Ab Initio Nuclear Structure Theory with Chiral NN plus 3N Interactions

Robert Roth

INSTITUT FÜR KERNPHYSIK

TECHNISCHE UNIVERSITÄT DARMSTADT

Nuclear Structure

Nuclear Structure

NN+3N Interaction from Chiral EFT

- chiral EFT based on the relevant degrees of freedom & symmetries of QCD
- provides consistent NN & 3N interaction plus currents
- in the following:
 - NN at N³LO (Entem & Machleidt, 500 MeV)
 - 3N at N²LO (low-energy constants c_D & c_E from triton fit)

Nuclear Structure

Unitarily Transformed Hamiltonian

NN+3N Interaction from Chiral EFT

adapt Hamiltonian to truncated low-energy model space

- tame short-range correlations
- improve convergence behavior
- transform Hamiltonian & observables consistently
- conserve experimentally constrained few-body properties

 'exact' solution of the manybody problem for light & intermediate masses (NCSM, CC,...)

- controlled approximations for heavier nuclei (HF & MBPT,...)
- all rely on restricted model spaces & benefit from unitary transformation

NN+3N Interaction from Chiral EFT

NN+3N Interaction from Chiral EFT focus on consistent inclusion of chiral 3N interaction

Unitarily Transformed Hamiltonian

Similarity Renormalization Group

Roth et al. — Phys. Rev. Lett. (2011); arXiv:1105.3173 Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010) Roth, Reinhardt, Hergert — Phys. Rev. C 77, 064033 (2008) Hergert, Roth — Phys. Rev. C 75, 051001(R) (2007)

Similarity Renormalization Group

continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis

■ unitary transformation of Hamiltonian (and other observables) $\widetilde{H}_{\alpha} = U_{\alpha}^{\dagger} H U_{\alpha}$

evolution equations for \tilde{H}_{α} and U_{α} depending on generator η_{α}

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}\widetilde{\mathrm{H}}_{\alpha} = \left[\eta_{\alpha}, \widetilde{\mathrm{H}}_{\alpha}\right] \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}\alpha}\mathrm{U}_{\alpha} = -\mathrm{U}_{\alpha}\eta_{\alpha}$$

dynamic generator: commutator with the operator in whose eigenbasis H shall be diagonalized

$$\eta_{\alpha} = (2\mu)^2 [T_{\text{int}}, \widetilde{H}_{\alpha}]$$

Similarity Renormalization Group

evolution equations for \tilde{H}_{α} and U_{α} depending on generator η_{α}

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}\widetilde{\mathrm{H}}_{\alpha} = \left[\eta_{\alpha}, \widetilde{\mathrm{H}}_{\alpha}\right] \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}\alpha}\mathrm{U}_{\alpha} = -\mathrm{U}_{\alpha}\eta_{\alpha}$$

dynamic generator: commutator with the operator in whose eigenbasis H shall be diagonalized

$$\eta_{\alpha} = (2\mu)^2 [T_{int}, \widetilde{H}_{\alpha}]$$

SRG Evolution of Matrix Elements

- represent operator equation in antisym. n-body Jacobi basis
 - n = 2: momentum space $|q(LS)JT\rangle$ or harmonic oscillator $|E(LS)J^{\pi}T\rangle$
 - n = 3: harmonic oscillator Jacobi states $|EiJ^{\pi}T\rangle$
- **•** system of **coupled evolution equations** for each $(J^{\pi}T)$ -block

$$\begin{aligned} \frac{d}{d\alpha} \langle Eij^{\pi}T | \widetilde{H}_{\alpha} | E'i'J^{\pi}T \rangle &= (2\mu)^{2} \sum_{E'',i''}^{E_{SRG}} \sum_{E''',i'''}^{E_{SRG}} \left[\\ \langle Ei... | T_{int} | E''i''... \rangle \langle E''i''... | \widetilde{H}_{\alpha} | E'''i''... \rangle \langle E'''i''... | \widetilde{H}_{\alpha} | E''i''... \rangle \\ -2 \langle Ei... | \widetilde{H}_{\alpha} | E''i''... \rangle \langle E''i''... | T_{int} | E'''i''... \rangle \langle E'''i''... | \widetilde{H}_{\alpha} | E'i'... \rangle \\ + \langle Ei... | \widetilde{H}_{\alpha} | E''i''... \rangle \langle E''i''... | \widetilde{H}_{\alpha} | E'''i''... \rangle \langle E'''i''... | T_{int} | E'''i''... \rangle \\ \end{aligned}$$

• we use $E_{SRG} = 40$ for $J \le 5/2$ and ramp down to 24 in steps of 4 (sufficient to converge the intermediate sums for $\hbar\Omega \gtrsim 16$ MeV)

• **cluster decomposition**: decompose evolved Hamiltonian from 2B/3B space into irreducible *n*-body contributions $\widetilde{H}^{[n]}_{\alpha}$

$$\widetilde{\mathsf{H}}_{\alpha} = \widetilde{\mathsf{H}}_{\alpha}^{[1]} + \widetilde{\mathsf{H}}_{\alpha}^{[2]} + \widetilde{\mathsf{H}}_{\alpha}^{[3]} + \dots$$

- **cluster truncation**: can construct cluster-orders up to n = 3 from evolution in 2B and 3B space, have to discard n > 3
 - only the full evolution in A-body space is formally unitary and conserves A-body energy eigenvalues (independent of α)
 - α-dependence of eigenvalues of cluster-truncated Hamiltonian measures impact of discarded induced many-body terms

• **cluster decomposition**: decompose evolved Hamiltonian from 2B/3B space into irreducible *n*-body contributions $\tilde{H}^{[n]}_{\alpha}$

$$\widetilde{\mathsf{H}}_{\alpha} = \widetilde{\mathsf{H}}_{\alpha}^{[1]} + \widetilde{\mathsf{H}}_{\alpha}^{[2]} + \widetilde{\mathsf{H}}_{\alpha}^{[3]} + \dots$$

- **cluster truncation**: can construct cluster-orders up to n = 3 from evolution in 2B and 3B space, have to discard n > 3
 - only the **full evolution in** A-body space is formally unitary and conserves A-body energy eigenvalues (independent of α)
 - α-dependence of eigenvalues
 nian measures impact of

α-variation provides a **miltodiagnostic tool** to assess the omitted induced many-body interactions

Sounds easy, but...

• computation of initial 2B/3B-Jacobi HO matrix elements of chiral NN+3N interactions

 we use Petr Navratil's ManyEff code for computing 3B-Jacobi matrix elements and corresponding CFPs

❷ SRG evolution in 2B/3B space and cluster decomposition

 efficient implementation using adaptive ODE solver & BLAS; largest block takes a few hours on single node

Itransformation of 2B/3B Jacobi HO matrix elements into JT-coupled representation

• formulated transformation directly into JT-coupled scheme; highly efficient implementation; can handle $E_{3 max} = 16$ in JT-coupled scheme

data management and on-the-fly decoupling in many-body codes

• invented optimized storage scheme for fast on-the-fly decoupling; can keep all matrix elements up to $E_{3 max} = 16$ in memory

Exact Many-Body Methods

Importance Truncated NCSM

Roth et al. — Phys. Rev. Lett. (2011); arXiv:1105.3173 Navrátil et al. — Phys. Rev. C 82, 034609 (2010) Roth — Phys. Rev. C 79, 064324 (2009) Roth & Navrátil — Phys. Rev. Lett. 99, 092501 (2007)

Importance Truncated NCSM

NCSM is one of the most powerful and universal ab initio many-body methods

- compute low-lying eigenvalues of the Hamiltonian in a model space of HO Slater determinants truncated w.r.t. HO excitation energy $N_{max}\hbar\Omega$
- **all relevant observables** can be computed from the eigenstates
- range of applicability limited by factorial growth of Slater-determinant basis with N_{max} and A
- adaptive importance truncation extends the range of NCSM by reducing the model space to physically relevant states
- we have developed a **parallelized IT-NCSM/NCSM code** capable of handling 3N matrix elements up to $E_{3 max} = 16$

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10 or 12ħΩ calculation for ¹⁶O not really feasible (basis dimension > 10¹⁰)

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10 or 12ħΩ calculation for ¹⁶O not really feasible (basis dimension > 10¹⁰)

Importance Truncation

reduce model space to the relevant basis states using an **a priori importance measure** derived from MBPT

A Tale of Three Hamiltonians

Initial Hamiltonian

- NN: chiral interaction at N³LO (Entem & Machleidt, 500 MeV)
- 3N: chiral interaction at N²LO (c_D , c_E from ³H binding & half-live)

SRG-Evolved Hamiltonians

- NN only: start with NN initial Hamiltonian and keep two-body terms only
- NN+3N-induced: start with NN initial Hamiltonian and keep two- and three-body terms
- NN+3N-full: start with NN+3N initial Hamiltonian and keep two- and three-body terms

A Tale of Three Hamiltonians

Initial Hamiltonian

- NN: chiral interaction at N³LO (Entem & Machleidt, 500 MeV)
- 3N: chiral interaction at N²LO (c_D , c_E from ³H binding & half-live)

SRG-Evolved Hamiltonians

- NN only: start with NN initial Hamiltonian and keep two-body terms only
- NN+3N-induced: start with NN initial Hamiltonian and keep two- and three-body terms
- NN+3N-full: start with NN+3N in two- and three-body terms

 α-variation provides a
diagnostic tool to assess
the contributions of omitted many-body interactions

NN only

 $\alpha = 0.16 \, \text{fm}^4$

 $\Lambda = 1.58 \, {\rm fm}^{-1}$

⁶Li: Excitation Energies

Spectroscopy of ¹²C

IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions

Spectroscopy of ¹²C

IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions

Spectroscopy of ¹²C

IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions

Spectroscopy of ¹⁶C

PRELIMINARY

Spectroscopy of ¹⁶C

Spectroscopy of ¹⁶C

PRELIMINARY

Where do we go from here?

- beyond the lightest nuclei, SRG-induced 4N contributions affect the absolute energies, but not the excitation energies
- with the inclusion of the leading 3N interaction we already obtain a very reasonable description of spectra (and ground states)

SRG Transformation

- Which parts of the initial 3N cause the induced 4N contributions ?
- Can we find alternative SRG generators with suppressed induced 4N ?

Chiral NN+3N Interactions

- How sensitive is the spectroscopy on specifics of the 3N interaction (cutoff, c_i's)?
- How does the inclusion of the subleading 3N terms affect the picture ?

Where do we go from here?

- beyond the lightest nuclei, SRG-induced 4N contributions affect the absolute energies, but not the excitation energies
- with the inclusion of the leading 3N interaction we already obtain a very reasonable description of spectra (and ground states)

SRG Transformation **Chiral NN+3N Interactions** Which parts of the initial 3N How sensitive is the speccause the induced 4N contritroscopy on specifics of the 3N butions? interaction (cutoff, c_i 's)? How does the inclusion of the Can we find alternative SPC generators with st first answers in **3N** terms affect the duced 4N? **Joachim Langhammer's** talk on Friday...

Sensitivity on Initial 3N — ¹⁶O

Sensitivity on Initial 3N — ¹²C

Sensitivity on Initial 3N — ¹²C

Conclusions

Conclusions

- new era of ab-initio nuclear structure and reaction theory connected to QCD via chiral EFT
 - chiral EFT as universal starting point... some issues remain
- consistent inclusion of 3N interactions in similarity transformations & many-body calculations
 - breakthrough in computation & handling of 3N matrix elements
- innovations in many-body theory: extended reach of exact methods & improved control over approximations
 - versatile toolbox for different observables & mass ranges
- many exciting applications ahead...

Epilogue

thanks to my group & my collaborators

 S. Binder, A. Calci, B. Erler, A. Günther, M. Hild, H. Krutsch, J. Langhammer, P. Papakonstantinou, S. Reinhardt, F. Schmitt, C. Stumpf, K. Vobig, R. Wirth Institut für Kernphysik, TU Darmstadt

• P. Navrátil

TRIUMF Vancouver, Canada

- S. Quaglioni LLNL Livermore, USA
- H. Hergert, P. Piecuch Michigan State University, USA
- C. Forssén Chalmers University, Sweden
- H. Feldmeier, T. Neff,... GSI Helmholtzzentrum

Deutsche Forschungsgemeinschaft

DFG

HIC for FAIR Helmholtz International Center

Science - Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Bundesministerium für Bildung und Forschung

Supplements

Importance Truncation: General Idea

- **•** given an initial approximation $|\Psi_{ref}^{(m)}\rangle$ for the **target states**
- measure the importance of individual basis state $|\Phi_{\nu}\rangle$ via first-order multiconfigurational perturbation theory

$$\kappa_{\nu}^{(m)} = -\frac{\left\langle \Phi_{\nu} \right| \mathsf{H} \left| \Psi_{\mathrm{ref}}^{(m)} \right\rangle}{\epsilon_{\nu} - \epsilon_{\mathrm{ref}}}$$

- construct **importance truncated space** spanned by basis states with $|\kappa_{\nu}^{(m)}| \ge \kappa_{\min}$ and solve eigenvalue problem
- sequential scheme: construct importance truncated space for next N_{max} using previous eigenstates as reference $|\Psi_{ref}^{(m)}\rangle$
- a posteriori threshold extrapolation and perturbative correction used to recover contributions from discarded basis states

Importance Truncation: General Idea

- given an initial approximation $|\Psi_{ref}^{(m)}\rangle$ for the **target states**
- **measure the importance** of individual basis state $|\Phi_{\nu}\rangle$ via first-order multiconfigurational perturbation theory

$$\kappa_{\nu}^{(m)} = -\frac{\left\langle \Phi_{\nu} \right| \mathsf{H} \left| \Psi_{\mathsf{ref}}^{(m)} \right\rangle}{\epsilon_{\nu} - \epsilon_{\mathsf{ref}}}$$

- construct **importance truncated space** spanned by basis states with $|\kappa_{\nu}^{(m)}| \ge \kappa_{\min}$ and solve eigenvalue problem
- sequential scheme: construnext N_{max} using previous eiger.

for $\kappa_{\min} \rightarrow 0$ the full NCSM model space and thus the **exact solution is recovered**

a posteriori threshold extrapolation and perturbative correction used to recover contributions from discarded basis states

Threshold Extrapolation

- do calculations for a sequence of importance thresholds K_{min}
- observables show smooth threshold dependence
- systematic approach to the full NCSM limit
- use a posteriori extrapolation κ_{min} → 0 of observables to account for effect of excluded configurations

Constrained Threshold Extrapolation

- estimate energy contribution of **excluded states** perturbatively $\rightarrow \Delta_{excl}(\kappa_{min})$
- simultaneous fit of combined energy
 - $E_{\lambda}(\kappa_{\min})$
 - $= E_{\rm int}(\kappa_{\rm min}) + \lambda \Delta_{\rm excl}(\kappa_{\rm min})$

for set of λ -values with the constraint $E_{\lambda}(0) = E_{\text{extrap}}$

robust threshold extrapolation with error bars determined by variation of fit function

Origin of SRG-Induced 4N Terms

Origin of SRG-Induced 4N Terms

Sensitivity on 3N Cutoff: ¹⁶O

Sensitivity on c_i Shift: ¹⁶O

- include shifts of *c_i* values from N³LO terms and refit *c_E* to reproduce the ⁴He ground-state energy
- sizable impact on α-dependence and absolute ground-state energy

Sensitivity on $c_3 \& c_4$: ¹⁶O

Sensitivity on 3N Cutoff: ¹²C

 significant improvement of 1⁺0 energy and of overall agreement

Sensitivity on c_i Shift: ¹²C

 slight improvement of 1⁺0 energy and of overall agreement

Sensitivity on c_i Shift: ¹²C

Sensitivity on $c_3 \& c_4$: ¹²C

