Ab Initio Nuclear Structure

with

SRG-Evolved NN plus 3N Interactions

Robert Roth
Institut für Kernphysik
Nuclear Structure

- Chiral EFT based on the relevant degrees of freedom & symmetries of QCD
- Provides consistent NN & 3N interaction plus currents
 - In the following:
 - NN at N^3LO (Entem & Machleidt, 500 MeV)
 - 3N at N^2LO (low-energy constants c_D & c_E from triton fit)
Nuclear Structure

Unitarily Transformed Hamiltonian
- adapt Hamiltonian to truncated low-energy model space
 - tame short-range correlations
 - improve convergence behavior
- transform Hamiltonian & observables consistently
- conserve experimentally constrained few-body properties

NN+3N Interaction from Chiral EFT

Low-Energy QCD
From QCD to Nuclear Structure

Nuclear Structure

- Exact & Approx. Many-Body Methods
 - ‘exact’ solution of the many-body problem for light & intermediate masses (NCSM, CC,...)
 - controlled approximations for heavier nuclei (HF & MBPT,...)
 - all rely on restricted model spaces & benefit from unitary transformation

- Unitarily Transformed Hamiltonian

- NN+3N Interaction from Chiral EFT

- Low-Energy QCD
From QCD to Nuclear Structure

Nuclear Structure

- Exact & Approx. Many-Body Methods
- Unitarily Transformed Hamiltonian
- NN+3N Interaction from Chiral EFT

Low-Energy QCD

Focus on consistent inclusion of chiral 3N interaction
Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group

E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl

^3H

\begin{align*}
N^3\text{LO (500 MeV)}
\end{align*}

\begin{align*}
\text{NN (+ NNN-induced)}
\end{align*}

\begin{align*}
\text{NN + NNN}
\end{align*}

^4He

\begin{align*}
N^3\text{LO (500 MeV)}
\end{align*}

\begin{align*}
\text{NN + NNN}
\end{align*}
Overview

- Unitarily Transformed NN+3N Hamiltonians
 - Similarity Renormalization Group
 - consistent transformation of chiral NN+3N interactions

- Exact Ab-Initio Calculations
 - Importance-Truncated NCSM
 - test of SRG-transformed chiral NN+3N interactions throughout the p-shell

- Approximate Many-Body Methods
 - Hartree-Fock & Perturbation Theory
 - ground-state systematics throughout the nuclear chart using SRG-transformed chiral NN+3N interactions
Unitarily Transformed NN+3N Hamiltonians

Similarity Renormalization Group

Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010)
evolution of the Hamiltonian to band-diagonal form with respect to uncorrelated many-body basis

- **unitary transformation** of Hamiltonian:
 \[\tilde{H}_\alpha = U_\alpha \dagger H U_\alpha \]

- **evolution equations** for \(\tilde{H}_\alpha \) and \(U_\alpha \) depending on generator \(\eta_\alpha \)
 \[
 \frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \\
 \frac{d}{d\alpha} U_\alpha = -U_\alpha \eta_\alpha
 \]

- **dynamic generator**: commutator with the operator in whose eigenbasis \(H \) shall be diagonalized
 \[\eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha] \]
SRG Evolution of Matrix Elements

- represent operator equation in \textit{n-body Jacobi HO basis} \(|EiJ^\pi T\)

 \(n = 2\): relative LS-coupled HO states: \(|E(\text{LS})J^\pi T\)

 \(n = 3\): antisymmetrized Jacobi-coordinate HO states: \(|EiJ^\pi T\)

- system of \textbf{coupled evolution equations} for each \((J^\pi T)\)-block

\[
\frac{d}{d\alpha} \langle EiJ^\pi T | \tilde{H}_\alpha | E'iJ^\pi T \rangle = (2\mu)^2 \sum_{E''} E_{\text{SRG}} \sum_{i''} E_{\text{SRG}} \left[\langle EiJ^\pi T | T_{\text{int}} | E''i''J^\pi T \rangle \langle E''i''J^\pi T | \tilde{H}_\alpha | E'jJ^\pi T \rangle
- 2 \langle EiJ^\pi T | \tilde{H}_\alpha | E''i''J^\pi T \rangle \langle E''i''J^\pi T | T_{\text{int}} | E'jJ^\pi T \rangle \langle E'jJ^\pi T | \tilde{H}_\alpha | E'iJ^\pi T \rangle
+ \langle EiJ^\pi T | \tilde{H}_\alpha | E''i''J^\pi T \rangle \langle E''i''J^\pi T | \tilde{H}_\alpha | E'jJ^\pi T \rangle \langle E'jJ^\pi T | T_{\text{int}} | E'iJ^\pi T \rangle \right]
\]

- we use \(E_{\text{SRG}} = 40\) for \(J \leq 5/2\) and ramp down to 24 in steps of 4 (sufficient to converge the intermediate sums for \(\hbar\Omega \gtrsim 16\text{ MeV}\))
SRG Evolution in Two-Body Space

\(\alpha = 0.00 \text{ fm}^4 \)
\(\Lambda = \infty \text{ fm}^{-1} \)

\(J^{\pi} = 1^+, T = 0, \hbar \Omega = 28 \text{ MeV} \)

2B-Jacobi HO matrix elements

momentum space \(^3S_1 \)
SRG Evolution in Two-Body Space

\[\alpha = 0.32 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^{\pi} = 1^+, T = 0, \hbar\Omega = 28 \text{ MeV} \]

2B-Jacobi HO matrix elements

momentum space \(^3S_1 \)
\[\alpha = 0.00 \text{ fm}^4 \]
\[\Lambda = \infty \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]
$\alpha = 0.32 \text{ fm}^4$

$\Lambda = 1.33 \text{ fm}^{-1}$

$J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV}$

NCSM ground state ^3H

3B-Jacobi HO matrix elements

E, $\hbar \Omega = 28 \text{ MeV}$
Calculations in A-Body Space

- **cluster decomposition**: decompose evolved Hamiltonian from 2B/3B space into irreducible n-body contributions $\tilde{H}_\alpha^{[n]}$

\[
\tilde{H}_\alpha = \tilde{H}_\alpha^{[1]} + \tilde{H}_\alpha^{[2]} + \tilde{H}_\alpha^{[3]} + \ldots
\]

- **cluster truncation**: can construct cluster-orders up to $n = 3$ from evolution in 2B and 3B space, have to discard $n > 3$

 - only the **full evolution in A-body space** conserves A-body energy eigenvalues and, thus, independent of α

 - α-dependence of eigenvalues of the truncated Hamiltonian measures impact of omitted many-body interactions

 α-variation provides a **diagnostic tool** to assess the contributions of omitted many-body interactions
1. **computation of initial 2B/3B-Jacobi HO matrix elements of chiral NN+3N interactions**
 - we use Petr Navratil’s ManyEff code for computing 3B-Jacobi matrix elements and corresponding CFPs

2. **SRG evolution in 2B/3B space and cluster decomposition**
 - efficient implementation using adaptive ODE solver; largest block takes a few hours on single node

3. **transformation of 2B/3B Jacobi HO matrix elements into JT-coupled representation**
 - formulated transformation directly into JT-coupled scheme; highly efficient implementation; can handle $E_{3\text{ max}} = 16$ in JT-coupled scheme

4. **data management and on-the-fly decoupling in many-body codes**
 - invented optimized storage scheme for fast on-the-fly decoupling; can keep all matrix elements up to $E_{3\text{ max}} = 16$ in memory
Exact Ab Initio Calculations

Importance Truncated NCSM

NCSM is one of the most powerful and universal exact ab initio methods

- compute low-lying eigenvalues of the Hamiltonian in a **model space of HO Slater determinants** truncated w.r.t. HO excitation energy $N_{\text{max}}\hbar\Omega$

- **all relevant observables** can be computed from the eigenstates

- range of applicability limited by **factorial growth** of Slater-determinant basis with N_{max} and A

- adaptive **importance truncation** extends the range of NCSM by reducing the model space to physically relevant states

- we have developed a **parallelized IT-NCSM/NCSM code** capable of handling $3N$ matrix elements up to $E_{3\text{max}} = 16$
Converged NCSM calculations essentially restricted to lower/mid p-shell.

Full 10 or 12ℏΩ calculation for 16O not really feasible (basis dimension $> 10^{10}$).

Importance Truncation

Reduce NCSM space to the relevant basis states using an *a priori* importance measure derived from MBPT.
Importance Truncation: General Idea

- given an initial approximation $|\psi_{\text{ref}}^{(m)}\rangle$ for the target states

- **measure the importance** of individual basis state $|\Phi_\nu\rangle$ via first-order multiconfigurational perturbation theory

\[
\kappa^{(m)}_\nu = -\frac{\langle \Phi_\nu | H | \psi_{\text{ref}}^{(m)} \rangle}{\epsilon_\nu - \epsilon_{\text{ref}}}
\]

- construct importance truncated space spanned by basis states with $|\kappa^{(m)}_\nu| \geq \kappa_{\text{min}}$ and solve eigenvalue problem

- **sequential scheme**: construct importance truncated space for next N_{max} using previous eigenstates as reference $|\psi_{\text{ref}}^{(m)}\rangle$

- a posteriori **threshold extrapolation** and perturbative correction used to recover contribution from discarded basis states
Applications

IT-NCSM with SRG-Evolved Chiral NN+3N Interactions
A Tale of Three Hamiltonians

- **NN only**: start with NN-only initial Hamiltonian and evolve in two-body space

\[
\hat{H}^{\text{NN-only}}_{\alpha} = T_{\text{int}} + \tilde{T}_{\text{int,}\alpha}^{[2]} + \tilde{V}_{\text{NN,}\alpha}^{[2]}
\]

- **NN+3N-induced**: start with NN-only initial Hamiltonian and evolve in three-body space

\[
\hat{H}^{\text{NN+3N-induced}}_{\alpha} = T_{\text{int}} + \tilde{T}_{\text{int,}\alpha}^{[2]} + \tilde{V}_{\text{NN,}\alpha}^{[2]} + \tilde{T}_{\text{int,}\alpha}^{[3]} + \tilde{V}_{\text{NN,}\alpha}^{[3]}
\]

- **NN+3N-full**: start with NN+3N initial Hamiltonian and evolve in three-body space

\[
\hat{H}^{\text{NN+3N-full}}_{\alpha} = T_{\text{int}} + \tilde{T}_{\text{int,}\alpha}^{[2]} + \tilde{V}_{\text{NN,}\alpha}^{[2]} + \tilde{T}_{\text{int,}\alpha}^{[3]} + \tilde{V}_{\text{NN,}\alpha}^{[3]}
\]

\(\alpha\)-variation provides a **diagnostic tool** to assess the contributions of omitted many-body interactions.
4He: Ground-State Energies

- **NN only**: strong α-dependence: induced 3N interactions
- **NN+3N-induced**: no α-dependence: no induced 4N interactions
- **NN+3N-full**: no α-dependence: no induced 4N interactions

$h\Omega = 20$ MeV

E [MeV] vs N_{max}

- $\alpha = 0.04\,\text{fm}^4$, $\Lambda = 2.24\,\text{fm}^{-1}$
- $\alpha = 0.05\,\text{fm}^4$, $\Lambda = 2.11\,\text{fm}^{-1}$
- $\alpha = 0.0625\,\text{fm}^4$, $\Lambda = 2.00\,\text{fm}^{-1}$
- $\alpha = 0.08\,\text{fm}^4$, $\Lambda = 1.88\,\text{fm}^{-1}$
- $\alpha = 0.16\,\text{fm}^4$, $\Lambda = 1.58\,\text{fm}^{-1}$
\[\hbar \Omega = 20 \text{ MeV} \]

\[\alpha = 0.04 \text{ fm}^4 \quad \Lambda = 2.24 \text{ fm}^{-1} \]
\[\alpha = 0.05 \text{ fm}^4 \quad \Lambda = 2.11 \text{ fm}^{-1} \]
\[\alpha = 0.0625 \text{ fm}^4 \quad \Lambda = 2.00 \text{ fm}^{-1} \]
\[\alpha = 0.08 \text{ fm}^4 \quad \Lambda = 1.88 \text{ fm}^{-1} \]
\[\alpha = 0.16 \text{ fm}^4 \quad \Lambda = 1.58 \text{ fm}^{-1} \]
12C: Ground-State Energies

NN only

- $\hbar \Omega = 20 \text{ MeV}$

NN+3N-induced

- **no α-dependence:**
 - no induced 4N contrib.

NN+3N-full

- **some α-dependence:**
 - induced 4N interactions

- $\alpha = 0.04 \text{ fm}^4$
 - $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
 - $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
 - $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
 - $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
 - $\Lambda = 1.58 \text{ fm}^{-1}$
16O: Ground-State Energies

NN only

- $h\Omega = 20\text{ MeV}$

NN+3N-induced

- no α-dependence:
 - no induced 4N contrib.

NN+3N-full

- sizable α-dependence:
 - induced 4N interactions

$\alpha = 0.04\text{ fm}^4$

$\Lambda = 2.24\text{ fm}^{-1}$

$\alpha = 0.05\text{ fm}^4$

$\Lambda = 2.11\text{ fm}^{-1}$

$\alpha = 0.0625\text{ fm}^4$

$\Lambda = 2.00\text{ fm}^{-1}$

$\alpha = 0.08\text{ fm}^4$

$\Lambda = 1.88\text{ fm}^{-1}$

$\alpha = 0.16\text{ fm}^4$

$\Lambda = 1.58\text{ fm}^{-1}$
^{16}O: Energy vs. Flow Parameter

- **NN only**: strong α-dependence \Rightarrow significant induced 3N contributions

- **NN+3N-induced**: no α-dependence \Rightarrow all relevant induced terms from initial NN captured at 3N level

- **NN+3N-full**: sizable α-dependence \Rightarrow additional induced terms caused by initial 3N appear at 4N level

$h\Omega = 20$ MeV
^{16}O & ^4He: Energy vs. Flow Parameter

\begin{align*}
\hbar\Omega &= 20 \text{ MeV} \\
E_\infty &\text{ [MeV]}
\end{align*}

- ^{16}O
- ^4He

- $\hbar\Omega = 20 \text{ MeV}$
- E_∞ [MeV]

- 0 to 0.16 [α [fm4]]
^6Li: Excitation Energies

NN only

NN+3N-induced

NN+3N-full

E_x [MeV] vs. N_{max}

$h\Omega = 20$ MeV

$\alpha = 0.04 \text{ fm}^4$
$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.05 \text{ fm}^4$
$\Lambda = 2.11 \text{ fm}^{-1}$

$\alpha = 0.0625 \text{ fm}^4$
$\Lambda = 2.00 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$
$\Lambda = 1.88 \text{ fm}^{-1}$

$\alpha = 0.15 \text{ fm}^4$
$\Lambda = 1.58 \text{ fm}^{-1}$
^{12}C: Excitation Energies

NN only

- $E_x [\text{MeV}]$

- N_{max}

- $\hbar \Omega = 20 \text{ MeV}$

- $\alpha = 0.04 \text{ fm}^4$
 - $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
 - $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-induced

- $E_x [\text{MeV}]$

- N_{max}

- $\alpha = 0.0625 \text{ fm}^4$
 - $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
 - $\Lambda = 1.88 \text{ fm}^{-1}$

NN+3N-full

- $E_x [\text{MeV}]$

- N_{max}

- $\alpha = 0.16 \text{ fm}^4$
 - $\Lambda = 1.58 \text{ fm}^{-1}$
12C: Spectroscopy

- spectroscopy of heavy Carbon isotopes (e.g., 16C, 18C) next...

\[\hbar \Omega = 20 \text{ MeV} \]
\[\alpha = 0.08 \text{ fm}^4 \]
\[\Lambda = 1.88 \text{ fm}^{-1} \]
Conclusions
Conclusions

- ab initio nuclear structure calculations with consistently SRG-evolved chiral NN+3N interactions
 - consistent SRG evolution up to the 3N level
 - efficient transformation and management of JT-coupled 3N matrix elements
 - IT-NCSM with full 3N interactions up to $N_{\text{max}} = 12 \ (14)$ for all p-shell nuclei (and lower sd-shell)

- indications that induced 4N contributions resulting from initial 3N interaction become significant beyond mid-p-shell

- use modified SRG generators to suppress induced 4N contributions from the outset

- many exciting applications ahead...
Epilogue

- thanks to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- P. Navrátil
 TRIUMF Vancouver, Canada

- S. Quaglioni
 Lawrence Livermore National Laboratory, USA

- H. Hergert, P. Piecuch
 Michigan State University, USA

- C. Forssén
 Chalmers University of Technology, Sweden

- H. Feldmeier, T. Neff,...
 Gesellschaft für Schwerionenforschung (GSI)