Ultracold Atomic Gases in 1D Optical Lattices

DMRG Method in Inhomogeneous Lattice Topologies

Felix Schmitt, Markus Hild, and Robert Roth

Institut für Kernphysik, TU Darmstadt, Schloßgartenstraße 9, 64289 Darmstadt

raction

Summary

- cold atomic gases on optical lattices are a perfect experimental realization of the Hubbard Modell [1,2] • all relevant parameters can be precisely controlled in the experiment allowing for unique comparison with theory throughout the whole phase-diagram [8]
- the Hubbard Hamiltonian facilitates a straight forward growing of the system, which makes this an ideal case for DMRG calculations [6,7]
- nevertheless DMRG involves a truncation procedure, which should be tested in all different regimes of the phase-diagram
- investigate how DMRG performs in spatially inhomogeneous lattices
- append lattice sites with different on-site energies, e.g. apply a superlattice, to check for the effect of localization or disorder on the spectrum of the reduced density-matrix and thus on the target state

Bose-Hubbard Model

- 1D optical lattice with I lattice sites and N bosonic particles • restriction to the first energy-band, T = 0, nearest neighbor tunneling, and an on-site two-particle contact interaction
- additional on-site potential can map arbitrary lattice topologies

$$\begin{split} \hat{H} &= -J\sum_{i=1}^{I} \left(\hat{a}_{i+1}^{\dagger} \hat{a}_{i} + \hat{a}_{i}^{\dagger} \hat{a}_{i+1} \right) & \text{tunneling} \\ &+ \frac{V}{2}\sum_{i=1}^{I} \ \hat{n}_{i} \left(\hat{n}_{i} - 1 \right) & \text{interaction} \\ &+ \Delta \sum_{i=1}^{I} \ \epsilon_{i} \ \hat{n}_{i} & \text{superlattice potential} \end{split}$$

 $\hat{a}_i^\dagger, \; \hat{a}_i, \; \hat{n}_i$ creation, annihilation, occupation-number operators tunneling matrix element two particle interaction energy strength of the superlattice potential topology of the superlattice potential

ullet use an occupation-number representation spanning the Fock-space $\mathcal H$ to formulate a matrix representation of the Hamiltonian

DMRG Algorithm

 $\mathcal{H} = \mathsf{span} \{ \mid \{n_1, ..., n_I\}_{\alpha} \} \}$

Two-Color Superlattice

 Δ

 ϵ_i

• superposition of two laser beams with slightly different wavelengths [5] form a superlattice potential • Δ/J is the on-site energy of the deepest superlattice well

Phase Diagram

• exact diagonalization for a moderate system size (I = N = 10) with periodic boundary conditions yields ground states

$$\psi^{(0)} \rangle = \sum_{\alpha=1}^{D} C_{\alpha}^{(0)} | \{n_1, ..., n_I\}_{\alpha} \rangle \qquad \hat{H} | \psi^{(0)} \rangle = E_0 | \psi^{(0)} \rangle$$

Superfluid to Mott-Insulator ($\Delta/J = 1$) • lattice sites are almost equal, ground state • DMRG needs at least the average number of particles per unit-cell to reproduce the lo-• sweeping leads to good results as soon as

[3] R. Roth and K. Burnett, Phys. Rev. A 67 031692(R) (2003) [1] D. Jacksch et al., Phys. Rev. Let. 81, 31083111 (1998) [2] Immanuel Bloch, Physics World (2004) [4] R. Roth and K. Burnett, Phys. Rev. A 68 023604 (2003)

[5] J.E. Lye et al. Phys. Rev. Lett. 95 070401 (2005) [6] S.R. White, Phys. Rev. B 48 10345 (1993)

[7] S. Rapsch et al., Europhys. Lett. 46 559 (1999) [8] M. Greiner et al., Nature (London) 415, 39 (2002)