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e nevertheless DMRG involves a truncation procedure,
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the experiment allowing for unique comparison with _ _ _ _
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e investigate how DMRG performs in spatially inhomo-
geneous lattices

e append lattice sites with different on-site energies,
e.g. apply a superlattice, to check for the effect of
localization or disorder on the spectrum of the re-
duced density-matrix and thus on the target state

e 1D optical lattice with I lattice sites and /N bosonic particles
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e restriction to the first energy-band, 1" = 0, nearest neighbor tunneling, /7 build the system

and an on-site two-particle contact interaction
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-2D plots show the maximum relative error

of the DMRG calculations
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