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Summary

• cold atomic gases on optical lattices are a perfect

experimental realization of the Hubbard Modell [1,2]

• all relevant parameters can be precisely controlled in

the experiment allowing for unique comparison with

theory throughout the whole phase-diagram [8]

• the Hubbard Hamiltonian facilitates a straight for-

ward growing of the system, which makes this an

ideal case for DMRG calculations [6,7]

•nevertheless DMRG involves a truncation procedure,

which should be tested in all different regimes of the

phase-diagram

• investigate how DMRG performs in spatially inhomo-

geneous lattices

• append lattice sites with different on-site energies,

e.g. apply a superlattice, to check for the effect of

localization or disorder on the spectrum of the re-

duced density-matrix and thus on the target state

Bose-Hubbard Model

• 1D optical lattice with I lattice sites and N bosonic particles

• restriction to the first energy-band, T = 0, nearest neighbor tunneling,

and an on-site two-particle contact interaction

• additional on-site potential can map arbitrary lattice topologies
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•use an occupation-number representation spanning the Fock-space H

to formulate a matrix representation of the Hamiltonian
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Two-Color Superlattice

• superposition of two laser beams

with slightly different wavelengths

[5] form a superlattice potential

•∆/J is the on-site energy of the

deepest superlattice well
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Phase Diagram

• exact diagonalization for a moderate system size (I = N = 10) with

periodic boundary conditions yields ground states
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reflects the compo-

sition of the ground state

• commensurate systems exhibit a

rich phase-diagram [3,4]

• subtle interplay between the differ-

ent energy scales (J , V and ∆)

• test DMRG calculations in the

transition regimes of the phase

diagram

DMRG Algorithm

1.Hsystem = Hblock ⊗Hsite

2.Henv = H̃Block ⊗ H̃Site

3.Hsuper = Hsystem ⊗Henv
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- 2D plots show the maximum relative error

of the DMRG calculations

- gray: DMRG without sweep

- red: DMRG with one sweep

Superfluid to Mott-Insulator (∆/J = 1)

• lattice sites are almost equal, ground state

is nearly homogenous

• good results even without sweeping
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Localized to Bose-Glass (∆/J = 50)

• ground state is strongly inhomogeneous

•DMRG needs at least the average number

of particles per unit-cell to reproduce the lo-

calized phase

• sweeping leads to good results as soon as

delocalization of particles occurs
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Mott-Insulator to Bose-Glass

(V/J = 15)

• intermediate inhomogeneity

• redistribution of particles is well reproduced

by DMRG calculations with sweeps

- exact calculations involve a D ≈ 105 eigen-

value problem

-DMRG calculations involve a D ≈ 400

eigenvalue problem
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