \rangle}{\langle \boldsymbol{Q} | \boldsymbol{Q} \rangle} \to \min$

Diagonalization

in sub-space spanned by several non-orthogonal Slater determinants $\left| Q_{i} \right\rangle$

Variation: Chart of Nuclei

Intrinsic One-Body Density Distributions

 $ho^{(1)}(ec{x})~[
ho_0]$

1.00

0.75

0.50

0.25

1.00

0.75

0.50

0.25

Beyond Simple Variation

Projection after Variation (PAV)

• restore inversion and rotational symmetry by angular momentum projection

Variation after Projection (VAP)

- find energy minimum within parameter space of parity and angular momentum projected states
- implementation via generator coordinate method (constraints on multipole moments)

Multi-Configuration

• diagonalization within a set of different Slater determinants

Helium Isotopes: Energies & Radii

Helium Isotopes: Density Profiles

Structure of ¹²C

	$E \;[\mathrm{MeV}]$	$R_{ch} \; [{ m fm}]$	$B(E2) \ [e^2 \ \mathrm{fm}^4]$
V/PAV	81.4	2.36	-
VAP α -cluster	79.1	2.70	76.9
PAV^{π}	88.5	2.51	36.3
VAP	89.2	2.42	26.8
Multi-Config	92.2	2.52	42.8
Experiment	92.2	2.47	39.7 ± 3.3

Structure of ¹²C — Hoyle State

	Multi-Config	Experiment
<i>E</i> [MeV]	92.4	92.2
$R_{\rm ch}$ [fm]	2.52	2.47
$B(E2, 0^+_1 o 2^+_1) \ [e^2 { m fm}^4]$	42.9	39.7 ± 3.3
$M(E0,0^+_1 ightarrow 0^+_2) \; [\mathrm{fm}^2]$	5.67	5.5 ± 0.2

 $\langle |0_2^+\rangle|=0.50$

Conclusions

- exciting times for nuclear structure physics!
- realistic NN-potentials & ab initio calculations
- systematic schemes to derive effective (correlated / low-momentum) interactions
- innovative ways to treat the many-body problem

unified description of nuclear structure across the whole nuclear chart is within reach

thanks to my group & my collaborators

- A. Ehrlich, H. Hergert, N. Paar, P. Papakonstantinou, Technical University Darmstadt
- H. Feldmeier, T. Neff Gesellschaft für Schwerionenforschung (GSI)

supported by DFG through SFB 634 "Nuclear Structure and Nuclear Astrophysics..."