Overview

■ Motivation

■ Modern Effective Interactions
 ● Correlations & Unitary Correlation Operator Method

■ Applications
 ● No Core Shell Model
 ● Hartree-Fock & Beyond
 ● Fermionic Molecular Dynamics
Nuclear Structure in the 21st Century

RISING, AGATA, REX-ISOLDE, ...

NUSTAR @ FAIR

nuclei far-off stability

hyper-nuclei,...

Nuclear Astrophysics

reliable nuclear structure theory for exotic nuclei

bridging between low-energy QCD and nuclear structure theory
Modern Nuclear Structure Theory

Nuclear Structure

- ab initio Approaches
- Many-Body Methods
- Effective Interactions
- Density Functional Models
- Realistic NN-Potentials
- Chiral Interactions

Low-Energy QCD
Realistic NN-Potentials

- **QCD motivated**
 - symmetries, meson-exchange picture
 - chiral effective field theory

- **short-range phenomenology**
 - short-range parametrisation or contact terms

- **experimental two-body data**
 - scattering phase-shifts & deuteron properties reproduced with high precision

- **supplementary three-nucleon force**
 - adjusted to spectra of light nuclei
Argonne V18 Potential

\[v(r) \]

\[v(r) \hat{L}^2 \]

\((S, T) \)

- (1, 0)
- (1, 1)
- (0, 0)
- (0, 1)

\[v(r) S_{12} \]

\[v(r) (\hat{L} \cdot \hat{S}) \]

\[v(r) (\hat{L} \cdot \hat{S})^2 \]
Argonne v18
With Illinois-2
GFMC Calculations
22 June 2004

“exact” numerical solution of interacting A-nucleon problem

[S. Pieper, private comm.]

12C results are preliminary.
Modern Nuclear Structure Theory

Nuclear Structure

- Many-Body Methods
- Effective Interactions
- Density Functional Models
- Realistic NN-Potentials
- Chiral Interactions

ab initio Approaches

Low-Energy QCD
Modern Nuclear Structure Theory

Nuclear Structure

Many-Body Methods

Effective Interactions

Density Functional Models

Realistic NN-Potentials

Chiral Interactions

ab initio Approaches

Low-Energy QCD
Why Effective Interactions?

Realistic Potentials
- generate strong correlations in many-body states
- short-range central & tensor correlations most important

Many-Body Methods
- rely on truncated many-nucleon Hilbert spaces for $A > 12$
- not capable of describing short-range correlations
- extreme: Hartree-Fock based on single Slater determinant

Modern Effective Interactions
- adapt realistic potential to the available model space
- conserve experimentally constrained properties (phase shifts)
Unitary Correlation Operator Method (UCOM)
Correlation Operator

introduce short-range correlations by means of a unitary transformation with respect to the relative coordinates of all pairs

\[C = \exp[-iG] = \exp[-i\sum_{i<j}g_{ij}] \]

\[G^\dagger = G \]

\[C^\dagger C = 1 \]

Correlated States

\[|\tilde{\psi}\rangle = C |\psi\rangle \]

Correlated Operators

\[\tilde{O} = C^\dagger O C \]

\[\langle \tilde{\psi}|O|\tilde{\psi}'\rangle = \langle \psi|C^\dagger O C|\psi'\rangle = \langle \psi|\tilde{O}|\psi'\rangle \]
Central and Tensor Correlators

\[C = C_\Omega C_r \]

<table>
<thead>
<tr>
<th>Central Correlator (C_r)</th>
<th>Tensor Correlator (C_\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- radial distance-dependent shift in the relative coordinate of a nucleon pair</td>
<td>- angular shift depending on the orientation of spin and relative coordinate of a nucleon pair</td>
</tr>
<tr>
<td>[g_r = \frac{1}{2} \left[s(r) q_r + q_r s(r) \right]]</td>
<td>[g_\Omega = \frac{3}{2} \vartheta(r) \left[(\vec{\sigma}1 \cdot \vec{q}\Omega)(\vec{\sigma}2 \cdot \vec{r}) + (\vec{r} \leftrightarrow \vec{q}\Omega) \right]]</td>
</tr>
<tr>
<td>[q_r = \frac{1}{2} \left[\vec{r} \cdot \vec{q} + \vec{q} \cdot \vec{r} \right]]</td>
<td>[\vec{q}_\Omega = \vec{q} - \frac{\vec{r}}{r} q_r]</td>
</tr>
</tbody>
</table>

\(s(r) \) and \(\vartheta(r) \) for given potential determined in the two-body system
Correlated States: The Deuteron

\[\langle r \phi \rangle \]

\[\langle r | C_r \phi \rangle \]

\[\langle r | C_0 C_r \phi \rangle \]

\[L = 0 \]

\[L = 2 \]

\[s(r) \]

\[\vartheta(r) \]

central correlations

tensor correlations

constraint on range of tensor correlator
Correlated Interaction — V_{UCOM}

$\tilde{H} = T + V_{UCOM} + V_{UCOM}^{[3]} + \cdots$

- **Closed operator expression** for the correlated interaction V_{UCOM} in two-body approximation.
- Correlated interaction and original NN-potential are **phase shift equivalent** by construction.
- Unitary transformation results in a **pre-diagonalisation** of Hamiltonian.
- Momentum-space matrix elements of correlated interaction are **similar to** V_{low-k}.
Simplistic “Shell-Model” Calculation

- expectation value of Hamiltonian (with AV18) for Slater determinant of harmonic oscillator states

![Graph showing energy per nucleon (E/A) for various nuclei: 4He, 16O, 48Ca, 90Zr, 132Sn, 208Pb. The graph includes labels for central and tensor correlations.]
Application I

No-Core Shell Model
No-Core Shell Model
+
Matrix Elements of Correlated
Realistic NN-Interaction V_{UCOM}

- many-body state is expanded in Slater determinants of harmonic oscillator single-particle states
- large scale diagonalisation of Hamiltonian within a truncated model space ($N\hbar\omega$ truncation)
- assessment of short- and long-range correlations

NCSM code by Petr Navrátil [PRC 61, 044001 (2000)]
^4He: Convergence

V_{AV18}

V_{UCOM}

residual state-dependent long-range correlations
$^4\text{He}: \text{Convergence}$

V_{AV18}

V_{UCOM}

Omitted three- and four-body contributions
Tjon-Line and Correlator Range

-8.6 -8.4 -8.2 -8.0 -7.8 -7.6

\(E(3H) \) [MeV]

-30

-29

-28

-27

-26

-25

-24

\(E(4\text{He}) \) vs. \(E(3\text{H}) \)

for phase-shift equivalent NN-interactions

-8.6 -8.4 -8.2 -8.0 -7.8 -7.6

\(E(3\text{H}) \) [MeV]

\(E(4\text{He}) \) [MeV]

Exp.

AV18

Nijm II

Nijm I

CD Bonn

Tjon-line: \(E(4\text{He}) \) vs. \(E(3\text{H}) \)
Tjon-Line and Correlator Range

- Tjon-line: $E(^4\text{He})$ vs. $E(^3\text{H})$ for phase-shift equivalent NN-interactions
- change of C_Ω-correlator range results in shift along Tjon-line
- minimise net three-body force by choosing correlator with energies close to experimental value

this V_{UCOM} is used in the following
Tjon-Line and Correlator Range

- **Tjon-line**: $E(^4\text{He})$ vs. $E(^3\text{H})$ for phase-shift equivalent NN-interactions
- change of C_Ω-correlator range results in shift along Tjon-line

- minimise net three-body force by choosing correlator with energies close to experimental value

![Diagram](image-url)
large-scale NCSM calculations throughout the p-shell in progress (with and w/o Lee-Suzuki transformation)
10B: Benchmarking V_{UCOM}

- Large-scale NCSM calculations throughout the p-shell in progress (with and w/o Lee-Suzuki transformation)

V_{UCOM} gives correct level ordering without any NNN interaction

Calculations by Petr Navrátil – preliminary
Application II:

Hartree-Fock & Beyond
Standard Hartree-Fock +
Matrix Elements of Correlated
Realistic NN-Interaction V_{UCOM}

- many-body state is a **Slater determinant** of single-particle states expanded in oscillator basis
- correlations cannot be described by Hartree-Fock states
- starting point for **improved many-body calculations**: MBPT, RPA, SM/CI, CC,...
Hartree-Fock with V_{UCOM}

![Graph showing the comparison between experimental and Hartree-Fock (HF) results for various isotopes.](image)

- Long-range correlations are missing.

Axes:
- E/A [MeV]
- R_{ch} [fm]

Isotopes:
- ^4He, ^{16}O, ^{24}O, ^{34}Si, ^{40}Ca, ^{48}Ca, ^{48}Ni, ^{56}Ni, ^{68}Ni, ^{78}Ni, ^{88}Sr, ^{90}Zr, ^{100}Sn, ^{114}Sn, ^{132}Sn, ^{146}Gd, ^{208}Pb
Perturbation Theory with V_{UCOM}

- Long-range correlations are easily tractable within PT, SM/CI, CC, RPA, ...
- Indications for presence of residual three-body force
Outlook: UCOM + RPA

ERPA/SRPA: long-range correlations

HFB: pairing with realistic interactions

Effect of simple three-nucleon forces
Application III

Fermionic Molecular Dynamics (FMD)
UCOM-FMD Approach

Gaussian Single-Particle States

\[
|q\rangle = \sum_{\nu=1}^{n} c_{\nu} |a_{\nu}, \tilde{b}_{\nu}\rangle \otimes |\chi_{\nu}\rangle \otimes |m_{t}\rangle
\]

\[
\langle \bar{x}|a_{\nu}, \tilde{b}_{\nu}\rangle = \exp \left[-\frac{(\bar{x} - \tilde{b}_{\nu})^2}{2a_{\nu}} \right]
\]

\(a_{\nu}\) : complex width \(\chi_{\nu}\) : spin orientation
\(\tilde{b}_{\nu}\) : mean position & momentum

Slater Determinant

\[
|Q\rangle = \mathcal{A} \left(|q_{1}\rangle \otimes |q_{2}\rangle \otimes \cdots \otimes |q_{A}\rangle \right)
\]

Correlated Hamiltonian

\[
\tilde{H} = T + V_{UCOM} + \delta V_{c+p+ls}
\]

Variation

\[
\frac{\langle Q|\tilde{H} - T_{cm}|Q\rangle}{\langle Q|Q\rangle} \rightarrow \min
\]

Projection

restoration of rotational and inversion symmetry

PAV / VAP

Multi-Configuration

mixing of several intrinsic configurations

GCM
Intrinsic One-Body Density Distributions

\[\rho(\vec{x}) [\rho_0] \]

\(^4\text{He} \quad ^{16}\text{O} \quad ^{40}\text{Ca} \)

\(^9\text{Be} \)

capable of describing spherical shell-model as well as intrinsically deformed and \(\alpha \)-cluster states
Structure of ^{12}C

<table>
<thead>
<tr>
<th></th>
<th>E [MeV]</th>
<th>R_{ch} [fm]</th>
<th>$B(E2)$ [$e^2 \text{fm}^4$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/PAV</td>
<td>81.4</td>
<td>2.36</td>
<td>-</td>
</tr>
<tr>
<td>VAP α-cluster</td>
<td>79.1</td>
<td>2.70</td>
<td>76.9</td>
</tr>
<tr>
<td>PAV$^\pi$</td>
<td>88.5</td>
<td>2.51</td>
<td>36.3</td>
</tr>
<tr>
<td>VAP</td>
<td>89.2</td>
<td>2.42</td>
<td>26.8</td>
</tr>
<tr>
<td>Multi-Config</td>
<td>92.2</td>
<td>2.52</td>
<td>42.8</td>
</tr>
<tr>
<td>Experiment</td>
<td>92.2</td>
<td>2.47</td>
<td>39.7 ± 3.3</td>
</tr>
</tbody>
</table>
Structure of $^{12}\text{C} — \text{Hoyle State}$

\begin{center}
\begin{tabular}{lcc}
\hline
 & Multi-Config & Experiment \\
\hline
E [MeV] & 92.4 & 92.2 \\
R_{ch} [fm] & 2.52 & 2.47 \\
$B(E2, 0_1^+ \rightarrow 2_1^+)$ [e^2 fm4] & 42.9 & 39.7 ± 3.3 \\
$M(E0, 0_1^+ \rightarrow 0_2^+)$ [fm2] & 5.67 & 5.5 ± 0.2 \\
\hline
\end{tabular}
\end{center}

$\langle |0_2^+\rangle \rangle = 0.76$

$\langle |0_2^+\rangle \rangle = 0.71$

$\langle |0_2^+\rangle \rangle = 0.50$
Outlook: Resonances & Scattering in FMD

- collective coordinate representation as tool for the description of continuum states in FMD

- first steps towards fully microscopic and consistent description of structure and reactions
Conclusions

- **Unitary Correlation Operator Method (UCOM)**
 - explicit description of short-range central and tensor correlations
 - universal phase-shift equivalent correlated interaction V_{UCOM}

- **Innovative Many-Body Methods**
 - No-Core Shell Model
 - Hartree-Fock, MBPT, SM/CI, CC, RPA, ERPA, SRPA,...
 - Fermionic Molecular Dynamics

unified description of nuclear structure across the whole nuclear chart is within reach
thanks to my group & my collaborators

- H. Hergert, N. Paar, P. Papakonstantinou, A. Zapp
 Institut für Kernphysik, TU Darmstadt

- T. Neff
 NSCL, Michigan State University

- H. Feldmeier, A. Cribeiro, K. Langanke
 Gesellschaft für Schwerionenforschung (GSI)

supported by the DFG through SFB 634
“Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments...”