Unitarily Transformed Interactions for Ab-Initio Nuclear Structure
Overview

■ Motivation

■ Unitarily Transformed Interactions
 • Unitary Correlation Operator Method
 • Similarity Renormalization Group

■ Computational Many-Body Methods
 • No-Core Shell Model
 • Importance Truncated NCSM & CI
 • Coupled-Cluster Method
From QCD to Nuclear Structure

Nuclear Structure

Realistic Nuclear Interactions

- chiral EFT interactions: consistent NN & 3N interaction derived within χEFT
- traditional NN-interactions: Argonne V18, CD Bonn,...
- reproduce experimental two-body data with high precision
- induce strong short-range central & tensor correlations

Low-Energy QCD
Nuclear Structure

- ‘exact’ solution of the many-body problem for light & intermediate masses (NCSM, CC,...)
- controlled approximations for heavier nuclei (HF & MBPT,...)
- rely on restricted model spaces of tractable size
- not suitable for the description of short-range correlations

Realistic Nuclear Interactions

Low-Energy QCD

Exact / Approx. Many-Body Tools
From QCD to Nuclear Structure

Nuclear Structure

Exact / Approx. Many-Body Tools

Modern Effective Interactions

Realistic Nuclear Interactions

Low-Energy QCD

- adapt realistic potential to the available model space
 - tame short-range correlations
 - improve convergence behavior

- conserve experimentally constrained properties (phase shifts & deuteron)
 - generate new realistic int.

- need consistent effective interaction & effective operators

- unitary transformations most convenient
Unitarily Transformed Interactions

Unitary Correlation Operator Method (UCOM)

Deuteron: Manifestation of Correlations

- **Exact deuteron solution** for Argonne V18 potential
 \[\rho^{(2)}_{S=1, M_S=\pm 1}(\vec{r}) \]

- Short-range repulsion suppresses wave function at small distances \(r \)
- Central correlations
- Tensor interaction generates \(L=2 \) admixture to ground state
- Tensor correlations

\[\langle r \mid \phi_L \rangle \]

\(r \) [fm]

\(L = 0 \)

\(L = 2 \)
Correlation Operator
define a unitary operator C to describe the effect of short-range correlations

$$C = \exp[-i G] = \exp[-i \sum_{i<j} g_{ij}]$$

Correlated States
imprint short-range correlations onto uncorrelated many-body states

$$|\tilde{\psi}\rangle = C |\psi\rangle$$

Correlated Operators
adapt Hamiltonian to uncorrelated states (pre-diagonalization)

$$\tilde{O} = C^\dagger O C$$

$$\langle \tilde{\psi} | O | \tilde{\psi}' \rangle = \langle \psi | C^\dagger O C | \psi' \rangle = \langle \psi | \tilde{O} | \psi' \rangle$$
Unitary Correlation Operator Method

explicit ansatz for unitary transformation operator **motivated by the physics of short-range correlations**

<table>
<thead>
<tr>
<th>Central Correlator (C_r)</th>
<th>Tensor Correlator (C_\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- radial distance-dependent shift in the relative coordinate of a nucleon pair</td>
<td>- angular shift depending on the orientation of spin and relative coordinate of a nucleon pair</td>
</tr>
<tr>
<td>[g_r = \frac{1}{2} [s(r) q_r + q_r s(r)]]</td>
<td>[g_\Omega = \frac{3}{2} \theta(r) [(\vec{\sigma}1 \cdot \vec{q}\Omega)(\vec{\sigma}2 \cdot \vec{r}) + (\vec{r} \leftrightarrow \vec{q}\Omega)]]</td>
</tr>
<tr>
<td>[q_r = \frac{1}{2} [\frac{\vec{r}}{r} \cdot \vec{q} + \vec{q} \cdot \frac{\vec{r}}{r}]]</td>
<td>[\vec{q}_\Omega = \vec{q} - \frac{\vec{r}}{r} q_r]</td>
</tr>
</tbody>
</table>

\[C = C_\Omega C_r = \exp(-i \sum_{i<j} g_\Omega,ij) \exp(-i \sum_{i<j} g_r,ij) \]

- \(s(r) \) and \(\theta(r) \) depend on & are optimized for initial potential

Robert Roth – TU Darmstadt – 02/2009
Correlated States: The Deuteron

$L = 0$

$\langle r | \phi \rangle$

$\langle r | C_r \phi \rangle$

$\langle r | C_\Omega C_r \phi \rangle$

Central correlations

Tensor correlations

Only short-range tensor correlations treated by C_Ω
Correlated Interaction: V_{UCOM}

$^{3}S_{1}$

$^{3}S_{1} - ^{3}D_{1}$

V_{AV18}

pre-diagonalization of Hamiltonian

V_{UCOM}
Correlated Interaction: V_{UCOM}

$$V_{\text{UCOM}} = \sum_p \frac{1}{2} [\tilde{\nu}_p(r) O_p + O_p \tilde{\nu}_p(r)]$$

$$O = \{1, (\bar{\sigma}_1 \cdot \bar{\sigma}_2), \bar{q}^2, \bar{q}^2(\bar{\sigma}_1 \cdot \bar{\sigma}_2), \bar{l}^2, \bar{l}^2(\bar{\sigma}_1 \cdot \bar{\sigma}_2),$$

$$\bar{\sigma}_2, \bar{q}_2, \bar{q}_2(\bar{\sigma}_1 \cdot \bar{\sigma}_2), \bar{q}_r, S_{12}(\bar{r}, \bar{r}), S_{12}(\bar{l}, \bar{l}),$$

$$\bar{S}_{12}(\bar{q}_\Omega, \bar{q}_\Omega), q_r S_{12}(\bar{r}, \bar{q}_\Omega), \bar{l}^2(\bar{l} \cdot \bar{q}),$$

$$\bar{l}^2 \bar{S}_{12}(\bar{q}_\Omega, \bar{q}_\Omega), \ldots \} \otimes \{1, (\bar{\tau}_1 \cdot \bar{\tau}_2)\}$$

- C_r-transformation evaluated directly
- C_Ω-transformation through Baker-Campell-Hausdorff expansion
- $\tilde{\nu}_p(r)$ determined by bare potential and correlation functions
Optimal Correlation Functions

- $s(r)$ and $\vartheta(r)$ determined by two-body **energy minimisation**
- constraint on range of the tensor correlators $\vartheta(r)$ to isolate state independent **short-range correlations**

\[s(r) \]

\[\vartheta(r) \]

![Graphs of $s(r)$ and $\vartheta(r)$ for different (S, T) values](image-url)
Unitarily Transformed Interactions

Similarity Renormalization Group (SRG)

flow evolution of the Hamiltonian to band-diagonal form with respect to uncorrelated many-body basis

Flow Equation for Hamiltonian

- evolution equation for Hamiltonian
 \[\tilde{H}(\alpha) = C^\dagger(\alpha) H C(\alpha) \quad \rightarrow \quad \frac{d}{d\alpha} \tilde{H}(\alpha) = [\eta(\alpha), \tilde{H}(\alpha)] \]

- dynamical generator defined as commutator with the operator in whose eigenbasis \(H \) shall be diagonalized
 \[\eta(\alpha) = \frac{2B}{2\mu} [\vec{q}^2, \tilde{H}(\alpha)] \]

UCOM vs. SRG

\(\eta(0) \) has the same structure as UCOM generators \(g_r \) & \(g_\Omega \)
SRG Evolution: The Deuteron

Argonne V18

Strong off-diagonal contributions

Short-range central & tensor correlations
SRG Evolution: The Deuteron

\[V_{SRG}(q, q') \]

\[\alpha = 0.1000 \text{ fm}^4 \]

suppression of off-diagonal contributions

elimination of short-range correlations
SRG Evolution: The Deuteron

UCOM vs. SRG
extract the UCOM correlation functions \(s(r) \) and \(\vartheta(r) \) from the SRG evolved wavefunctions

\[\bar{\alpha} = 0.1000 \text{ fm}^4 \]
SRG-Generated UCOM Correlators: AV18

- determine UCOM correlators from SRG-evolved two-body wave functions via

$$\left| \Phi_{\text{SRG}}^{(0)} \right\rangle \equiv C \left| \Phi_{\text{SRG}}^{\tilde{\alpha}} \right\rangle$$

![Graphical representation](image)
oscillatory behavior of wave function leads to long-range correlators

- cutoff artifact?

\[S = 1, T = 0 \]
Computational Many-Body Methods

No-Core Shell Model

Roth & Navrátil — in preparation
^4He: Convergence

V_{AV18}

V_{UCOM}

Residual long-range correlations

E_{AV18}

$\hbar \omega$ [MeV]

E [MeV]
^{4}He: Convergence

V_{AV18}

V_{UCOM}

N_{max}

E_{AV18}

E_{UCOM}

- Omitted 3- & 4-body contributions

Robert Roth – TU Darmstadt – 02/2009
Three-Body Interactions — Strategies

Correlated Hamiltonian in Many-Body Space

\[\tilde{H} = C^\dagger (T + V_{NN} + V_{3N}) C \]

\[= \tilde{T}^{[1]} + (\tilde{T}^{[2]} + \tilde{V}^{[2]}_{NN}) + (\tilde{T}^{[3]} + \tilde{V}^{[3]}_{NN} + \tilde{V}^{[3]}_{3N}) + \cdots \]

\[= T + V_{UCOM} + V^{[3]}_{UCOM} + \cdots \]

- **include full** \(V^{[3]}_{UCOM} \) consisting of genuine and induced 3N terms
 (not really feasible beyond lightest isotopes)

- **replace** \(V^{[3]}_{UCOM} \) by phenomenological three-body force
 (tractable also for heavier nuclei)

- **minimize** \(V^{[3]}_{UCOM} \) by proper choice of unitary transformation
 (calculation with a pure two-body interaction)
Three-Body Interactions — Tjon Line

- Tjon-line: $E(4\text{He})$ vs. $E(3\text{H})$ for phase-shift equivalent NN-interactions

The graph shows the comparison between $E(4\text{He})$ and $E(3\text{H})$ for different NN-interactions, including AV18, Nijm II, Nijm I, CD Bonn, and experimental values. The graph highlights the Tjon-line as a line of equality between the two energies for equivalent NN-interactions.
Three-Body Interactions — Tjon Line

- **Tjon-line**: $E(^4\text{He})$ vs. $E(^3\text{H})$ for phase-shift equivalent NN-interactions

- change of C_Ω-correlator range results in shift along Tjon-line

minimize net 3N interaction by choosing correlator close to experimental point
Three-Body Interactions — Tjon Line

- **Tjon-line**: $E(^4\text{He})$ vs. $E(^3\text{H})$ for phase-shift equivalent NN-interactions

- same behavior for the SRG interaction as function of α

- minimize net $3N$ interaction by choosing correlator close to experimental point
V_{UCOM}
MIN, $I_9 = 0.09 \text{ fm}^3$

V_{UCOM}
SRG, $\bar{\alpha} = 0.04 \text{ fm}^4$

V_{SRG}
$\bar{\alpha} = 0.03 \text{ fm}^4$

UCOM & SRG show very similar convergence behavior in light nuclei

E [MeV]

I_9 or $\bar{\alpha}$ adjusted such that ^4He binding energy is reproduced
UCOM vs. SRG: Hartree-Fock Systematics

UCOM & SRG generate (or require) very different 3N interactions

R_{ch} [fm]

$(E - E_{exp})/A$ [MeV]

V_{UCOM}

MIN, $I_\theta = 0.09$ fm3

V_{SRG}

$\bar{\alpha} = 0.04$ fm4

$\bar{\alpha} = 0.03$ fm4
10B: Hallmark of a 3N Interaction?

V_{UCOM}

$E - E_{3^+}$ [MeV]

-2 -1 0 1 2 3 4 5 6 7

$\hbar \omega = 18 \text{MeV}$

Exp

4+

2+

0+

1+

3+

-62.1 -64.7
10B: Hallmark of a 3N Interaction?

V_{UCOM} gives correct level ordering without any 3N interaction.
Computational Many-Body Methods

Importance-Truncated No-Core Shell Model

Roth, Piecuch, Gour — arXiv: 0806.0333
Roth — in preparation
- converged NCSM calculations are essentially restricted to p-shell
- full $6\hbar\omega$ calculation for ^{40}Ca presently not feasible (basis dimension $\sim 10^{10}$)

Importance Truncation

reduce NCSM space to the relevant basis states using an *a priori important measure* derived from MBPT

Similar strategies have first been developed in quantum chemistry:

configuration-selective multireference CI
given an initial approximation \(|\Psi_{\text{ref}}\rangle \) for the target state

measure the importance of individual basis state \(|\Phi_\nu\rangle \) via first-order multiconfigurational perturbation theory

\[
\kappa_\nu = -\frac{\langle \Phi_\nu | H | \Psi_{\text{ref}} \rangle}{\epsilon_\nu - \epsilon_{\text{ref}}}
\]

construct importance-truncated space spanned by basis states with \(|\kappa_\nu| \geq \kappa_{\text{min}} \) and solve eigenvalue problem

iterative scheme: repeat construction of importance-truncated model space using eigenstate as improved reference \(|\Psi_{\text{ref}}\rangle \)

threshold extrapolations and perturbative corrections can be used to account for discarded basis states
4He: Importance-Truncated NCSM

- **iterative IT-NCSM(i)** shows very fast convergence
- reproduces exact NCSM result for all N_{max}
- reduction of basis by more than two orders of magnitude w/o loss of precision

![Graph showing E vs. N_{max} and D_{max} vs. N_{max} for 4He.](image)

- $\hbar \omega = 40$ MeV
- V_{UCOM}

Robert Roth – TU Darmstadt – 02/2009
^4He: Importance-Truncated NCSM

- **sequential IT-NCSM(seq)** provides same results as IT-NCSM(3) with just one update per N_{max}
- reproduces exact NCSM result for all N_{max}
- reduction of basis by more than two orders of magnitude w/o loss of precision

\[V_{\text{UCOM}} \hbar \omega = 40 \text{ MeV} \]

\[D_{\text{max}} \]

Robert Roth – TU Darmstadt – 02/2009
4He: Importance-Truncated NCSM

- reproduces exact NCSM result for all $\hbar\omega$ and N_{max}
- importance truncation & threshold extrapolation is robust
- no problem with center of mass

E [MeV] vs. $\hbar\Omega$ [MeV]

- full NCSM
- IT-NCSM(seq)
^{16}O: Importance-Truncated NCSM

- IT-NCSM(seq) provides **excellent agreement with full NCSM calculation**
- Dimension reduced by several orders of magnitude
- Possibility to go **way beyond** the domain of the full NCSM

V_{UCOM}

$\hbar \omega = 22 \text{ MeV}$

Graph showing:
- E [MeV] vs. N_{max}
- D_{max} vs. N_{max}

Legend:
- + full NCSM
- IT-NCSM(seq), $C_{\text{min}} = 0.0005$
- IT-NCSM(seq), $C_{\text{min}} = 0.0003$
6He & 8He: IT-NCSM for Open-Shell Nuclei

6He

$V_{UCOM} \hbar \omega = 24$ MeV

8He

$V_{UCOM} \hbar \omega = 24$ MeV

E [MeV]

D_{max}

N_{max}
12C: IT-NCSM for Open-Shell Nuclei

- **excellent agreement with full NCSM calculations**
- IT-NCSM(seq) works just as well for non-magic / open-shell nuclei
- all calculations limited by CPU-time only

\[V_{UCOM} \]
\[\hbar \omega = 24 \text{ MeV} \]

\[10^3 \quad 10^4 \quad 10^5 \quad 10^6 \quad 10^7 \quad 10^8 \quad 10^9 \]

\[N_{max} \]

\[D_{max} \]

- full NCSM
- IT-NCSM(seq), \(C_{min} = 0.0005 \)
- IT-NCSM(seq), \(C_{min} = 0.0003 \)
IT-NCSM: Pros and Cons

✔ rigorously fulfills variational principle and Hylleraas-Undheim theorem

✔ no sizable center-of-mass contamination induced by IT in $N_{\text{max}}\hbar\Omega$ space

✔ constrained threshold extrapolation $\kappa_{\text{min}} \to 0$ recovers contribution of excluded configurations efficiently and accurately

✔ open and closed-shell nuclei with ground and excited states can be treated on the same footing

✔ compatible with shell-model: excited states and angular-momentum projection via Lanczos, eigenstates in shell-model representation, computation of observables

✘ computationally still demanding
Perspectives

- three steps from QCD to the nuclear chart
 - QCD-based nuclear interactions
 - unitarily transformed interactions (UCOM, SRG,...)
 - computational many-body methods
- exciting new developments in all three sectors
- alternative route using density functional methods

QCD-based description of nuclear structure across the whole nuclear chart is within reach
thanks to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- P. Navrátil
 Lawrence Livermore National Laboratory, USA

- P. Piecuch, J. Gour
 Michigan State University, USA

- H. Feldmeier, T. Neff,...
 Gesellschaft für Schwerionenforschung (GSI)