Ab Initio Nuclear Structure Theory
with Chiral NN plus 3N Interactions

Robert Roth

INSTITUT FÜR KERNPHYSIK
From QCD to Nuclear Structure

Nuclear Structure

NN+3N Interaction from Chiral EFT

- chiral EFT based on the relevant degrees of freedom & symmetries of QCD
- provides consistent NN & 3N interaction plus currents
- in the following:
 - NN at N^3LO (Entem & Machleidt, 500 MeV)
 - 3N at N^2LO (low-energy constants c_D & c_E from triton fit)

Low-Energy QCD
From QCD to Nuclear Structure

Nuclear Structure

Unitarily Transformed Hamiltonian

- adapt Hamiltonian to truncated low-energy model space
 - tame short-range correlations
 - improve convergence behavior

NN+3N Interaction from Chiral EFT

- transform Hamiltonian & observables consistently

Low-Energy QCD

- conserve experimentally constrained few-body properties
From QCD to Nuclear Structure

Nuclear Structure

Exact & Approx. Many-Body Methods

- ‘exact’ solution of the many-body problem for light & intermediate masses (NCSM, CC,...)
- controlled approximations for heavier nuclei (HF & MBPT,...)
- all rely on restricted model spaces & benefit from unitary transformation

Unitarily Transformed Hamiltonian

NN+3N Interaction from Chiral EFT

Low-Energy QCD
From QCD to Nuclear Structure

Nuclear Structure

- Exact & Approx. Many-Body Methods
- Unitarily Transformed Hamiltonian
- NN+3N Interaction from Chiral EFT

Low-Energy QCD

Importance Truncated No-Core Shell Model with NN+3N

Similarity Renormalization Group with NN+3N

Focus on consistent inclusion of chiral 3N interaction
Unitarily Transformed Hamiltonian

Similarity
Renormalization Group

Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010)
Similarity Renormalization Group

- **unitary transformation** of Hamiltonian (and other observables)
 \[\tilde{H}_\alpha = U_\alpha^\dagger H U_\alpha \]

- **evolution equations** for \(\tilde{H}_\alpha \) and \(U_\alpha \) depending on generator \(\eta_\alpha \)
 \[\frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \quad \frac{d}{d\alpha} U_\alpha = -U_\alpha \eta_\alpha \]

- **dynamic generator**: commutator with the operator in whose eigenbasis \(H \) shall be diagonalized
 \[\eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha] \]
continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis

- **unitary transformation** of Hamiltonian
 \[\tilde{H}_\alpha = U_\alpha^\dagger H U_\alpha \]

- **evolution equations** for \(\tilde{H}_\alpha \) and \(U_\alpha \) depending on generator \(\eta_\alpha \)
 \[\frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \]
 \[\frac{d}{d\alpha} U_\alpha = -U_\alpha \eta_\alpha \]

- **dynamic generator**: commutator with the operator in whose eigenbasis \(H \) shall be diagonalized
 \[\eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha] \]

simplicity and flexibility are great advantages of the SRG approach
SRG Evolution of Matrix Elements

- represent operator equation in **antisym.** \(n \)-body Jacobi basis
 - \(n = 2 \): momentum space \(|q(LS)JT\rangle\) or harmonic oscillator \(|E(LS)J^\pi T\rangle\)
 - \(n = 3 \): harmonic oscillator Jacobi states \(|EiJ^\pi T\rangle\)

- system of **coupled evolution equations** for each \((J^\pi T)\)-block

\[
\frac{d}{d\alpha} \langle EiJ^\pi T | \tilde{H}_\alpha | E'i'J^\pi T \rangle = (2\mu)^2 \sum_{E'''} \sum_{E'',i''} \sum_{E',i'} \left[
\langle Ei... | T_{\text{int}} | E'''i''... \rangle \langle E''i''... | \tilde{H}_\alpha | E''''i''''... \rangle \langle E''''i''''... | \tilde{H}_\alpha | E'i'... \rangle
\right. \\
\left. - 2 \langle Ei... | \tilde{H}_\alpha | E''i''... \rangle \langle E''i''... | T_{\text{int}} | E''''i''''... \rangle \langle E''''i''''... | \tilde{H}_\alpha | E'i'... \rangle
\right. \\
+ \langle Ei... | \tilde{H}_\alpha | E''i''... \rangle \langle E''i''... | \tilde{H}_\alpha | E'''i'''... \rangle \langle E'''i'''... | T_{\text{int}} | E'i'... \rangle
\]

- we use \(E_{\text{SRG}} = 40 \) for \(J \leq 5/2 \) and ramp down to 24 in steps of 4 (sufficient to converge the intermediate sums for \(\hbar \Omega \gtrsim 16 \text{ MeV} \))

SRG Evolution in Two-Body Space

chiral NN
Entem & Machleidt. N3LO, 500 MeV

\(J^\pi = 1^+, T = 0 \)

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

\[L = 0 \quad L = 2 \]
SRG Evolution in Two-Body Space

\[\alpha = 0.000 \text{ fm}^4 \]
\[\Lambda = \infty \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

momentum-space matrix elements

\[^3S_1 \]
\[^3S_1 - ^3D_1 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

\[r \text{ [fm]} \]
SRG Evolution in Two-Body Space

\[\alpha = 0.002 \text{ fm}^4 \]
\[\Lambda = 4.73 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

momentum-space matrix elements

\[^3S_1 \]
\[^3S_1 - ^3D_1 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

\(L = 0 \)
\(L = 2 \)

\[r \text{ [fm]} \]
SRG Evolution in Two-Body Space

\[\alpha = 0.005 \text{ fm}^4 \]
\[\Lambda = 3.76 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

momentum-space matrix elements

\[{}^3S_1 \]

\[{}^3S_1 - {}^3D_1 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

L = 0

L = 2
SRG Evolution in Two-Body Space

\[\alpha = 0.010 \text{ fm}^4 \]
\[\Lambda = 3.16 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

- Blue: \(L = 0 \)
- Red: \(L = 2 \)
SRG Evolution in Two-Body Space

\[\alpha = 0.020 \text{ fm}^4 \]
\[\Lambda = 2.66 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

momentum-space matrix elements

\[^3S_1 \]

\[^3S_1 - ^3D_1 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

\[L = 0 \]
\[L = 2 \]
SRG Evolution in Two-Body Space

\[\alpha = 0.040 \text{ fm}^4 \]
\[\Lambda = 2.24 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

Deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]
SRG Evolution in Two-Body Space

\[\alpha = 0.080 \text{ fm}^4 \]
\[\Lambda = 1.88 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

momentum-space matrix elements

\[^3S_1 \]
\[^3S_1 - ^3D_1 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

\[L = 0 \quad L = 2 \]
SRG Evolution in Two-Body Space

\[\alpha = 0.160 \text{ fm}^4 \]

\[\Lambda = 1.58 \text{ fm}^{-1} \]

\[j^\pi = 1^+, T = 0 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]
SRG Evolution in Two-Body Space

\[\alpha = 0.320 \, \text{fm}^4 \]

\[\Lambda = 1.33 \, \text{fm}^{-1} \]

\[J^\pi = 1^+, T = 0 \]

momentum-space matrix elements

\[^3S_1 \]

\[^3S_1 - ^3D_1 \]

deuteron wave-function

\[\phi_L(r) \text{ [arb. units]} \]

- \(L = 0 \)
- \(L = 2 \)
SRG Evolution in Two-Body Space

\[\alpha = 0.320 \text{ fm}^4 \]

\[\Lambda = 1.33 \text{ fm}^{-1} \]

\[J^\pi = 1^+, T = 0 \]

deuteron wave-function

suppression of off-diagonal coupling \(\hat{\Delta} \) pre-diagonalization

elimination of short-range correlations
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

chiral NN+3N
\(N^3\text{LO} + N^2\text{LO}, \text{triton-fit, 500 MeV} \)

\(J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar\Omega = 28 \text{ MeV} \)

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\(\alpha = 0.000 \text{ fm}^4 \)
\(\Lambda = \infty \text{ fm}^{-1} \)

\(J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \)

NCSM ground state \(^3\text{H} \)

\[\begin{array}{ccccccccc}
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
\hline \\
E [\text{MeV}] & -8 & -6 & -4 & -2 & 0 & 2 \\
\end{array} \]
SRG Evolution in Three-Body Space

\[\alpha = 0.010 \text{ fm}^4 \]
\[\Lambda = 3.16 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state ^3H
SRG Evolution in Three-Body Space

$\alpha = 0.020 \text{ fm}^4$

$\Lambda = 2.66 \text{ fm}^{-1}$

$J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV}$

3B-Jacobi HO matrix elements

$NCSM$ ground state ^3H
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\[\alpha = 0.040 \text{ fm}^4 \]
\[\Lambda = 2.24 \text{ fm}^{-1} \]
\[J^{\pi} = \frac{1}{2}^+, T = \frac{1}{2}, \hbar\Omega = 28 \text{ MeV} \]

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

\[\alpha = 0.080 \text{ fm}^4 \]
\[\Lambda = 1.88 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar\Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state ^3H
SRG Evolution in Three-Body Space

\[\alpha = 0.160 \text{ fm}^4 \]
\[\Lambda = 1.58 \text{ fm}^{-1} \]

\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

\[\alpha = 0.320 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

\[\alpha = 0.320 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state \(^3\text{H}\)

suppression of off-diagonal coupling \(\hat{=} \) pre-diagonalization

significant improvement of convergence behavior
Calculations in A-Body Space

- **cluster decomposition**: decompose evolved Hamiltonian from 2B/3B space into irreducible n-body contributions $\tilde{H}_\alpha^{[n]}$

$$\tilde{H}_\alpha = \tilde{H}_\alpha^{[1]} + \tilde{H}_\alpha^{[2]} + \tilde{H}_\alpha^{[3]} + \ldots$$

- **cluster truncation**: can construct cluster-orders up to $n = 3$ from evolution in 2B and 3B space, have to discard $n > 3$

 - only the **full evolution in A-body space** is formally unitary and conserves A-body energy eigenvalues (independent of α)

 - α-dependence of eigenvalues of **cluster-truncated Hamiltonian** measures impact of discarded induced many-body terms
Calculations in A-Body Space

- **cluster decomposition**: decompose evolved Hamiltonian from 2B/3B space into irreducible n-body contributions $\tilde{H}_\alpha^{[n]}$

$$\tilde{H}_\alpha = \tilde{H}_\alpha^{[1]} + \tilde{H}_\alpha^{[2]} + \tilde{H}_\alpha^{[3]} + \ldots$$

- **cluster truncation**: can construct cluster-orders up to $n = 3$ from evolution in 2B and 3B space, have to discard $n > 3$

 - only the **full evolution in A-body space** is formally unitary and conserves A-body energy eigenvalues (independent of α)
 - α-dependence of eigenvalues of Hamiltonian measures impact of omitted induced many-body interactions

\(\alpha\)-variation provides a diagnostic tool to assess the omitted induced many-body interactions
Sounds easy, but...

1. Computation of initial 2B/3B-Jacobi HO matrix elements of chiral NN+3N interactions
 - We use Petr Navratil’s ManyEff code for computing 3B-Jacobi matrix elements and corresponding CFPs

2. SRG evolution in 2B/3B space and cluster decomposition
 - Efficient implementation using adaptive ODE solver & BLAS; largest block takes a few hours on single node

3. Transformation of 2B/3B Jacobi HO matrix elements into JT-coupled representation
 - Formulated transformation directly into JT-coupled scheme; highly efficient implementation; can handle $E_{3\text{max}} = 16$ in JT-coupled scheme

4. Data management and on-the-fly decoupling in many-body codes
 - Invented optimized storage scheme for fast on-the-fly decoupling; can keep all matrix elements up to $E_{3\text{max}} = 16$ in memory
Exact Many-Body Methods

Importance Truncated NCSM

NCSM is one of the most powerful and universal ab initio many-body methods

- compute low-lying eigenvalues of the Hamiltonian in a **model space of HO Slater determinants** truncated w.r.t. HO excitation energy $N_{\text{max}} \hbar \Omega$

- **all relevant observables** can be computed from the eigenstates

- range of applicability limited by **factorial growth** of Slater-determinant basis with N_{max} and Λ

- adaptive **importance truncation** extends the range of NCSM by reducing the model space to physically relevant states

- we have developed a **parallelized IT-NCSM/NCSM code** capable of handling $3N$ matrix elements up to $E_{3\text{max}} = 16$
Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10 or 12ℏΩ calculation for \(^{16}\text{O}\) not really feasible (basis dimension > \(10^{10}\))

![Graph showing energy levels vs. \(N_{\text{max}}\) for \(^{16}\text{O}\) with NN-only interaction, \(\alpha = 0.04 \text{ fm}^4\), \(\hbar\Omega = 20 \text{ MeV}\).]
Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10 or 12$\hbar\Omega$ calculation for 16O not really feasible (basis dimension > 10^{10})

Importance Truncation
reduce model space to the relevant basis states using an **a priori importance measure** derived from MBPT
A Tale of Three Hamiltonians

Initial Hamiltonian

- **NN**: chiral interaction at N^3LO
 (Entem & Machleidt, 500 MeV)
- **3N**: chiral interaction at N^2LO
 (c_D, c_E from 3H binding & half-live)

SRG-Evolved Hamiltonians

- **NN only**: start with NN initial Hamiltonian and keep two-body terms only
- **NN+3N-induced**: start with NN initial Hamiltonian and keep two- and three-body terms
- **NN+3N-full**: start with NN+3N initial Hamiltonian and keep two- and three-body terms
A Tale of Three Hamiltonians

Initial Hamiltonian
- **NN**: chiral interaction at N^3LO (Entem & Machleidt, 500 MeV)
- **3N**: chiral interaction at N^2LO (c_D, c_E from 3H binding & half-live)

SRG-Evolved Hamiltonians
- **NN only**: start with NN initial Hamiltonian and keep two-body terms only
- **NN+3N-induced**: start with NN initial Hamiltonian and keep two- and three-body terms
- **NN+3N-full**: start with NN+3N initial Hamiltonian and keep two- and three-body terms

α-variation provides a **diagnostic tool** to assess the contributions of omitted many-body interactions
\(\alpha = 0.04 \text{ fm}^4 \quad \Lambda = 2.24 \text{ fm}^{-1} \)
\(\alpha = 0.05 \text{ fm}^4 \quad \Lambda = 2.11 \text{ fm}^{-1} \)
\(\alpha = 0.0625 \text{ fm}^4 \quad \Lambda = 2.00 \text{ fm}^{-1} \)
\(\alpha = 0.08 \text{ fm}^4 \quad \Lambda = 1.88 \text{ fm}^{-1} \)
\(\alpha = 0.16 \text{ fm}^4 \quad \Lambda = 1.58 \text{ fm}^{-1} \)
\(^4\text{He}: \text{Ground-State Energies} \)

NN only

- strong \(\alpha \)-dependence: induced 3N interactions

\[
\hbar \Omega = 20 \text{ MeV}
\]

\[
\begin{align*}
\alpha &= 0.04 \text{ fm}^4 & \Lambda &= 2.24 \text{ fm}^{-1} \\
\alpha &= 0.05 \text{ fm}^4 & \Lambda &= 2.11 \text{ fm}^{-1} \\
\alpha &= 0.0625 \text{ fm}^4 & \Lambda &= 2.00 \text{ fm}^{-1} \\
\alpha &= 0.08 \text{ fm}^4 & \Lambda &= 1.88 \text{ fm}^{-1} \\
\alpha &= 0.16 \text{ fm}^4 & \Lambda &= 1.58 \text{ fm}^{-1}
\end{align*}
\]
4He: Ground-State Energies

NN only

- Strong α-dependence: induced 3N interactions
- $\hbar \Omega = 20$ MeV

NN+3N-induced

- $\alpha = 0.04$ fm4
 - $\Lambda = 2.24$ fm$^{-1}$
- $\alpha = 0.05$ fm4
 - $\Lambda = 2.11$ fm$^{-1}$
- $\alpha = 0.0625$ fm4
 - $\Lambda = 2.00$ fm$^{-1}$
- $\alpha = 0.08$ fm4
 - $\Lambda = 1.88$ fm$^{-1}$
- $\alpha = 0.16$ fm4
 - $\Lambda = 1.58$ fm$^{-1}$
^4He: Ground-State Energies

NN only

- strong α-dependence: induced 3N interactions

NN+3N-induced

- no α-dependence: no induced 4N interactions

$E [\text{MeV}]$

N_{max}

α = 0.04 fm4

$\Lambda = 2.24 \text{ fm}^{-1}$

α = 0.05 fm4

$\Lambda = 2.11 \text{ fm}^{-1}$

α = 0.0625 fm4

$\Lambda = 2.00 \text{ fm}^{-1}$

α = 0.08 fm4

$\Lambda = 1.88 \text{ fm}^{-1}$

α = 0.16 fm4

$\Lambda = 1.58 \text{ fm}^{-1}$

$\hbar\Omega = 20 \text{ MeV}$

Exp.
4He: Ground-State Energies

NN only

- **strong α-dependence:** induced 3N interactions

- $\hbar \Omega = 20 \text{ MeV}$

NN+3N-induced

- **no α-dependence:** no induced 4N interactions

NN+3N-full

- Exp.

$\alpha = 0.04 \text{ fm}^4$

$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.05 \text{ fm}^4$

$\Lambda = 2.11 \text{ fm}^{-1}$

$\alpha = 0.0625 \text{ fm}^4$

$\Lambda = 2.00 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$

$\Lambda = 1.88 \text{ fm}^{-1}$

$\alpha = 0.16 \text{ fm}^4$

$\Lambda = 1.58 \text{ fm}^{-1}$
$^4\text{He}: \text{Ground-State Energies}$

- **NN only**
 - strong α-dependence:
 - induced 3N interactions
 - $\hbar \Omega = 20 \text{ MeV}$

- **NN+3N-induced**
 - no α-dependence:
 - no induced 4N interactions

- **NN+3N-full**
 - no α-dependence:
 - no induced 4N interactions

 Parameters:
- $\alpha = 0.04 \text{ fm}^4$
 - $\Lambda = 2.24 \text{ fm}^{-1}$
- $\alpha = 0.05 \text{ fm}^4$
 - $\Lambda = 2.11 \text{ fm}^{-1}$
- $\alpha = 0.0625 \text{ fm}^4$
 - $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$
 - $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
 - $\Lambda = 1.58 \text{ fm}^{-1}$
6Li: Ground-State Energies

NN only

- E [MeV]
- N_{max}

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- E [MeV]
- N_{max}

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- E [MeV]
- N_{max}

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
12C: Ground-State Energies

NN only

- $\hbar \Omega = 20 \text{ MeV}$

NN+3N-induced

NN+3N-full
^{12}C: Ground-State Energies

NN only

- $\hbar\Omega = 20 \text{ MeV}$

NN+3N-induced

- World Record

NN+3N-full

- World Record

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
12C: Ground-State Energies

NN only

- $E [\text{MeV}]$
- N_{max}
- $\hbar\Omega = 20 \text{ MeV}$

NN+3N-induced

- $E [\text{MeV}]$
- N_{max}
- Exp.

NN+3N-full

- $E [\text{MeV}]$
- N_{max}
- Exp.

Inclusion of initial 3N interaction results in induced 4N terms

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
16O: Ground-State Energies

NN only
- $\hbar \Omega = 20$ MeV

NN+3N-induced
- $\alpha = 0.04$ fm4
- $\Lambda = 2.24$ fm$^{-1}$

NN+3N-full
- $\alpha = 0.16$ fm4
- $\Lambda = 1.58$ fm$^{-1}$

Graphs show the energy E in MeV as a function of N_{max} for different values of α and Λ. Legend includes symbols and their corresponding parameters.

16O: Ground-State Energies

NN only

- $E_{\text{NN only}}$ vs. N_{max}
- $\hbar \Omega = 20 \text{ MeV}$

NN+3N-induced

- $E_{\text{NN+3N-induced}}$ vs. N_{max}
- Inclusion of initial 3N interaction results in induced 4N terms

NN+3N-full

- $E_{\text{NN+3N-full}}$ vs. N_{max}

Parameters:

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
6Li: Excitation Energies

NN only

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$

$\hbar \Omega = 20 \text{ MeV}$
Spectroscopy of 12C

- IT-NCSM gives access to **complete spectroscopy of p- and sd-shell nuclei** starting from chiral NN+3N interactions
Spectroscopy of 12C

- IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions.
IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions.
Spectroscopy of ^{16}C

NN only

- E_x vs N_{max}
- $\hbar\Omega = 16 \text{ MeV}$
- $\alpha = 0.08 \text{ fm}^4$

NN+3N-induced

- E_x vs N_{max}

NN+3N-full

- E_x vs N_{max}

Preliminary
Spectroscopy of 16C

NN only	NN+3N-induced	NN+3N-full
2$^+$ → 0$^+$ | 1 | 1 | 1
2$^+$ → 0$^+$ | 0.97 | 0.75 | 0.11
2$^+$ → 2$^+$ | 1.27 | 1.69 | 0.65
3$^+$ → 2$^+$ | 0.34 | 0.31 | 0.02
4$^+$ → 2$^+$ | 0.91 | 0.69 | 0.80

$\hbar \Omega = 1$
$\alpha = 0.08\ fm^{-1}$
Spectroscopy of 16C

Table:

<table>
<thead>
<tr>
<th>$B(E2)$ [rel. units]</th>
<th>NN only</th>
<th>NN+3N-induced</th>
<th>NN+3N-full</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^+_1 \rightarrow 0^+_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$2^+_2 \rightarrow 0^+_1$</td>
<td>0.97</td>
<td>0.75</td>
<td>0.11</td>
</tr>
<tr>
<td>$2^+_2 \rightarrow 2^+_1$</td>
<td>1.27</td>
<td>1.69</td>
<td>0.65</td>
</tr>
<tr>
<td>$3^+_1 \rightarrow 2^+_1$</td>
<td>0.34</td>
<td>0.31</td>
<td>0.02</td>
</tr>
<tr>
<td>$4^+_1 \rightarrow 2^+_1$</td>
<td>0.91</td>
<td>0.69</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Recent experiments (Petri et al.) confirm $B(E2)$ pattern obtained in the NN+3N-full calculation.
Where do we go from here?

- beyond the lightest nuclei, **SRG-induced 4N contributions** affect the absolute energies, but not the excitation energies

- with the inclusion of the leading 3N interaction we already obtain a **very reasonable description** of spectra (and ground states)

SRG Transformation

- Which parts of the initial 3N cause the induced 4N contributions?

- Can we find alternative SRG generators with suppressed induced 4N?

Chiral NN+3N Interactions

- How sensitive is the spectroscopy on specifics of the 3N interaction (cutoff, c_i’s) ?

- How does the inclusion of the subleading 3N terms affect the picture?
Where do we go from here?

- beyond the lightest nuclei, **SRG-induced 4N contributions** affect the absolute energies, but not the excitation energies

- with the inclusion of the leading 3N interaction we already obtain a **very reasonable description** of spectra (and ground states)

SRG Transformation

- Which parts of the initial 3N cause the induced 4N contributions?
- Can we find alternative SRG generators with suppressed induced 4N?

Chiral NN+3N Interactions

- How sensitive is the spectroscopy on specifics of the 3N interaction (cutoff, \(c_i' \)’s)?
- How does the inclusion of the subleading 3N terms affect the picture?

first answers in Joachim Langhammer’s talk on Friday...
Sensitivity on Initial $3N$ — ^{16}O

Modified 3N interaction with shifted c_i

- Standard 3N
- $\tilde{N}_{\text{max}} = 2$
- $\tilde{N}_{\text{max}} = 4$
- $\tilde{N}_{\text{max}} = 6$
- $\tilde{N}_{\text{max}} = 8$
- $\tilde{N}_{\text{max}} = 10$
- $\tilde{N}_{\text{max}} = 12$
- $\tilde{N}_{\text{max}} = 14$

- $\hbar\Omega = 20\text{ MeV}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$

400 MeV cutoff
Sensitivity on Initial 3N — ^{12}C

standard 3N

- $\hbar \Omega = 20 \text{ MeV}$
- $\alpha = 0.08 \text{ fm}^4$

modified 3N interaction with shifted c_i

- 400 MeV cutoff

Graphs:

- N_{max} vs. E_x [MeV]
- N_{max} vs. E_x [MeV]
- N_{max} vs. E_x [MeV]

Legend:

- 0^+1
- 2^+1
- 2^+0
- 1^+1
- 4^+0
- 1^+0
- 2^+0
- 0^+0
- 0^+0
- 0^+0

Text:

- Modified 3N interaction with shifted c_i
- 400 MeV cutoff
- All NN+3N-full

Equation:

$\hbar \Omega = 20 \text{ MeV}$

$\alpha = 0.08 \text{ fm}^4$
Sensitivity on Initial 3N — ^{12}C

Standard 3N

- $\hbar\Omega = 20\text{ MeV}$
- $\alpha = 0.08\text{ fm}^4$

Modified 3N interaction with shifted c_i

- All NN+3N-full

400 MeV cutoff

spectra of $A \geq 10$ nuclei are a very sensitive benchmark for chiral 3N interactions
Conclusions
Conclusions

- new era of **ab-initio nuclear structure and reaction theory** connected to QCD via chiral EFT
 - chiral EFT as universal starting point... some issues remain

- consistent **inclusion of 3N interactions** in similarity transformations & many-body calculations
 - breakthrough in computation & handling of 3N matrix elements

- **innovations in many-body theory**: extended reach of exact methods & improved control over approximations
 - versatile toolbox for different observables & mass ranges

- many **exciting applications** ahead...
Epilogue

Thanks to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- **P. Navrátil**
 TRIUMF Vancouver, Canada

- **S. Quaglioni**
 LLNL Livermore, USA

- **H. Hergert, P. Piecuch**
 Michigan State University, USA

- **C. Forssén**
 Chalmers University, Sweden

- **H. Feldmeier, T. Neff,**...
 GSI Helmholtzzentrum
Supplements
Importance Truncation: General Idea

- given an initial approximation $|\psi^{(m)}_{\text{ref}}\rangle$ for the **target states**

- **measure the importance** of individual basis state $|\Phi_{\nu}\rangle$ via first-order multiconfigurational perturbation theory

$$
\kappa^{(m)}_{\nu} = -\frac{\langle \Phi_{\nu} | H | \psi^{(m)}_{\text{ref}} \rangle}{\epsilon_{\nu} - \epsilon_{\text{ref}}}
$$

- construct **importance truncated space** spanned by basis states with $|\kappa^{(m)}_{\nu}| \geq \kappa_{\text{min}}$ and solve eigenvalue problem

- **sequential scheme**: construct importance truncated space for next N_{max} using previous eigenstates as reference $|\psi^{(m)}_{\text{ref}}\rangle$

- a posteriori **threshold extrapolation** and **perturbative correction** used to recover contributions from discarded basis states
Importance Truncation: General Idea

- given an initial approximation $|\Psi^{(m)}_{\text{ref}}\rangle$ for the **target states**

- **measure the importance** of individual basis state $|\Phi_\nu\rangle$ via first-order multiconfigurational perturbation theory

 $$
 \kappa^{(m)}_\nu = -\frac{\langle \Phi_\nu | H | \Psi^{(m)}_{\text{ref}} \rangle}{\epsilon_\nu - \epsilon_{\text{ref}}}
 $$

- construct **importance truncated space** spanned by basis states with $|\kappa^{(m)}_\nu| \geq \kappa_{\text{min}}$ and solve eigenvalue problem

- **sequential scheme**: construct next N_{max} using previous eigenstates as reference

- **a posteriori** threshold extrapolation and perturbative correction used to recover contributions from discarded basis states

for $\kappa_{\text{min}} \to 0$ the full NCSM model space and thus the **exact solution is recovered**
Threshold Extrapolation

- Do calculations for a sequence of importance thresholds κ_{min}.

- Observables show smooth threshold dependence.

- Systematic approach to the full NCSM limit.

- Use a posteriori extrapolation $\kappa_{\text{min}} \rightarrow 0$ of observables to account for effect of excluded configurations.

- SRG(N3LO) $\alpha = 0.04 \, \text{fm}^4$, $\hbar \Omega = 20 \, \text{MeV}$, $N_{\text{max}} = 8$.

- ^{16}O calculations for a sequence of importance thresholds κ_{min}.

- Systematic approach to the full NCSM limit.
Constrained Threshold Extrapolation

- estimate energy contribution of excluded states perturbatively \(\Delta_{\text{excl}}(\kappa_{\text{min}}) \)

- simultaneous fit of combined energy
 \[
 E_\lambda(\kappa_{\text{min}}) = E_{\text{int}}(\kappa_{\text{min}}) + \lambda \Delta_{\text{excl}}(\kappa_{\text{min}})
 \]
 for set of \(\lambda \)-values with the constraint \(E_\lambda(0) = E_{\text{extrap}} \)

- robust threshold extrapolation with error bars determined by variation of fit function
Origin of SRG-Induced 4N Terms

\begin{align*}
\text{std. 3N} & \quad c_D = 0 \\
\text{16O} & \quad \hbar\Omega = 20 \text{ MeV} \\
c_E = 0 & \quad c_i = 0
\end{align*}

- set c_D, c_E, or c_i to zero and refit c_D or c_E to get triton ground-state energy
- α-dependence changes only if the c_i terms are switched off

$\alpha = 0.08 \text{ fm}^4 \quad \Lambda = 1.88 \text{ fm}^{-1}$

$\alpha = 0.16 \text{ fm}^4 \quad \Lambda = 1.58 \text{ fm}^{-1}$
Origin of SRG-Induced 4N Terms

- set c_D, c_E, or c_i to zero and refit c_D or c_E to get triton ground-state energy
- α-dependence changes only if the c_i terms are switched off

$16O$

$\hbar \Omega = 20$ MeV

Long-range 2π terms of initial 3N are the origin of SRG-induced 4N

$\alpha = 0.08$ fm4, $\Lambda = 1.88$ fm$^{-1}$

$\alpha = 0.16$ fm4, $\Lambda = 1.58$ fm$^{-1}$
Sensitivity on 3N Cutoff: 16O

- Reduce 3N cutoff to 400 MeV and refit c_E to reproduce the 4He ground-state energy.
- Strong impact on α-dependence and absolute ground-state energy.

![Graph showing sensitivity of 3N cutoff on 16O](image)

- $\hbar \Omega = 20$ MeV
- N_{max} range from 2 to 14
- E as a function of N_{max} for standard 3N and 3N cutoff 400 MeV

Parameters:

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
Sensitivity on c_i Shift: 16O

- Include shifts of c_i values from N^3LO terms and refit c_E to reproduce the 4He ground-state energy.

- Sizable impact on α-dependence and absolute ground-state energy.

standard 3N

- $\hbar \Omega = 20$ MeV

shifted c_i

- $\alpha = 0.08$ fm4
- $\Lambda = 1.88$ fm$^{-1}$

- $\alpha = 0.16$ fm4
- $\Lambda = 1.58$ fm$^{-1}$
Sensitivity on c_3 & c_4: ^{16}O

standard 3N

- $c_4 = 5.4 \rightarrow 3.4$
- $c_3 = -3.2 \rightarrow -4.7$

- $\hbar \Omega = 20 \text{ MeV}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
Sensitivity on 3N Cutoff: 12C

- Significant improvement of 1^+0 energy and of overall agreement

standard 3N

3N cutoff 400 MeV

$\hbar \Omega = 20$ MeV

$\alpha = 0.08 \text{ fm}^4$
Sensitivity on c_i Shift: 12C

- slight improvement of 1^+0 energy and of over-all agreement
Sensitivity on c_i Shift: 12C

- slight improvement of 1^+0 energy and of overall agreement

spectra of $A \geq 10$ nuclei are a very sensitive benchmark for chiral 3N interactions.
Sensitivity on c_3 & c_4: 12C

standard 3N

- $c_4 = 5.4 \rightarrow 3.4$
- $c_3 = -3.2 \rightarrow -4.7$

$\hbar \Omega = 20$ MeV

$\alpha = 0.08$ fm4