
Time Evolution of Bosonic Gases in 1D
Two-Colour Superlattices

Markus Hild Felix Schmitt Robert Roth

Institut für Kernphysik • Technische Universität Darmstadt

13.03.2006 / DPG Frühjahrstagung



Overview

Introduction
Framework : Bose-Hubbard Model
Two-Colour Superlattice
Zero-Temperature Phase Diagramm

Approach
Eigenproblem / Time Evolution
Adaptive Basis Truncation
Excitation by Temporal Modulation

Results

Summary



Motivation

bosonic gases in optical
lattices are well suited for
studying quantum phase
transitions

all relevant parameters can
be tuned

effect of an irregular lattice
potential ?

dynamical signatures as a
probe for quantum phases ?

2D-Random Lattice Potential

J.E. Lye et al., PRL 95,070401 (2005)



Framework

Bose-Hubbard Hamiltonian

H = −J
I∑

i=1

(
a†i ai+1 + a†i+1ai

)
︸ ︷︷ ︸

Hopping

+
I∑

i=1

εi ni︸ ︷︷ ︸
Ext. Potential

+
U
2

I∑
i=1

ni (ni − 1)︸ ︷︷ ︸
Interaction

tunneling strength J interaction strength U on-site potential εi

Basis Representation

|Ψ〉 =
D∑
α

cα|{n1n2 . . . nI}α〉

states are defined by
coefficients cα

coefficients c(0)
α of the

groundstate are obtained
by diagonalisation of the
Hamilton matrix



Two-Colour Superlattice

A Sinusoidal Modulated Lattice...
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superposition of two standing waves

detuning of the wavelengths leads to
a sinusoidal modulation of the optical
lattice

Bose-Hubbard model:
corresponding on-site energies εi

with modulation amplitude ∆

...Forms a Chain of Supercells
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Zero-Temperature Phase Diagram
10 Bosons / 10 Lattice Sites

(Quasi-) Bose Glass

rearrangements driven by the
competition between interaction
strength U and spatial modulation
amplitude ∆

Superfluid Phase

in the region of weak interaction
strengths / ext. potential all
number states contribute to the
groundstate

Homogenous Mott Insulator

the interaction strength exceeds
the modulation amplitude (U > ∆)
=⇒ groundstate is dominated by a
single number state



Adaptive Basis Truncation

Problem
ä solving eigenproblem / time evolution

basis dimension increases rapidly with number of atoms & lattice sites

Basis Truncation
few number states contribute to low-lying eigenstates

diagonal elements of Hamiltonian provide estimate for importance of basis states

relevant number states |{n1 n2 · · · nI}α〉 satisfy the inequality

Etrunc ≥
IX

i=1

εi ni +
U
2

IX
i=1

ni (ni − 1)

with the cut-off energy Etrunc

ä precise description in the vicinity of the Mott insulating phase

ä poster Q30.2 : Tuesday, 16:30-18:30



Temporal Lattice Modulation

Probing the excitation spectrum...

... by lattice oscillation with amplitude F and frequency ω:

Vlattice(x , t) = V0,lattice(x)
(
1+F sin (ωt)

)

Time-Dependent Bose-Hubbard Parameters

tunneling strength J(t) ≈ J0 exp (−F sin (ωt))

interaction strength U(t) ≈ U0 (1+F sin (ωt))
1/4

on-site energy εi(t) ≈ εi,0 (1+F sin (ωt))



Roadmap

1) Superfluid Phase
2) Mott Insulator
3) Homogenous Mott

Phase
4, 5) Bose Glass Phase



(1) Superfluid Phase

Setup
N = 6 bosons, I = 6 sites

interaction strength U0
J0

= 2

lattice modulation amplitude ∆
J0

= 0

Characterisics
very weak excitation

slow response
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(2) Strongly Interacting Regime

Setup
N = 10 bosons, I = 10 sites

interaction strength U0
J0

= 30

lattice modulation amplitude ∆
J0

= 0

Characteristics
immediate response

strong resonance at ω ≈ U0
=⇒ particle-hole excitations of the
groundstate
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(3) Homogenous Mott Insulator & Superlattice

Setup
N = 10 bosons, I = 10 sites

interaction strength U0
J0

= 30

lattice modulation amplitude ∆
J0

= 20

Characteristics
resonance at frequency ω ≈ U0
=⇒ particle-hole excitations of the
groundstate

broadening due to differences in the
on-site energies
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(4) Quasi-Bose Glass Phase

Setup
N = 10 bosons, I = 10 sites

interaction strength U0
J0

= 30

lattice modulation amplitude ∆
J0

= 35

Characteristics
rich resonance structure /
resonances at low energies appear

peaks agree with particle-hole
excitations of the most propable
number state
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(5) Quasi-Bose Glass Phase

Setup
N = 10 bosons, I = 10 sites

interaction strength U0
J0

= 30

lattice modulation amplitude ∆
J0

= 50

Characteristics
resonances are "pushed" towards
lower energies

peaks agree with particle-hole
excitations of the most propable
number state
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Summary

strong resonance in the Mott insulator phase

broadened by spatial lattice modulation

larger modulation amplitude "pushes" the resonances
towards lower energies

Ü dynamical signatures seem to be a promising tool to probe
quantum phases


