New Frontiers in Nuclear Structure Theory

From Realistic Interactions to the Nuclear Chart

Robert Roth
Institut für Kernphysik
Technische Universität Darmstadt
Overview

■ Motivation
 ● Nucleon-Nucleon Interactions
 ● Solving the Many-Body Problem

■ Correlations & Unitary Correlation Operator Method

■ Applications
 ● No Core Shell Model
 ● Hartree-Fock and beyond
 ● Fermionic Molecular Dynamics
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ fundamental astrophysical questions need nuclear input</td>
<td>■ improved understanding of fundamental degrees of freedom / QCD</td>
</tr>
<tr>
<td>■ possibilities to investigate nuclei far off stability</td>
<td>■ high-precision realistic nucleon-nucleon potentials</td>
</tr>
<tr>
<td>■ new nuclear structure facilities: FAIR@GSI, RIA,...</td>
<td>■ ab initio treatment of the many-body problem</td>
</tr>
</tbody>
</table>
Theoretical Context

- finite nuclei
- few-nucleon systems
- nucleon-nucleon interaction
- hadron structure
- quarks & gluons
- deconfinement
Theoretical Context

Quantum Chromo Dynamics

Towards better resolution / more fundamental

Nuclear Structure

“solve” the interacting nuclear many-body problem

“construct” realistic nucleon-nucleon interaction from QCD
Realistic Nucleon-Nucleon Potentials
How to Construct the NN-Potential?

- **QCD input**
 - symmetries
 - meson-exchange picture
 - chiral effective field theory

- **short-range phenomenology**
 - ansatz for short-range behaviour

- **experimental two-body data**
 - scattering phase-shifts & deuteron properties
 - reproduced with $\chi^2/\text{datum} \approx 1$
Argonne V18 Potential

\[v(r) \]

\[v(r) \vec{L}^2 \]

\[v(r) S_{12} \]

\[v(r) (\vec{L} \cdot \vec{S}) \]

\[v(r) (\vec{L} \cdot \vec{S})^2 \]

\[(S, T)\]

- \((1, 0)\)
- \((1, 1)\)
- \((0, 0)\)
- \((0, 1)\)
Nuclear Many-Body Problem
Ab initio Calculations

solve the quantum many-body problem for \(A \) nucleons interacting via a realistic NN-potential

- exact numerical solution possible for small systems at an enormous computational cost

- **Green’s Function Monte Carlo**: Monte Carlo sampling of the \(A \)-body wave function in coordinate space; imaginary time cooling

- **No-Core Shell Model**: large-scale diagonalisation of the Hamiltonian in a harmonic oscillator basis
Green’s Function Monte Carlo

Argonne v18
With Illinois-2
GFMC Calculations
22 June 2004

[560x147]12C results are preliminary.

[S. Pieper, private comm.]
Our Goal

nuclear structure calculations across the **whole nuclear chart** based on **realistic NN-potentials** and as close as possible to an **ab initio** treatment

bound to **simple Hilbert spaces** for large particle numbers

need to deal with strong **interaction-induced correlations**
Deuteron: Manifestation of Correlations

\[
MS = 0 \quad \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)
\]

\[
MS = \pm 1 \quad |\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle
\]

- **Spin-projected two-body density** \(\rho^{(2)}_{1,MS}(\vec{r}) \)
- **Exact deuteron solution** for Argonne V18 potential

- **Central correlations**: Two-body density fully suppressed at small particle distances \(|\vec{r}|\)
- **Tensor correlations**: Angular distribution depends strongly on relative spin orientation

Diagram: Two 3D representations showing the difference in central and tensor correlations for the deuteron.
Unitary Correlation Operator Method (UCOM)
Unitary Correlation Operator Method

Correlation Operator

Introduce correlations by means of an unitary transformation with respect to the relative coordinates of all pairs

\[C = \exp[-iG] = \exp[-i \sum_{i<j} g_{ij}] \]

\[g = g(\vec{r}, \vec{q}; \vec{\sigma}_1, \vec{\sigma}_2, \vec{\tau}_1, \vec{\tau}_2) \]

\[G^\dagger = G \]

\[C^\dagger C = 1 \]

Correlated States

\[|\tilde{\psi}\rangle = C |\psi\rangle \]

Correlated Operators

\[\tilde{O} = C^\dagger O C \]

\[\langle \tilde{\psi} | O | \tilde{\psi}' \rangle = \langle \psi | C^\dagger O C | \psi' \rangle = \langle \psi | \tilde{O} | \psi' \rangle \]
Central and Tensor Correlators

\[C = C_\Omega C_r \]

<table>
<thead>
<tr>
<th>Central Correlator (C_r)</th>
<th>Tensor Correlator (C_\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- radial distance-dependent shift in the relative coordinate of a nucleon pair</td>
<td>- angular shift depending on the orientation of spin and relative coordinate of a nucleon pair</td>
</tr>
</tbody>
</table>

\[
g_r = \frac{1}{2} \left[s(r) q_r + q_r s(r) \right]
\]

\[
q_r = \frac{1}{2} \left[\vec{r} \cdot \vec{q} + \vec{q} \cdot \vec{r} \right]
\]

\[
g_\Omega = \frac{3}{2} \vartheta(r) \left[(\vec{\sigma}_1 \cdot \vec{d}_\Omega) (\vec{\sigma}_2 \cdot \vec{r}) + (\vec{r} \leftrightarrow \vec{d}_\Omega) \right]
\]

\[
\vec{d}_\Omega = \vec{q} - \frac{\vec{r}}{r} q_r
\]

\(s(r) \) and \(\vartheta(r) \) encapsulate the physics of short-range correlations
Optimal Correlation Functions

- $s(r)$ and $\vartheta(r)$ determined by two-body **energy minimisation**
- constraint on range of the tensor correlators $\vartheta(r)$ to isolate state independent **short-range correlations**

![Graphs of $s(r)$ and $\vartheta(r)$ for different (S, T) values](image-url)
Correlated States

\[\rho_{1,S_M}(\vec{r}) \]

\[\langle r | C_r | \phi \rangle \]

\[\langle r | C_\Omega C_r | \phi \rangle \]

\[\langle r \phi \rangle \]

\[\langle r | \phi \rangle \]

\[= L = 0 \]

\[= L = 2 \]

\[r \ [\text{fm}] \]

\[0 \ 0.05 \ 0.1 \ 0.15 \]

\[0 \ 0.05 \ 0.1 \ 0.15 \]

\[0 \ 0.05 \ 0.1 \ 0.15 \]

\[0 \ 0.05 \ 0.1 \ 0.15 \]

\[0 \ 0.05 \ 0.1 \ 0.15 \]

\[0 \ 0.05 \ 0.1 \ 0.15 \]

\[s(r) \]

\[\vartheta(r) \]

\[r \ [\text{fm}] \]

\[0 \ 0.02 \ 0.04 \ 0.06 \]

\[0.02 \ 0.04 \ 0.06 \ 0.08 \]

\[r \ [\text{fm}] \]

\[0 \ 1 \ 2 \ 3 \ 4 \]

\[0 \ 0.05 \ 0.1 \ 0.15 \ 0.2 \]

\[0 \ 0.05 \ 0.1 \ 0.15 \ 0.2 \]

central correlations

tensor correlations
Correlated NN-Potential — V_{UCOM}

\[
\tilde{H} = T + V_{UCOM} + V^{[3]}_{UCOM} + \cdots
\]

- **Closed operator expression** for the correlated interaction V_{UCOM} in two-body approximation
- Correlated interaction and original NN-potential are **phase shift equivalent** by construction
- Unitary transformation results in a **pre-diagonalisation** of Hamiltonian
- Momentum-space matrix elements of correlated interaction are **similar to** $V_{\text{low-}k}$
Simplistic “Shell-Model” Calculation

- expectation value of Hamiltonian (with AV18) for Slater determinant of harmonic oscillator states

![Graph of energy per nucleon (E/A) for various nuclei (4He, 16O, 48Ca, 90Zr, 132Sn, 208Pb) showing energy levels.]

Central & tensor correlations essential to obtain bound nuclei.
Application I

No-Core Shell Model
No-Core Shell Model +
Matrix Elements of Correlated
Realistic NN-Interaction V_{UCOM}

- many-body state is expanded in Slater determinants of harmonic oscillator single-particle states
- large scale diagonalisation of Hamiltonian within a truncated model space ($N\hbar\omega$ truncation)
- assessment of short- and long-range correlations
- NCSM code by Petr Navrátil [PRC 61, 044001 (2000)]
$^4\text{He}: \text{Convergence}$

V_{bare}

V_{UCOM}

$E [\text{MeV}]$ vs $\hbar \omega [\text{MeV}]$ for different N_{max} values:

- E_{AV18} (horizontal line)
- Residual state-dependent long-range correlations indicated

Graphs show energy levels for different Hamiltonians, with N_{max} varying from 0 to 4.
\[\begin{align*}
\rho(\omega) &= \frac{4}{\pi} \frac{\omega}{(\omega^2 + \omega_0^2)^2} \\
\rho_{V_{\text{bare}}} &= \rho_{V_{\text{UCOM}}} \\
N_{\text{max}} &= 0, 2, 4 \\
E_{\text{AV18}} &= \begin{cases}
-20 & \text{for } N_{\text{max}} = 0 \\
-30 & \text{for } N_{\text{max}} = 2, 4
\end{cases} \\
E &= \begin{cases}
\begin{array}{c}
0 \\
20 \\
40 \\
60 \\
\end{array}
\text{for } N_{\text{max}} = 0 \\
\begin{array}{c}
-20 \\
-30 \\
-40 \\
-50 \\
\end{array}
\text{for } N_{\text{max}} = 2, 4
\end{cases} \\
E_{\text{UCOM}} &= \begin{array}{c}
0 \\
20 \\
40 \\
60 \\
\end{array}
\text{for } N_{\text{max}} = 0 \\
\begin{array}{c}
-20 \\
-30 \\
-40 \\
-50 \\
\end{array}
\text{for } N_{\text{max}} = 2, 4
\end{align*} \]
Tjon-Line and Correlator Range

\[E(3H) \text{ vs. } E(4He) \]

for phase-shift equivalent NN-interactions

- AV18
- Nijm II
- Nijm I
- CD Bonn

Exp.

Tjon-line: \(E(4\text{He}) \) vs. \(E(3\text{H}) \)
Tjon-Line and Correlator Range

- **Tjon-line**: $E(\text{He}^4)$ vs. $E(\text{He}^3)$ for phase-shift equivalent NN-interactions
- Change in C_Ω-correlator range results in shift along Tjon-line

Choose correlator with energies close to experimental value, i.e., **minimise net three-body force**

This V_{UCOM} is used in the following.
Tjon-Line and Correlator Range

- **Tjon-line**: $E^{(4\text{He})}$ vs. $E^{(3\text{H})}$ for phase-shift equivalent NN-interactions

- change in C_Ω-correlator range results in shift along Tjon-line

choose correlator with energies close to experimental value, i.e.,
minimise net three-body force
^6Li: NCSM for p-Shell Nuclei

Systematic NCSM study throughout p-shell in progress

Calculations by Petr Navratil
Application II:

Hartree-Fock Calculations
many-body state is a **Slater determinant** of single-particle states expanded in oscillator basis

correlations cannot be described by Hartree-Fock states

bare realistic NN-potential leads to **unbound nuclei**
Hartree-Fock with Correlated AV18

\[E/A \text{ [MeV]} \]

\[R_{ch} \text{ [fm]} \]

- \(^{4}\text{He} \)
- \(^{16}\text{O} \)
- \(^{34}\text{Si} \)
- \(^{40}\text{Ca} \)
- \(^{48}\text{Ni} \)
- \(^{56}\text{Ni} \)
- \(^{68}\text{Ni} \)
- \(^{78}\text{Ni} \)
- \(^{88}\text{Sr} \)
- \(^{90}\text{Zr} \)
- \(^{100}\text{Sn} \)
- \(^{114}\text{Sn} \)
- \(^{132}\text{Sn} \)
- \(^{146}\text{Gd} \)
- \(^{208}\text{Pb} \)

- experiment
- \(V_{\text{UCOM}} \)
Beyond Hartree-Fock

- improve many-body states such that long-range correlations are included
- many-body perturbation theory (MBPT), configuration interaction (CI), coupled-cluster (CC),...
Long-Range Correlations: MBPT

- **many-body perturbation theory**: second-order energy shift gives estimate for influence of long-range correlations

\[
\Delta E^{(2)} = -\frac{1}{4} \sum_{i,j}^{\text{occu.}} \sum_{a,b}^{\text{unoccu.}} |\langle \phi_a \phi_b | T_{\text{int}} + V_{\text{UCOM}} | \phi_i \phi_j \rangle|^2 \frac{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}
\]

![Plot showing energy levels for various isotopes.](image-url)
Long-Range Correlations: MBPT

E/A [MeV]

A_O

A_Ni

A_Sn

HF
HF+PT2
experiment
Missing Pieces

Beyond Hartree-Fock
- residual long-range correlations are **perturbative**
- mostly long-range **tensor correlations**
- easily tractable within MBPT, SM/CI, CC, ...

Residual Three-Body Force
- small effect on binding energies for all masses
- cancellation does not work for all observables
- simple effective three-body force feasible
Outlook: UCOM + RPA

\[R(\text{fm}^4/\text{MeV}) \]

\[E(\text{MeV}) \]

\[^{16}\text{O} \]

\[^{40}\text{Ca} \]

\[^{48}\text{Ca} \]

\[^{90}\text{Zr} \]

\[^{132}\text{Sn} \]

\[^{208}\text{Pb} \]

Drozdz et al.

EXP.
Application III

Fermionic Molecular Dynamics (FMD)
UCOM-FMD Approach

Gaussian Single-Particle States

\[|q\rangle = \sum_{\nu=1}^{n} c_\nu |a_\nu, \vec{b}_\nu\rangle \otimes |\chi_\nu\rangle \otimes |m_t\rangle \]

\[\langle \vec{x}|a_\nu, \vec{b}_\nu\rangle = \exp \left[-\frac{1}{2} \frac{(\vec{x} - \vec{b}_\nu)^2}{a_\nu} \right] \]

\(a_\nu \): complex width
\(\chi_\nu \): spin orientation
\(\vec{b}_\nu \): mean position & momentum

Slater Determinant

\[|Q\rangle = \mathcal{A} (|q_1\rangle \otimes |q_2\rangle \otimes \cdots \otimes |q_A\rangle) \]

Correlated Hamiltonian

\[\tilde{H} = T + V_{UCOM} + \delta V_{c+p+ls} \]
Variation: Chart of Nuclei

Chemical Elements

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
</tr>
<tr>
<td>3</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
</tr>
<tr>
<td>4</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
</tr>
<tr>
<td>5</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td>6</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
</tr>
<tr>
<td>7</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
</tr>
<tr>
<td>9</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
</tr>
<tr>
<td>10</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
</tr>
<tr>
<td>11</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
</tr>
<tr>
<td>12</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>13</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
</tr>
<tr>
<td>14</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
<td>Rb</td>
</tr>
<tr>
<td>15</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
<td>Rb</td>
<td>Cs</td>
</tr>
<tr>
<td>16</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
<td>Rb</td>
<td>Cs</td>
<td>Ba</td>
</tr>
<tr>
<td>17</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
<td>Rb</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
</tr>
<tr>
<td>18</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
<td>Rb</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Ra</td>
</tr>
<tr>
<td>19</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
<td>Rb</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Ra</td>
<td>Ac</td>
</tr>
<tr>
<td>20</td>
<td>Br</td>
<td>Kr</td>
<td>Xe</td>
<td>Rb</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Ra</td>
<td>Ac</td>
<td>Cm</td>
</tr>
</tbody>
</table>

Energy Deviation

The chart shows the energy deviation from the experimental values for each isotope. The color scale ranges from -0.5 (blue) to 1.5 (red), indicating the deviation from the expected value. The deviation is normalized by the atomic mass (A) of the isotope.

- **Single Gaussian per nucleon**
- **Two Gaussians per nucleon**

The deviation is given by:

\[
\frac{(E - E_{\text{exp}})}{A} \quad \text{[MeV]}
\]
Intrinsic One-Body Density Distributions

\[\rho(\vec{x}) = \rho_0 \]

\[^4\text{He} \]
\[^{16}\text{O} \]
\[^{40}\text{Ca} \]
\[^9\text{Be} \]

capable of describing spherical shell-model as well as intrinsically deformed and \(\alpha \)-cluster states
Beyond Simple Variation

- **Projection after Variation (PAV)**
 - restore inversion and rotational symmetry by angular momentum projection

- **Variation after Projection (VAP)**
 - find energy minimum within parameter space of parity and angular momentum projected states
 - implementation via generator coordinate method (constraints on multipole moments)

- **Multi-Configuration**
 - diagonalisation within a set of different Slater determinants
Intrinsic Shapes of ^{12}C

<table>
<thead>
<tr>
<th></th>
<th>intrinsic</th>
<th>projected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle H \rangle$</td>
<td>-81.4</td>
<td>-81.5</td>
</tr>
<tr>
<td>$\langle T \rangle$</td>
<td>212.1</td>
<td>212.1</td>
</tr>
<tr>
<td>$\langle V_{ls} \rangle$</td>
<td>-39.8</td>
<td>-40.2</td>
</tr>
<tr>
<td>$\sqrt{\langle r^2 \rangle}$</td>
<td>2.22</td>
<td>2.22</td>
</tr>
<tr>
<td>$\langle H \rangle$</td>
<td>-77.0</td>
<td>-88.5</td>
</tr>
<tr>
<td>$\langle T \rangle$</td>
<td>189.2</td>
<td>186.1</td>
</tr>
<tr>
<td>$\langle V_{ls} \rangle$</td>
<td>-12.0</td>
<td>-17.1</td>
</tr>
<tr>
<td>$\sqrt{\langle r^2 \rangle}$</td>
<td>2.40</td>
<td>2.37</td>
</tr>
<tr>
<td>$\langle H \rangle$</td>
<td>-74.1</td>
<td>-85.5</td>
</tr>
<tr>
<td>$\langle T \rangle$</td>
<td>182.8</td>
<td>179.0</td>
</tr>
<tr>
<td>$\langle V_{ls} \rangle$</td>
<td>-5.8</td>
<td>-8.0</td>
</tr>
<tr>
<td>$\sqrt{\langle r^2 \rangle}$</td>
<td>2.45</td>
<td>2.42</td>
</tr>
<tr>
<td>$\langle H \rangle$</td>
<td>-57.0</td>
<td>-75.9</td>
</tr>
<tr>
<td>$\langle T \rangle$</td>
<td>213.9</td>
<td>201.4</td>
</tr>
<tr>
<td>$\langle V_{ls} \rangle$</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$\sqrt{\langle r^2 \rangle}$</td>
<td>2.44</td>
<td>2.42</td>
</tr>
</tbody>
</table>
Structure of 12C

<table>
<thead>
<tr>
<th></th>
<th>E [MeV]</th>
<th>R_{ch} [fm]</th>
<th>$B(E2)$ [e^2 fm4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/PAV</td>
<td>81.4</td>
<td>2.36</td>
<td>-</td>
</tr>
<tr>
<td>VAP α-cluster</td>
<td>79.1</td>
<td>2.70</td>
<td>76.9</td>
</tr>
<tr>
<td>PAVπ</td>
<td>88.5</td>
<td>2.51</td>
<td>36.3</td>
</tr>
<tr>
<td>VAP</td>
<td>89.2</td>
<td>2.42</td>
<td>26.8</td>
</tr>
<tr>
<td>Multi-Config</td>
<td>92.2</td>
<td>2.52</td>
<td>42.8</td>
</tr>
<tr>
<td>Experiment</td>
<td>92.2</td>
<td>2.47</td>
<td>39.7 ± 3.3</td>
</tr>
</tbody>
</table>
Structure of $^{12}\text{C} — $ Hoyle State

![Graph showing the structure of ^{12}C]

<table>
<thead>
<tr>
<th>Multi-Config (4)</th>
<th>Multi-Config (14)</th>
<th>Experiment</th>
</tr>
</thead>
</table>

\[\langle 0^+ | 0^+ \rangle = 0.76 \]

\[\langle 0^+ | 0^+ \rangle = 0.71 \]

\[\langle 0^+ | 0^+ \rangle = 0.50 \]

<table>
<thead>
<tr>
<th></th>
<th>Multi-Config</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [MeV]</td>
<td>92.4</td>
<td>92.2</td>
</tr>
<tr>
<td>R_{ch} [fm]</td>
<td>2.52</td>
<td>2.47</td>
</tr>
<tr>
<td>$B(E2, 0_1^+ \rightarrow 2_1^+)$ [e² fm⁴]</td>
<td>42.9</td>
<td>39.7 ± 3.3</td>
</tr>
<tr>
<td>$M(E0, 0_1^+ \rightarrow 0_2^+)$ [fm²]</td>
<td>5.67</td>
<td>5.5 ± 0.2</td>
</tr>
</tbody>
</table>
Summary

- **Unitary Correlation Operator Method (UCOM)**
 - short-range central and tensor correlations treated explicitly
 - long-range correlations have to be accounted for by model space

- **Correlated Realistic NN-Potential** V_{UCOM}
 - low-momentum / phase-shift equivalent / operator representation
 - robust starting point for all kinds of many-body calculations
Summary

- **UCOM + No-Core Shell Model**
 - dramatically improved convergence
 - tool to assess long-range correlations & higher-order contributions

- **UCOM + Hartree-Fock / RPA**
 - ground states & excitations across the whole nuclear chart
 - basis for improved many-body calculations: MBPT, SM/CI, CC,...

- **UCOM + Fermionic Molecular Dynamics**
 - clustering and intrinsic deformations in p- and sd-shell
 - projection / multi-config provide detailed structure information
Epilogue

- **thanks to my group & my collaborators**

 - H. Hergert, N. Paar, P. Papakonstantinou, A. Zapp
 Institut für Kernphysik, TU Darmstadt

 - T. Neff
 NSCL, Michigan State University

 - H. Feldmeier
 Gesellschaft für Schwerionenforschung (GSI)

supported by the DFG through SFB 634
“Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments...”