Nuclear Structure with Similarity-Transformed Chiral NN+3N Interactions

Angelo Calci
Institut für Kernphysik
Outline

- Introduction
- Chiral Effective Field Theory (χEFT)
- Similarity Renormalization Group
- Transformation to \mathcal{J}, T-Coupled Scheme
- Importance Truncated No-Core Shell Model
- Hartree Fock
- Summary and Outlook
Outline

- Introduction
 - Chiral Effective Field Theory (χEFT)
 - Similarity Renormalization Group
 - Transformation to \mathcal{J}, T-Coupled Scheme
 - Importance Truncated No-Core Shell Model
 - Hartree Fock
- Summary and Outlook
start with many-body eigenvalue problem

\[H_{\text{int}} |\psi_n\rangle = E_n |\psi_n\rangle \]

ab-initio methods

- investigation and adjustment of interaction
- reference point for approximative approaches
- make predictions in low-mass regime

observables to experiment
Outline

■ Introduction

■ Chiral Effective Field Theory (χEFT)

■ Similarity Renormalization Group

■ Transformation to J, T-Coupled Scheme

■ Importance Truncated No-Core Shell Model

■ Hartree Fock

■ Summary and Outlook
want to obtain an interaction based on QCD as much as possible

Quantum Chromodynamics (QCD)

- fundamental theory of the strong interaction
- uses quarks and gluons as degrees of freedom
- currently no direct derivation of nuclear interaction (non-perturbative for low-energy regime)
- effective field theory necessary

Chiral Effective Field Theory (χEFT)

- considers fundamental symmetries of QCD
- uses nucleons and pions as degrees of freedom
- perturbative expansion in $\frac{Q}{\Lambda_{\chi}}$
Expansion in $\mathcal{Q}/\Lambda_{\chi}$

<table>
<thead>
<tr>
<th>LO</th>
<th>NLO</th>
<th>N^2LO</th>
<th>N^3LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{Q}/\Lambda_{\chi}^0$</td>
<td>$\mathcal{Q}/\Lambda_{\chi}^2$</td>
<td>$\mathcal{Q}/\Lambda_{\chi}^3$</td>
<td>$\mathcal{Q}/\Lambda_{\chi}^4$</td>
</tr>
</tbody>
</table>

- **2N force**
- **3N force**
- **4N force**

- **NN interaction at N^3LO**
 - fitted to two-body systems
 - reproduce scattering data with high precision

- **3N interaction at N^2LO**

- Provides **NN and 3N interactions** in a **consistent** manner
3N Contribution at N^2LO

\[\begin{align*}
&\sim c_D \\
&\sim c_E \\
&\sim c_1, c_3, c_4
\end{align*} \]

one-pion exchange

two-nucleon exchange

required model space for (IT)-NCSM to large to obtain converged results

\[\Rightarrow \text{apply unitary transformation to accelerate convergence} \]

- \(c_1, c_3, c_4 \) fixed by

- new LECs of 3N interaction are \(c_D \) and \(c_E \)
 - fitted to binding energy and \(\beta \)-decay half-life of triton

Angelo Calci – TU Darmstadt – May 2011
Outline

- Introduction
- Chiral Effective Field Theory (χEFT)
- **Similarity Renormalization Group**
 - Transformation to \mathcal{J}, T-Coupled Scheme
 - Importance Truncated No-Core Shell Model
- Hartree Fock
- Summary and Outlook
accelerate convergence by **pre-diagonalizing** the Hamiltonian w.r.t. the many-body basis

- continuous **unitary transformation** of the Hamiltonian

\[
\tilde{H}_\alpha = U_\alpha \dagger H_{\text{int}} U_\alpha
\]

- leads to **evolution equation**

\[
\frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \quad \text{with} \quad \eta_\alpha = -U_\alpha \dagger \frac{dU_\alpha}{d\alpha} = -\eta_\alpha^\dagger
\]

initial value problem with \(\tilde{H}_{\alpha=0} = H_{\text{int}} \)

- choose the **dynamic generator**

\[
\eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha]
\]

advantages of SRG: **simplicity** and **flexibility**
“relative coordinates” for A-body system

\[
\begin{align*}
\xi_0 &= \sqrt{\frac{1}{A}} [\mathbf{r}_1 + \mathbf{r}_2 + \ldots + \mathbf{r}_A] \\
\xi_{n-1} &= \sqrt{\frac{n-1}{n}} \left[\frac{1}{n-1} (\mathbf{r}_1 + \mathbf{r}_2 + \ldots + \mathbf{r}_{n-1}) - \mathbf{r}_n \right] \quad \text{with} \quad 2 \leq n \leq A
\end{align*}
\]

for example $A = 3$:

\[
\begin{align*}
\xi_0 &= \sqrt{\frac{1}{3}} [\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3] \\
\xi_1 &= \sqrt{\frac{1}{2}} [\mathbf{r}_1 - \mathbf{r}_2] \\
\xi_2 &= \sqrt{\frac{2}{3}} \left[\frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2) - \mathbf{r}_3 \right]
\end{align*}
\]
Insertion: HO Jacobi Basis

■ Cartesian HO state

\[|n_1 l_1 m_1(r_1), n_2 l_2 m_2(r_2), n_3 l_3 m_3(r_3) \rangle \]

where

- \(l_1 \): quantum number w.r.t. \(\vec{L}_1 = \vec{r}_1 \times \vec{p}_1 \)
- \(l_2 \): quantum number w.r.t. \(\vec{L}_2 = \vec{r}_2 \times \vec{p}_2 \)
- \(l_3 \): quantum number w.r.t. \(\vec{L}_3 = \vec{r}_3 \times \vec{p}_3 \)

■ Jacobi HO state

\[|NLM(\xi_0), n_{12} l_{12} m_{12}(\xi_1), N_3 L_3 M_3(\xi_2) \rangle \]

where

- \(L \): quantum number w.r.t. \(\vec{L} = \vec{\xi}_0 \times \vec{\pi}_0 \)
- \(L_3 \): quantum number w.r.t. \(\vec{L}_3 = \vec{\xi}_1 \times \vec{\pi}_1 \)

HO basis separates into the relevant intrinsic and the center of mass part.
SRG Evolution in Two-Body Space

\[\alpha = 0.00 \text{ fm}^4 \]

\[\Lambda = \infty \text{ fm}^{-1} \]

\[\langle E'(L'S)J^\pi T | \hat{H}_\alpha | E(LS)J^\pi T \rangle \]

\[J^\pi = 1^+, T = 0, \hbar \Omega = 20 \text{ MeV} \]

2B-Jacobi HO matrix elements

\[E \to E' \to 16 \to 24 \to 32 \to 40 \]

\[(E', i') \]

[MeV]

momentum space \[^3S_1 \]
SRG Evolution in Two-Body Space

\[\alpha = 0.32 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]

\[\langle E'(L'S)J^\pi T | \tilde{H}_\alpha | E(LS)J^\pi T \rangle \]
\[J^\pi = 1^+, T = 0, \hbar \Omega = 20 \text{ MeV} \]

pre-diagonalization in momentum space and in HO basis

2B-Jacobi HO matrix elements

\[(E, i) \]
\[(E', i') \]

momentum space \[^3S_1 \]
3B-Jacobi HO matrix elements

\[\alpha = 0.00 \text{ fm}^4 \]

\[\Lambda = \infty \text{ fm}^{-1} \]

\[\langle E' i' JT | \tilde{H}_\alpha | E iT \rangle \]

\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 20 \text{ MeV} \]

NCSM ground state \(^3\text{H}\)
\[\alpha = 0.32 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[\langle E' i' JT \big| \tilde{H}_\alpha \big| E i T \rangle \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 20 \text{ MeV} \]

- Pre-diagonalization of Hamiltonian
- Acceleration of convergence in many-body calculations

NCSM ground state \(^3\text{H}\)
Consideration of Induced Contributions

- **SRG induces irreducible** many-body contributions

\[
\tilde{H}_{\alpha}^{\text{NN+3N}} = T_{\text{int}} + \tilde{T}^{[2]}_{\text{int},\alpha} + \tilde{V}^{[2]}_{\text{NN},\alpha} + \tilde{T}^{[3]}_{\text{int},\alpha} + \tilde{V}^{[3]}_{\text{NN},\alpha} + \tilde{V}^{[3]}_{\text{NN},\alpha} + \tilde{T}^{[4]}_{\text{int},\alpha} + \tilde{V}^{[4]}_{\text{NN},\alpha} + \tilde{V}^{[4]}_{\text{NN},\alpha} + \ldots
\]

- **NN only**: start with NN initial Hamiltonian and evolve in two-body space

\[
\tilde{H}_{\alpha}^{\text{NN-only}} = T_{\text{int}} + \tilde{T}^{[2]}_{\text{int},\alpha} + \tilde{V}^{[2]}_{\text{NN},\alpha}
\]

- **NN+3N-induced**: start with NN initial Hamiltonian and evolve in three-body space

\[
\tilde{H}_{\alpha}^{\text{NN+3N-induced}} = T_{\text{int}} + \tilde{T}^{[2]}_{\text{int},\alpha} + \tilde{V}^{[2]}_{\text{NN},\alpha}
\]

- **NN+3N-full**: start with NN+3N initial Hamiltonian and evolve in three-body space

\[
\tilde{H}_{\alpha}^{\text{NN+3N-full}} = T_{\text{int}} + \tilde{T}^{[2]}_{\text{int},\alpha} + \tilde{V}^{[2]}_{\text{NN},\alpha} + \tilde{T}^{[3]}_{\text{int},\alpha} + \tilde{V}^{[3]}_{\text{NN},\alpha} + \tilde{V}^{[3]}_{\text{NN},\alpha} + \tilde{T}^{[4]}_{\text{int},\alpha} + \tilde{V}^{[4]}_{\text{NN},\alpha} + \tilde{V}^{[4]}_{\text{NN},\alpha} + \ldots
\]

\(\alpha\)-variation provides a diagnostic tool to assess the contributions of omitted many-body interactions.
From Jacobi to JT-coupled Scheme

effective interaction in 3B-Jacobi basis

1. **problem**
 many-body calculations ($A > 6$) in Jacobi coordinates not feasible
 → advantageous to use *m-scheme*

2. **problem**
 m-scheme matrix elements become intractable for $N_{\text{max}} > 8$ (p-shell)

Transformation from Jacobi into JT-coupled scheme

key for efficient application up to $N_{\text{max}} = 14$ for p-shell nuclei

Ab-initio many-body calculation
Outline

- Introduction
- Chiral Effective Field Theory (χEFT)
- Similarity Renormalization Group
- Transformation to J, T-Coupled Scheme
- Importance Truncated No-Core Shell Model
- Hartree Fock
- Summary and Outlook
No-Core Schalenmodell (NCSM)

- **solving the eigenvalue problem**
 \[H_{\text{int}} |\psi_n\rangle = E_n |\psi_n\rangle \]

- **many-body basis**: Slater determinants \(|\Phi_\nu\rangle\) composed of harmonic oscillator single-particle states (m-scheme)
 \[|\psi_n\rangle = \sum_\nu C^n_\nu |\Phi_\nu\rangle \]

- **model space**: spanned by m-scheme states \(|\Phi_\nu\rangle\) with unperturbed excitation energy of up to \(N_{\text{max}} \hbar \Omega\)

problem

enormous increase of model space with particle number \(A\)
\[\Rightarrow \] converged calculation limited to small \(A\)
start with approximation $|\Psi_{\text{ref}}\rangle$ for the target state obtained in a limited reference space \mathcal{M}_{ref}

$$|\Psi_{\text{ref}}\rangle = \sum_{\nu \in \mathcal{M}_{\text{ref}}} C_{\nu}^{(\text{ref})} |\Phi_{\nu}\rangle$$

measure the importance of individual basis state $|\Phi_{\nu}\rangle \notin \mathcal{M}_{\text{ref}}$ via first-order multiconfigurational perturbation theory

construct importance truncated space $\mathcal{M}(\kappa_{\text{min}})$ spanned by basis states with $|\kappa_{\nu}| \geq \kappa_{\text{min}}$

solve eigenvalue problem in importance truncated space $\mathcal{M}(\kappa_{\text{min}})$ and obtain improved approximation of target state
Importance Truncation: Iterative Scheme

- **sequential calculation** for a range of $N_{\text{max}}\hbar\Omega$ spaces:
 - ✷ full NCSM calculation for small N_{max} to obtain initial $|\Psi_{\text{ref}}\rangle$
 - ① construct importance-truncated space with $N_{\text{max}} + 2$ of states with $|\kappa_\nu| \geq \kappa_{\text{min}}$
 - ② solve eigenvalue problem
 - ③ use eigenstate as new $|\Psi_{\text{ref}}\rangle$
 - ④ goto ①

- **full NCSM space is recovered** in the limit $\kappa_{\text{min}} \rightarrow 0$
Threshold Extrapolation

- do calculations for a sequence of importance thresholds κ_{min}
- observables show smooth threshold dependence
- systematic approach to the full NCSM limit
- use a posteriori extrapolation $\kappa_{\text{min}} \rightarrow 0$ of observables to account for effect of excluded configurations
\(^4\text{He}: \text{Ground-State Energies} \)

NN only
- strong \(\alpha \)-dependence: induced 3N interactions
- \(\hbar \Omega = 20 \text{ MeV} \)

NN+3N-induced
- no \(\alpha \)-dependence: no induced 4N interactions

NN+3N-full
- no \(\alpha \)-dependence: no induced 4N interactions

\[
\begin{align*}
\alpha &= 0.04 \text{ fm}^4 \\
\Lambda &= 2.24 \text{ fm}^{-1}
\end{align*}
\]

\[
\begin{align*}
\alpha &= 0.05 \text{ fm}^4 \\
\Lambda &= 2.11 \text{ fm}^{-1}
\end{align*}
\]

\[
\begin{align*}
\alpha &= 0.0625 \text{ fm}^4 \\
\Lambda &= 2.00 \text{ fm}^{-1}
\end{align*}
\]

\[
\begin{align*}
\alpha &= 0.08 \text{ fm}^4 \\
\Lambda &= 1.88 \text{ fm}^{-1}
\end{align*}
\]

\[
\begin{align*}
\alpha &= 0.16 \text{ fm}^4 \\
\Lambda &= 1.58 \text{ fm}^{-1}
\end{align*}
\]
^6Li: Ground-State Energies

NN only

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

$\hbar \Omega = 20 \text{ MeV}$
^{12}C: Ground-State Energies

NN only
- \(\hbar \Omega = 20 \text{ MeV} \)

NN+3N-induced
- no \(\alpha \)-dependence: no induced 4N contrib.

NN+3N-full
- some \(\alpha \)-dependence: induced 4N interactions

- \(\alpha = 0.04 \text{ fm}^4 \)
 - \(\Lambda = 2.24 \text{ fm}^{-1} \)
- \(\alpha = 0.05 \text{ fm}^4 \)
 - \(\Lambda = 2.11 \text{ fm}^{-1} \)
- \(\alpha = 0.0625 \text{ fm}^4 \)
 - \(\Lambda = 2.00 \text{ fm}^{-1} \)
- \(\alpha = 0.08 \text{ fm}^4 \)
 - \(\Lambda = 1.88 \text{ fm}^{-1} \)
- \(\alpha = 0.16 \text{ fm}^4 \)
 - \(\Lambda = 1.58 \text{ fm}^{-1} \)
\(16^O: \text{Ground-State Energies}\)

NN only

- \(\alpha = 0.04 \text{ fm}^4, \Lambda = 2.24 \text{ fm}^{-1}\)
- \(\alpha = 0.05 \text{ fm}^4, \Lambda = 2.11 \text{ fm}^{-1}\)

NN+3N-induced

- \(\alpha = 0.0625 \text{ fm}^4, \Lambda = 2.00 \text{ fm}^{-1}\)
- \(\alpha = 0.08 \text{ fm}^4, \Lambda = 1.88 \text{ fm}^{-1}\)
- \(\alpha = 0.16 \text{ fm}^4, \Lambda = 1.58 \text{ fm}^{-1}\)

NN+3N-full

- \(\alpha = 0.04 \text{ fm}^4, \Lambda = 2.24 \text{ fm}^{-1}\)
- \(\alpha = 0.05 \text{ fm}^4, \Lambda = 2.11 \text{ fm}^{-1}\)

- **No \(\alpha\)-dependence:**
 - No induced 4N contributions.

- **Sizable \(\alpha\)-dependence:**
 - Induced 4N interactions

\(\hbar \Omega = 20 \text{ MeV}\)
^{16}O & ^4He: Energy vs. Flow Parameter

E_∞ [MeV]

$\hbar\Omega = 20$ MeV

 NN only ■ NN+3N-induced ▲ NN+3N-full
^6Li: Excitation Energies

- **NN only**
 - $\alpha = 0.04 \text{ fm}^4$
 - $\Lambda = 2.24 \text{ fm}^{-1}$

- **NN+3N-induced**
 - $\alpha = 0.05 \text{ fm}^4$
 - $\Lambda = 2.11 \text{ fm}^{-1}$

- **NN+3N-full**
 - $\alpha = 0.0625 \text{ fm}^4$
 - $\Lambda = 2.00 \text{ fm}^{-1}$

- **0+**
- **3+**
$^{12}\text{C}: \text{Excitation Energies}$

\[\hbar \Omega = 20 \text{ MeV}\]

NN only

- N_{max}
- E_x [MeV]

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- N_{max}
- E_x [MeV]

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- N_{max}
- E_x [MeV]

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions.
Spectroscopy of 16C

IT-NCSM gives access to complete spectroscopy of p- and sd-shell nuclei starting from chiral NN+3N interactions.
Origin of Induced 4N Contributions

- almost same α-dependence for standard LECs and $c_D = 0$ or $c_E = 0$

⇒ two-pion exchange (c_i) term induces significant many-body contributions

\[
\begin{align*}
\alpha &= 0.08 \text{ fm}^4 & \Lambda &= 1.88 \text{ fm}^{-1} \\
\alpha &= 0.16 \text{ fm}^4 & \Lambda &= 1.58 \text{ fm}^{-1}
\end{align*}
\]
Outline

- Introduction
- Chiral Effective Field Theory (χEFT)
- Similarity Renormalization Group
- Transformation to J, T-Coupled Scheme
- Importance Truncated No-Core Shell Model

Hartree Fock

- Summary and Outlook
Systematics: E/A and R_{ch}

NN-only

E/A [MeV]

R_{ch} [fm]

$\alpha = 0.02 \text{ fm}^4$

$\alpha = 0.04 \text{ fm}^4$

$\alpha = 0.08 \text{ fm}^4$

$e_{\text{max}} = 14$

$E_{3,\text{max}} = 12$

$\hbar \Omega = 28 \text{ MeV}$
Systematics: E/A and R_{ch}

Graph

- **NN-only**
 - E/A [MeV]
 - R_{ch} [fm]
 - $\alpha = 0.02$ fm4
 - $\alpha = 0.04$ fm4
 - $\alpha = 0.08$ fm4

- **HF + PT**
- **HF**

Species

- 4He, 16O, 24O, 34Si, 40Ca, 44Ca, 48Ni, 56Ni, 60Ni, 78Sr, 88Sr, 90Zr, 100Sn, 114Sn, 132Sn, 146Sn, 208Pb

Equations

- $e_{\text{max}} = 14$
- $E_{3, \text{max}} = 12$
- $\hbar \Omega = 28$ MeV

Graph Details

- α values for R_{ch}
- e_{max} and $E_{3, \text{max}}$ for e-values
- $\hbar \Omega$ for energy values
Systematics: E/A and R_{ch}

NN + 3N-induced

- $\alpha = 0.02$ fm4
- $\alpha = 0.04$ fm4
- $\alpha = 0.08$ fm4

$e_{max} = 14$
$E_{3,max} = 12$
$\hbar\Omega = 28$ MeV
Systematics: E/A and R_{ch}

NN + 3N-induced

HF + PT

<table>
<thead>
<tr>
<th>Element</th>
<th>E/A [MeV]</th>
<th>R_{ch} [fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88Sr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90Zr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100Sn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114Sn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132Sn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146Sn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208Pb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HF

- $\alpha = 0.02\, fm^4$
- $\alpha = 0.04\, fm^4$
- $\alpha = 0.08\, fm^4$

$e_{max} = 14$

$E_{3,max} = 12$

$\hbar\Omega = 28\, MeV$

Angelo Calci – TU Darmstadt – May 2011
Systematics: E/A and R_{ch}

Graph: NN + 3N-full

- E/A [MeV]
- R_{ch} [fm]

- **HF**
- **α = 0.02 fm4**
- **α = 0.04 fm4**
- **α = 0.08 fm4**

- Experiment

- $e_{\text{max}} = 14$
- $E_{3,\text{max}} = 12$
- $\hbar \Omega = 28$ MeV

Angelo Calci – TU Darmstadt – May 2011
Systematics: E/A and R_{ch}

NN + 3N-full

E/A [MeV]

R_{ch} [fm]

strong α-dependence: induced 4N contributions are sizable

$\alpha = 0.02 \text{ fm}^4$

$\alpha = 0.04 \text{ fm}^4$

$\alpha = 0.08 \text{ fm}^4$

experiment

$e_{\text{max}} = 14$

$E_{3,\text{max}} = 12$

$\hbar \Omega = 28 \text{ MeV}$

Angelo Calci – TU Darmstadt – May 2011
Outline

- Introduction
- Chiral Effective Field Theory (χEFT)
- Similarity Renormalization Group
- Transformation to \mathcal{J}, T-Coupled Scheme
- Importance Truncated No-Core Shell Model
- Hartree Fock

Summary and Outlook
Benchmark of chiral NN+3N interactions

- consistent SRG evolution in 3B space
- efficient transformation of Jacobi matrix elements to $\mathcal{J}T$-coupled scheme
 - key for application to $N_{\text{max}} > 8$ calculations (p-shell)
- IT-NCSM with full chiral 3N interactions up to $N_{\text{max}} = 12 \ (14)$ for all p-shell (and lower sd-shell) nuclei
- two-pion exchange term of 3N interaction induces significant 4N contributions beyond mid-p-shell
 - modify SRG generator to prevent induced 4N contributions from the beginning
- many other applications (Hartree Fock, RPA, ...)

Angelo Calci – TU Darmstadt – May 2011
Epilogue

thanks to our group & collaborators

 Institut für Kernphysik, TU Darmstadt

- **P. Navrátil**
 TRIUMF Vancouver, Canada

we thank Jülich Supercomputing Centre (JSC) & LOEWE-CSC for computing time

Thank you for your attention!