Towards Nuclear Structure from Consistent Chiral NN+3N Interactions

Robert Roth
Nuclear Structure Theory — Wish List

- nuclear structure & reactions as low-energy effective theory based on QCD
- robust & quantitative predictions for nuclei far-off stability
- controlled & improvable many-body approaches
- theoretical toolbox for all masses and observables
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Ab-Initio Solutions
- few-body, no-core shell model, etc.

Approx. Many-Body Methods
- controlled & improvable schemes

Similarity Transformations
- physics-conserving transform. of observables

Chiral Interactions
- consistent & improvable NN, 3N,... interactions

Chiral Effective Field Theory
- systematic low-energy effective theory of QCD

Energy-Density-Functional Theory
- guided by chiral EFT

Low-Energy Quantum Chromodynamics

Nuclear Lattice Sim.
- chiral EFT on lattice

Ab Initio Nuclear Structure

Nuclear Structure Observables

- Nuclear Lattice Sim.
 - chiral EFT on lattice
- Exact Ab-Initio Solutions
 - few-body, no-core model, etc.
- Approx. Many-Body Methods
 - controlled & improvable schemes
- Energy-Density-Functional Theory
 - guided by chiral EFT

Chiral Interactions
- consistent & improvable NN, 3N,... interactions

Chiral Effective Field Theory
- systematic low-energy effective theory of QCD

Similarity Transformations
- physics-conserving transform of observables

PREDICTION

VALIDATION

Low-Energy Quantum Chromodynamics
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Ab-Initio Solutions
few-body, no-core shell model, etc.

Approx. Many-Body Methods
controlled & improvable schemes

Similarity Transformations
physics-conserving transform. of observables

Chiral Interactions
consistent & improvable NN, 3N,... interactions

Chiral Effective Field Theory
systematic low-energy effective theory of QCD

Low-Energy Quantum Chromodynamics
Nuclear Interactions from Chiral EFT

- **low-energy effective field theory** for relevant degrees of freedom (π, N) based on symmetries of QCD
- **long-range pion dynamics** explicitly
- short-range physics absorbed in **contact terms**, low-energy constants fitted to experiment ($NN, \pi N, ...$)
- hierarchy of **consistent NN, 3N,... interactions** (plus currents)
- **many ongoing developments**
 - 3N interaction at N^3LO
 - explicit inclusion of Δ-resonance
 - formal issues: power counting, renormalization, cutoff choice,...

<table>
<thead>
<tr>
<th></th>
<th>NN</th>
<th>3N</th>
<th>4N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLO</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^2LO</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^3LO</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
</tbody>
</table>
Why Similarity Transformations?

Argonne V18

\(J^\pi = 1^+, T = 0 \)

deuteron wave-function

strong coupling of low- and high-momentum modes

strong short-range correlations in many-body states
Why Similarity Transformations?

chiral N³LO
Entem & Machleidt, 500 MeV

$J^\pi = 1^+, T = 0$

momentum-space matrix elements

deuteron wave-function

Similarity Renormalization Group

unitary transformation of Hamiltonian \(\tilde{H}_\alpha = U_\alpha U_\alpha^\dagger H U_\alpha \)

evolution equations for \(\tilde{H}_\alpha \) and \(U_\alpha \) depending on generator \(\eta_\alpha \):

\[
\frac{d}{d\alpha} \tilde{H}_\alpha = \left[\eta_\alpha, \tilde{H}_\alpha \right]
\]

\[
\frac{d}{d\alpha} U_\alpha = -U_\alpha \eta_\alpha
\]

dynamic generator: commutator with the operator in whose eigenbasis \(H \) shall be diagonalized

\[
\eta_\alpha = (2\mu)^2 \left[T_{\text{int}}, \tilde{H}_\alpha \right]
\]

simplicity and flexibility are great advantages of the SRG approach

other transformation approaches (UCOM, \(V_{\text{low}k} \)) follow as special cases

continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis
SRG Evolution of Matrix Elements

- Convert Fock-space operator equations into **coupled evolution equations for matrix elements** in \(n \)-body Hilbert space.

- \(n = 2 \): use **antisym. relative \(LS \)-coupled two-body states**
 - momentum space: \(|q(LS)JT\rangle \)
 - harmonic oscillator: \(|n(LS)JT\rangle \)

- System of **coupled evolution equations** for each \(J^{\pi}ST \)-block

\[
\frac{d}{d\alpha} \langle n(LS)JT | \tilde{H}_\alpha | n'(L'S)JT \rangle = (2\mu)^2 \sum_{n''L''} \sum_{n'''L'''} \left[\langle nL... | T_{\text{int}} | n''L''... \rangle \langle n''L''... | \tilde{H}_\alpha | n'''L'''... \rangle \langle n'''L'''... | \tilde{H}_\alpha | n'L'... \rangle - 2\langle nL... | \tilde{H}_\alpha | n''L''... \rangle \langle n''L''... | T_{\text{int}} | n'''L'''... \rangle \langle n'''L'''... | \tilde{H}_\alpha | n'L'... \rangle + \langle nL... | \tilde{H}_\alpha | n''L''... \rangle \langle n''L''... | \tilde{H}_\alpha | n'''L'''... \rangle \langle n'''L'''... | T_{\text{int}} | n'L'... \rangle \right]
\]

SRG Evolution in Two-Body Space

\[\alpha = 0.000 \text{ fm}^4 \]
\[\Lambda = \infty \text{ fm}^{-1} \]
\[J^{\pi} = 1^+, T = 0 \]

\[\Lambda = \infty \text{ fm}^{-1} \]

Deuteron wave-function

\[\phi_L(r) [\text{arb. units}] \]

\[r [\text{fm}] \]

\[L = 0 \]
\[L = 2 \]
\[\alpha = 0.320 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0 \]

suppression of off-diagonal coupling \(\hat{=} \) pre-diagonalization

elimination of short-range correlations
SRG Evolution of Matrix Elements

- convert Fock-space operator equations into **coupled evolution equations for matrix elements** in n-body Hilbert space

- $n = 3$: use antisym. Jacobi-coordinate three-body states
 - harmonic oscillator: $|Ei^\pi T\rangle$

- system of **coupled evolution equations** for each $J^\pi T$-block

$$\frac{d}{d\alpha}\langle Ei^\pi T|\hat{H}_\alpha|E'i^'J^\pi T\rangle = (2\mu)^2 \sum_{E''i''}^{E_{SRG}} \sum_{E'''i'''}^{E_{SRG}} \left[\langle Ei...|T_{int}|E''i''...\rangle \langle E''i''...|\hat{H}_\alpha|E'''i'''...\rangle \langle E'''i'''...|\hat{H}_\alpha|E'i'...\rangle
- 2\langle Ei...|\hat{H}_\alpha|E''i''...\rangle \langle E''i''...|T_{int}|E'''i'''...\rangle \langle E'''i'''...|\hat{H}_\alpha|E'i'...\rangle
+ \langle Ei...|\hat{H}_\alpha|E''i''...\rangle \langle E''i''...|\hat{H}_\alpha|E'''i'''...\rangle \langle E'''i'''...|T_{int}|E'i'...\rangle \right]$$

- we use $E_{SRG} = 40$ for $J \leq 5/2$ and ramp down to 24 in steps of 4 (sufficient to converge the intermediate sums for $\hbar\Omega \gtrsim 16$ MeV)
SRG Evolution in Three-Body Space

$\alpha = 0.000 \text{ fm}^4$

$\Lambda = \infty \text{ fm}^{-1}$

$J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV}$

3B-Jacobi HO matrix elements

NCSM ground state ^3H
SRG Evolution in Three-Body Space

\[\alpha = 0.320 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

suppression of off-diagonal coupling
\(\hat{=} \) pre-diagonalization

NCSM ground state \(^3\text{H} \)

significant improvement of convergence behavior

Calculations in A-Body Space

- **cluster decomposition**: decompose evolved Hamiltonian from 2B/3B space into irreducible n-body contributions $\tilde{H}_\alpha^{[n]}$

 $$\tilde{H}_\alpha = \tilde{H}_\alpha^{[1]} + \tilde{H}_\alpha^{[2]} + \tilde{H}_\alpha^{[3]} + \ldots$$

- **cluster truncation**: can construct cluster-orders up to $n = 3$ from evolution in 2B and 3B space, have to discard $n > 3$

 - only the **full evolution in A-body space** is formally unitary and conserves A-body energy eigenvalues (independent of α)

 - α-dependence of eigenvalues of the Hamiltonian measures impact of the omitted induced many-body interactions

 α-variation provides a **diagnostic tool** to assess the omitted induced many-body interactions
1. **Computation of initial 2B/3B-Jacobi HO matrix elements of chiral NN+3N interactions**
 - We use Petr Navratil’s ManyEff code for computing 3B-Jacobi matrix elements and corresponding CFPs.

2. **SRG evolution in 2B/3B space and cluster decomposition**
 - Efficient implementation using adaptive ODE solver & BLAS; largest block takes a few hours on single node.

3. **Transformation of 2B/3B Jacobi HO matrix elements into JT-coupled representation**
 - Formulated transformation directly into JT-coupled scheme; highly efficient implementation; can handle $E_{3,\text{max}} = 16$ in JT-coupled scheme.

4. **Data management and on-the-fly decoupling in many-body codes**
 - Invented optimized storage scheme for fast on-the-fly decoupling; can keep all matrix elements up to $E_{3,\text{max}} = 16$ in memory.
Ab Initio Nuclear Structure

Nuclear Structure Observables

- Exact Ab-Initio Solutions
 - few-body, no-core shell model, etc.

- Approx. Many-Body Methods
 - controlled & improvable schemes

- Similarity Transformations
 - physics-conserving transform. of observables

- Chiral Interactions
 - consistent & improvable NN, 3N,... interactions

- Chiral Effective Field Theory
 - systematic low-energy effective theory of QCD

- Low-Energy Quantum Chromodynamics

Chiral Effective Field Theory
-guided by chiral EFT

No-Core Shell Model (NCSM)

NCSM is one of the most powerful and universal exact ab-initio methods

- construct matrix representation of Hamiltonian using a basis of HO Slater determinants truncated w.r.t. HO excitation energy $N_{\text{max}} \hbar \Omega$

- solve large-scale eigenvalue problem for a few extremal eigenvalues

- all relevant observables can be computed from the eigenstates

- range of applicability limited by factorial growth of basis with $N_{\text{max}} \& A$

- adaptive importance truncation extends the range of NCSM by reducing the model space to physically relevant states

- we have developed a parallelized IT-NCSM/NCSM code capable of handling 3N matrix elements up to $E_{3\text{max}} = 16$
Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10 or 12ℏΩ calculation for 16O not really feasible (basis dimension > 10^{10})

Importance Truncation
reduce model space to the relevant basis states using an a priori importance measure derived from MBPT

![Graph showing energy levels for 16O with IT-NCSM and full NCSM calculations.](image-url)
Importance Truncation: General Idea

- given an initial approximation $|\Psi_{\text{ref}}^{(m)}\rangle$ for the target states

- **measure the importance** of individual basis state $|\Phi_\nu\rangle$ via first-order multiconfigurational perturbation theory

$$k_\nu^{(m)} = -\frac{\langle \Phi_\nu | H | \Psi_{\text{ref}}^{(m)} \rangle}{\epsilon_\nu - \epsilon_{\text{ref}}}$$

- construct **importance truncated space** spanned by basis states with $|k_\nu^{(m)}| \geq k_{\text{min}}$ and solve eigenvalue problem

- **sequential scheme**: construct next N_{max} using previous eigenstates as reference

- **a posteriori** **threshold extrapolation** and perturbative correction used to recover contributions from discarded basis states

 for $k_{\text{min}} \to 0$ the full NCSM model space and thus the exact solution is recovered
Threshold Extrapolation

- do calculations for a sequence of importance thresholds κ_{min}
- observables show smooth threshold dependence
- systematic approach to the full NCSM limit
- use a posteriori extrapolation $\kappa_{\text{min}} \to 0$ of observables to account for effect of excluded configurations

Graphical Representation

- H_{int} for ^{16}O
 - SRG(N3LO)
 - $\alpha = 0.04 \text{ fm}^4$
 - $\hbar \Omega = 20 \text{ MeV}$
 - $N_{\text{max}} = 8$

- H_{cm}
- J

Axes
- $\kappa_{\text{min}} \ [10^{-5}]$
- [MeV]

Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Ab-Initio Solutions
few-body, no-core shell model, etc.

Approx. Many-Body Methods
controlled & improvable schemes

Similarity Transformations
physics-conserving transform. of observables

Chiral Interactions
consistent & improvable NN, 3N,... interactions

Chiral Effective Field Theory
systematic low-energy effective theory of QCD

Low-Energy Quantum Chromodynamics
A Tale of Three Hamiltonians

Initial Hamiltonian

- **NN**: chiral interaction at N3LO (Entem & Machleidt, 500 MeV)
- **3N**: chiral interaction at N2LO (c_D, c_E from 3H binding & half-life)

SRG-Evolved Hamiltonians

- **NN only**: start with NN initial Hamiltonian and keep two-body terms only
- **NN+3N-induced**: start with NN initial Hamiltonian and keep two- and three-body terms
- **NN+3N-full**: start with NN+3N initial Hamiltonian and keep two- and three-body terms

\[\alpha\text{-variation provides a diagnostic tool to assess the contributions of omitted many-body interactions}\]
4He: Ground-State Energies

NN only
- **strong α-dependence:** induced 3N interactions

- $\hbar\Omega = 20$ MeV

NN+3N-induced
- **no α-dependence:** no induced 4N interactions

NN+3N-full
- **no α-dependence:** no induced 4N interactions

- $\alpha = 0.04 \text{ fm}^4$
 - $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
 - $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
 - $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
 - $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
 - $\Lambda = 1.58 \text{ fm}^{-1}$
$^6\text{Li}: \text{Ground-State Energies}$

NN only

$E [\text{MeV}]$

$\hbar \Omega = 20 \text{MeV}$

N_{max}

$\alpha = 0.04 \text{ fm}^4$

$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.05 \text{ fm}^4$

$\Lambda = 2.11 \text{ fm}^{-1}$

$\alpha = 0.0625 \text{ fm}^4$

$\Lambda = 2.00 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$

$\Lambda = 1.88 \text{ fm}^{-1}$

$\alpha = 0.16 \text{ fm}^4$

$\Lambda = 1.58 \text{ fm}^{-1}$

NN+3N-induced

NN+3N-full

Exp.
12C: Ground-State Energies

NN only

- $\hbar\Omega = 20 \text{ MeV}$

NN+3N-induced

- Inclusion of initial 3N interaction results in induced 4N terms

NN+3N-full

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$

- Exp.
\textbf{16O: Ground-State Energies}

\begin{align*}
\hbar \Omega &= 20 \text{ MeV} \\
E_{\text{NN only}}(N_{\text{max}}) &= \cdots \\
E_{\text{NN+3N-induced}}(N_{\text{max}}) &= \cdots \\
E_{\text{NN+3N-full}}(N_{\text{max}}) &= \cdots \\
\end{align*}

\begin{align*}
\alpha &= 0.04 \text{ fm}^4 \\
\Lambda &= 2.24 \text{ fm}^{-1} \\
\end{align*}

\begin{align*}
\alpha &= 0.05 \text{ fm}^4 \\
\Lambda &= 2.11 \text{ fm}^{-1} \\
\end{align*}

\begin{align*}
\alpha &= 0.0625 \text{ fm}^4 \\
\Lambda &= 2.00 \text{ fm}^{-1} \\
\end{align*}

\begin{align*}
\alpha &= 0.08 \text{ fm}^4 \\
\Lambda &= 1.88 \text{ fm}^{-1} \\
\end{align*}

\begin{align*}
\alpha &= 0.16 \text{ fm}^4 \\
\Lambda &= 1.58 \text{ fm}^{-1} \\
\end{align*}

16O: Energy vs. Flow Parameter

- **initial NN Hamiltonian**
 - induced 3N interactions are significant
 - no indication of induced 4N
 - NN+3N-induced unitarily equivalent to initial NN

- **initial NN+3N Hamiltonian**
 - induced 4N interactions are sizable in upper p-shell
 - generated by long-range 2π terms of initial 3N interaction
 - design modified SRG generator to suppress induced 4N
^6Li: Excitation Energies

NN only

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

$h\Omega = 20 \text{ MeV}$
Spectroscopy of 12C

IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions
Spectroscopy of 12C

- IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions

- Spectra largely insensitive to induced 4N interactions
Spectroscopy of 16C

Recent experiments (Petri et al.) confirm $B(E2)$ pattern obtained in the NN+3N-full calculation

<table>
<thead>
<tr>
<th>E_x [MeV]</th>
<th>N_{max}</th>
<th>Exp.</th>
<th>$B(E2)$ [rel. units]</th>
<th>NN only</th>
<th>NN+3N-ind.</th>
<th>NN+3N-full</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.97</td>
<td>0.91</td>
<td>0.34</td>
<td>0.31</td>
<td>0.11</td>
<td>0.65</td>
<td>0.02</td>
</tr>
<tr>
<td>0.75</td>
<td>0.69</td>
<td>0.31</td>
<td>0.31</td>
<td>0.65</td>
<td>0.65</td>
<td>0.02</td>
</tr>
<tr>
<td>0.11</td>
<td>0.69</td>
<td>0.02</td>
<td>0.31</td>
<td>0.65</td>
<td>0.65</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Conclusions
Conclusions

- new era of **ab-initio nuclear structure and reaction theory** connected to QCD via chiral EFT
 - chiral EFT as universal starting point... some issues remain

- consistent **inclusion of 3N interactions** in similarity transformations & many-body calculations
 - breakthrough in computation & handling of 3N matrix elements

- **innovations in many-body theory**: extended reach of exact methods & improved control over approximations
 - versatile toolbox for different observables & mass ranges

- many **exciting applications** ahead...
Epilogue

thank you to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- **P. Navrátil**
 TRIUMF Vancouver, Canada

- **S. Quaglioni**
 LLNL Livermore, USA

- **H. Hergert, P. Piecuch**
 Michigan State University, USA

- **C. Forssén**
 Chalmers University, Sweden

- **H. Feldmeier, T. Neff,...**
 GSI Helmholtzzentrum