DMRG for Ultracold Bose Gases in Optical Lattices

Felix Schmitt Markus Hild Robert Roth

Institut für Kernphysik TU Darmstadt

ECT* Workshop 2009 Linking Nuclei, Molecules, and Condensed Matter: Computational Quantum Many-Body Approaches

Hubbard Model

- Ultracold Atoms in Optical Lattices
- OMRG & Observables
- Two-Color Superlattice
- Phase Diagrams from Experimental Parameters

- 4 Two-Color Superlattice
- 5 Phase Diagrams from Experimental Parameters

Hubbard Model (1963)

John Hubbard

periodic potential

Susono, November, 1980

- particles can tunnel to adjacent lattice sites and can interact on-site
- originally proposed as the simplest low temperature model for electrons in crystalline solids
- straight-forward generalization for bosons

Bose-Hubbard Hamiltonian

I lattice sites N particles T = 0

Occupation-Number Basis

$$|\psi\rangle = \sum_{\alpha} C_{\alpha} |\{n_1, n_2, \dots, n_l\}_{\alpha}\rangle \quad \sum_{i} n_i = N$$

Hamiltonian

$$\hat{\mathbf{H}} = \sum_{i=1}^{I} \left\{ -J \left(\hat{\mathbf{a}}_{i+1}^{\dagger} \hat{\mathbf{a}}_{i} + \hat{\mathbf{a}}_{i}^{\dagger} \hat{\mathbf{a}}_{i+1} \right) + \frac{1}{2} \mathbf{U} \left(\hat{\mathbf{n}}_{i} - 1 \right) \hat{\mathbf{n}}_{i} \right\}$$

- J tunneling matrix-element
- U on-site interaction matrix-element

the only parameter is U/J

where can this be observed?

2 Ultracold Atoms in Optical Lattices

- 4 Two-Color Superlattice
- 5 Phase Diagrams from Experimental Parameters

Ultracold Atoms in Optical Lattices

Jaksch et al. (1998) proposed a setup to the observe SF-MI transition in ultracold atomic gases in optical lattices

I. Bloch, Nature Physics 1, 23 (2005)

- standing laser-field
- perfect optical crystal

- 1D, 2D, 3D setups possible
- ultracold alkali gas, e.g. ⁸⁷Rb

U/J in the Experiment

laser intensity directly controls U/J

more details will follow ...

Superfluid to Mott-Insulator Transition – Experiment

time-of-flight image

(3D lattice)

absorption spectrum (1D lattice)

200

100

[md] 150 WHML 100 U/I=2.3

Modulation Frequency [kHz]

2

Figure 2 Absorption images of multiple matter wave interference patterns. These were obtained after suddenly releasing the atoms from an optical lattice potential with different potential depths V_0 after a time of flight of 15 ms. Values of V_0 were: **a**, $0 \ E_i$, **b**, $3 \ E_i$; **c**, $7 \ E_i$; **d**, $10 \ E_i$; **e**, $13 \ E_i$, $114 \ E_i$; **g**, $16 \ E_i$; and **h**, $20 \ E_r$.

Greiner et al., Nature Physics 415, 39 (2002)

perfect agreement between experiment and theory

why are these systems of so much interest?

- simple model but rich physics
- perfect mapping of a Hamiltonian to an experiment
- perfect experimental control over the relevant parameters
- different quantum statistics: bosons, fermions, and mixtures
- genuine 1D and 2D systems can be realized
- optical lattices are a magnifying glass for solid state physics

5 Phase Diagrams from Experimental Parameters

Density-Matrix Renormalization Group (DMRG)

 $\mathcal{H}_{system(L)} =$ $\mathcal{H}_{block(L-1)} \otimes \mathcal{H}_{site}$ 2 $\mathcal{H}_{ew(L)} = \tilde{\mathcal{H}}_{block(L-1)} \otimes \tilde{\mathcal{H}}_{site}$ (3) $\mathcal{H}_{super(2L)} =$ $\mathcal{H}_{system(L)} \otimes \mathcal{H}_{env(L)}$ $\hat{H}_{super(2L)} | \psi^{(0)} \rangle =$ $E_0 \mid \psi^{(0)} \rangle$ $\hat{\rho}_{red} = \\ \mathsf{Tr}_{env} \left(\mid \psi^{(0)} \rangle \langle \psi^{(0)} \mid \right)$ $\sum_{i} \omega_{i} = 1$ $\omega_{i} > \omega_{i+1}$ $\mathcal{O} = \left(\vec{w}_1, \cdots, \vec{w}_{D_h} \right)$ $H_{block(L)} = \mathcal{O}^T H_{system(L)} \mathcal{O}$

DRMG Calculations

specifications

- block basis $D_b = 20 200 \longrightarrow$ superblock basis $D_s = 400 70000$
- usually $D_b = 60 \longrightarrow D_s = 5000$
- start with the infinite-size algorithm
- 3 sweeps in the finite-size algorithm

observables

- energy gap ΔE with and without targeting the excited state
- mean occupation number $\langle \hat{\mathbf{n}}_i
 angle$
- particle fluctuation via $\left< \hat{\mathbf{n}}_i^2 \right>$
- one-body density-matrix via $\left< \hat{a}_i^\dagger \hat{a}_j \right>$

Condensate Fraction (Onsager-Penrose Criterion)

identify natural orbitals from the eigensystem of

$$ho_{ij}^{(1)} = \left\langle \left. \psi \right| \, \hat{\mathrm{a}}_i^\dagger \hat{\mathrm{a}}_j \left| \left. \psi \right.
ight
angle
ight
angle$$

• condensate fraction is defined via largest eigenvalue λ_{max} of $\rho^{(1)}$

$$f_c = \frac{\lambda_{max}}{N}$$

finite-size scaling: $\operatorname{Tr} \rho^{(1)} = N \implies \lambda^{max} \ge N/I \implies f_c \ge 1/I$

Interference Pattern and Visibility

• Fourier transformation of $\rho^{(1)}$ yields the interference pattern at δ

$$\mathcal{I}(\delta) = rac{1}{I}\sum_{ij=1}^{I}e^{\mathbf{i}(i-j)\delta}\cdot
ho_{ij}^{(1)}$$

visibility is defined as:

$$\nu = \frac{\max\{\mathcal{I}(\delta)\} - \min\{\mathcal{I}(\delta)\}}{\max\{\mathcal{I}(\delta)\} + \min\{\mathcal{I}(\delta)\}}$$

directly accessible to experiment via time-of-flight imaging

DMRG – Benchmark

• I = N = 10

- black: exact diagonalization (D = 92 378)
- red: DMRG
 (D_b = 21, D_s = 446)
- perfect reproduction of all observables even in the SF phase

DMRG works fine

Observables – Finite-Size Effects

- dotted: I = N = 10
- dashed: *I* = *N* = 30
- solid: I = N = 50
- *f_c* shows expected finite-size effects

finite-size effects are under control

5 Phase Diagrams from Experimental Parameters

Phase Diagram – Two-Color Superlattice

Hamiltonian

$$\hat{\mathbf{H}} = \sum_{i=1}^{I} \left\{ -J \left(\hat{\mathbf{a}}_{i+1}^{\dagger} \hat{\mathbf{a}}_{i} + \hat{\mathbf{a}}_{i}^{\dagger} \hat{\mathbf{a}}_{i+1} \right) + \frac{1}{2} \mathbf{U} \left(\hat{\mathbf{n}}_{i} - 1 \right) \hat{\mathbf{n}}_{i} + \epsilon_{i} \hat{\mathbf{n}}_{i} \right\}$$

- on-site potential energy introduces irregularities
- subtle interplay of the different energy scales
- rich phase diagram:
 - superfluid (SF)
 - Mott-insulating (MI)
 - quasi Bose-glass (BG)

Observables – Generic Parameters

•
$$I = N = 30$$

- Mott lobes reflect the topology of ε_i
- sizable condensate fraction in SF only
- strong fluctuations during MI-SF transition
- increase of visibility during MI-SF transition

DMRG – Benchmark

- I = N = 10
- U/J = 30
- black: exact diagonalization (D = 92 378)
- red: DMRG $(D_b = 21, D_s = 446)$

DMRG does a good job in superlattices too

From Experiment to Hubbard Model

- two standing-wave laser-fields with wavelengths $\lambda_1, \ \lambda_2$
- natural energy scale is the *recoil energy* $E_{r_i} = \frac{h^2}{2m\lambda_i^2}$
- experimental knobs are the intensities $s_i = \frac{V_i}{E_r}$.

1D Optical Two-Color Superlattice

$$V_{opt}(x) = s_1 E_{r_1} \sin^2 \left(\frac{2\pi}{\lambda_1} x + \phi\right) + s_2 E_{r_2} \sin^2 \left(\frac{2\pi}{\lambda_2} x\right)$$

- commensurate lattice
- $\lambda_2 = 800 nm$ $s_2 = 5$
- $\lambda_1 = 1000 \, nm$ $s_1 = 1$

•
$$\phi = \pi/4$$

Single-Particle Band-Structure Calculation (1D)

experimental parameters

- laser wavelengths: λ₁, λ₂
- Iaser intensities: s1, s2
- scattering length: a_s
- transverse trapping frequency: ω_{\perp}
- obtain localized Wannier function w_i(x) from 1D bandstructure calculation
- calculate Hubbard parameters for each site

Wannier function $w_i(x)$

$$-J_{i,i+1} = \int dx \, w_i^*(x) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V_{opt}(x) \right) w_{i+1}(x)$$

$$\epsilon_i = \int dx \, w_i^*(x) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V_{opt}(x) \right) w_i(x)$$

$$U_i = 2 \, \omega_\perp \hbar \, a_s \, \int dx \, |w_i(x)|^4$$

Site-Dependent Hubbard Parameters

$$\lambda_2 = 800 \, nm, \, \lambda_1 = 1000 \, nm, \, \phi = \pi/4, \, \omega_\perp = 30 E_{r_1}, \, {}^{87} {
m Rb}$$

$s_2 = 10, s_1 = 1$

Phase Diagram – Commensurate Lattice

²Schmitt et al. arXiv:0904.4397v1

Observables – Commensurate Lattice

Observables – Incommensurate Lattice

- Hubbard model & cold atoms in optical lattices
- observables in experiment & theory
- DMRG & benchmarks
- experimental parameters to Hubbard parameters
- phase diagrams expressed only by experimental parameters

Credits

Related Publications

- F. Schmitt, M. Hild, R. Roth: arXiv: 0904.4397
- M. Hild, F. Schmitt, I. Türschmann, R. Roth: Phys. Rev. A 76, 053614 (2007)
- F. Schmitt, M. Hild, R. Roth: J. Phys. B: At. Mol. Opt. Phys. 40, 371 (2007)
- M. Hild, F. Schmitt, R. Roth: J. Phys. B: At. Mol. Opt. Phys. 39, 4547 (2006)
- R. Roth, K. Burnett: Phys. Rev. A 68, 023604 (2003)

Supported by

