Importance Truncated NCSM with Chiral NN plus 3N Interactions

Robert Roth
Institut für Kernphysik

TECHNISCHE UNIVERSITY DARMSTADT
Nuclear Structure

From QCD to Nuclear Structure

- chiral EFT based on the relevant degrees of freedom & symmetries of QCD
- provides consistent NN & 3N interaction plus currents
- in the following:
 - NN at N^3LO (Entem & Machleidt, 500 MeV)
 - 3N at N^2LO (low-energy constants c_D & c_E from triton fit)

Low-Energy QCD

NN+3N Interaction from Chiral EFT
Nuclear Structure

Unitarily Transformed Hamiltonian

- adapt Hamiltonian to truncated low-energy model space
 - tame short-range correlations
 - improve convergence behavior
- transform Hamiltonian & observables consistently
- conserve experimentally constrained few-body properties

NN+3N Interaction from Chiral EFT

Low-Energy QCD
From QCD to Nuclear Structure

Nuclear Structure

Exact & Approx. Many-Body Methods

Unitarily Transformed Hamiltonian

NN+3N Interaction from Chiral EFT

Low-Energy QCD

- ‘exact’ solution of the many-body problem for light & intermediate masses (NCSM, CC, ...)
- controlled approximations for heavier nuclei (HF & MBPT, ...)
- all rely on restricted model spaces & benefit from unitary transformation
From QCD to Nuclear Structure

Nuclear Structure

- Exact & Approx. Many-Body Methods
- Unitarily Transformed Hamiltonian
- NN+3N Interaction from Chiral EFT

Low-Energy QCD

focus on consistent inclusion of chiral 3N interaction
Overview

- Unitarily Transformed NN+3N Hamiltonians
 - Similarity Renormalization Group
 - consistent transformation of chiral NN+3N interactions

- Exact Ab-Initio Calculations
 - Importance-Truncated NCSM
 - test of SRG-transformed chiral NN+3N interactions throughout the p-shell

- Approximate Many-Body Methods
 - Hartree-Fock & Perturbation Theory
 - ground-state systematics throughout the nuclear chart using SRG-transformed chiral NN+3N interactions
Unitarily Transformed Hamiltonians

Similarity Renormalization Group

Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010)
evolution of the Hamiltonian to band-diagonal form with respect to uncorrelated many-body basis

unitary transformation of Hamiltonian:

\[\tilde{H}_\alpha = U_\alpha^\dagger H U_\alpha \]

evolution equations for \(\tilde{H}_\alpha \) and \(U_\alpha \) depending on generator \(\eta_\alpha \):

\[\frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \]
\[\frac{d}{d\alpha} U_\alpha = -U_\alpha \eta_\alpha \]

dynamic generator: commutator with the operator in whose eigenbasis \(H \) shall be diagonalized

\[\eta_\alpha = (2\mu)^2[T_{\text{int}}, \tilde{H}_\alpha] \]
represent operator equation in \textit{n-body Jacobi HO basis} \(|EiJ^\pi T\rangle \)

- \(n = 2 \): relative LS-coupled HO states: \(|E(\text{LS})J^\pi T\rangle \)
- \(n = 3 \): antisymmetrized Jacobi-coordinate HO states: \(|EiJ^\pi T\rangle \)

system of \textit{coupled evolution equations} for each \((J^\pi T)\)-block

\[
\frac{d}{d\alpha} \langle EiJ^\pi T | \tilde{H}_\alpha | E'iJ^\pi T \rangle = (2\mu)^2 \sum_{E'',i''} \sum_{E''',i'''} \Bigg[\\
\langle EiJ^\pi T | T_{\text{int}} | E''i''J^\pi T \rangle \langle E''i''J^\pi T | \tilde{H}_\alpha | E''''i''''J^\pi T \rangle \langle E''''i''''J^\pi T | \tilde{H}_\alpha | E'iJ^\pi T \rangle \\
- 2 \langle EiJ^\pi T | \tilde{H}_\alpha | E''i''J^\pi T \rangle \langle E''i''J^\pi T | T_{\text{int}} | E''''i''''J^\pi T \rangle \langle E''''i''''J^\pi T | \tilde{H}_\alpha | E'iJ^\pi T \rangle \\
+ \langle EiJ^\pi T | \tilde{H}_\alpha | E''i''J^\pi T \rangle \langle E''i''J^\pi T | \tilde{H}_\alpha | E''''i''''J^\pi T \rangle \langle E''''i''''J^\pi T | T_{\text{int}} | E'iJ^\pi T \rangle \Bigg]
\]

we use \(E_{\text{SRG}} = 40 \) for \(J \leq 5/2 \) and ramp down to 24 in steps of 4 (sufficient to converge the intermediate sums for \(\hbar\Omega \gtrsim 16 \text{ MeV} \))
SRG Evolution in Two-Body Space

\[\alpha = 0.00 \text{ fm}^4 \]

\[\Lambda = \infty \text{ fm}^{-1} \]

\[J^{\pi} = 1^+, T = 0, \hbar \Omega = 28 \text{ MeV} \]

2B-Jacobi HO matrix elements

momentum space \(^3S_1 \)
SRG Evolution in Two-Body Space

\[\alpha = 0.32 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^\pi = 1^+, T = 0, \hbar \Omega = 28 \text{ MeV} \]

2B-Jacobi HO matrix elements

momenum space \[^3S_1\]
SRG Evolution in Three-Body Space

$\alpha = 0.00 \text{ fm}^4$

$\Lambda = \infty \text{ fm}^{-1}$

$J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV}$

3B-Jacobi HO matrix elements

NCSM ground state ^3H
\[\alpha = 0.32 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^{\pi} = \frac{1}{2}^+, T = \frac{1}{2}, \hbar\Omega = 28 \text{ MeV} \]

NCSM ground state \(^3\text{H}\)
Calculations in A-Body Space

- **cluster decomposition**: decompose evolved Hamiltonian from 2B/3B space into irreducible n-body contributions $\tilde{H}_\alpha^{[n]}$

 $$\tilde{H}_\alpha = \tilde{H}_\alpha^{[1]} + \tilde{H}_\alpha^{[2]} + \tilde{H}_\alpha^{[3]} + \ldots$$

- **cluster truncation**: can construct cluster-orders up to $n = 3$ from evolution in 2B and 3B space, have to discard $n > 3$

 - only the **full evolution in A-body space** conserves A-body energy eigenvalues and, thus, independent of α

 - α-dependence of eigenvalues of cluster-truncated Hamiltonian measures impact of omitted many-body interactions

 α-variation provides a **diagnostic tool** to assess the contributions of omitted many-body interactions
Sounds easy, but...

1. **computation of initial 2B/3B-Jacobi HO matrix elements of chiral NN+3N interactions**
 - we use Petr Navratil’s ManyEff code for computing 3B-Jacobi matrix elements and corresponding CFPs

2. **SRG evolution in 2B/3B space and cluster decomposition**
 - efficient implementation using adaptive ODE solver; largest block takes a few hours on single node

3. **transformation of 2B/3B Jacobi HO matrix elements into JT-coupled representation**
 - formulated transformation directly into JT-coupled scheme; highly efficient implementation; can handle $E_{3\text{max}} = 16$ in JT-coupled scheme

4. **data management and on-the-fly decoupling in many-body codes**
 - invented optimized storage scheme for fast on-the-fly decoupling; can keep all matrix elements up to $E_{3\text{max}} = 16$ in memory
Exact Ab-Initio Calculations

Importance Truncated NCSM

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10 or 12ℏΩ calculation for ^{16}O hardly feasible (basis dimension $> 10^{10}$)

Importance Truncation
reduce NCSM space to the relevant basis states using an \textit{a priori} importance measure derived from MBPT
Importance Truncation: Basic Idea

- given a initial approximation $|\psi_{\text{ref}}\rangle$ for the target state within a limited reference space \mathcal{M}_{ref}

 $|\psi_{\text{ref}}\rangle = \sum_{\nu \in \mathcal{M}_{\text{ref}}} C^{(\text{ref})}_{\nu} |\Phi_{\nu}\rangle$

- measure the importance of individual basis state $|\Phi_{\nu}\rangle \notin \mathcal{M}_{\text{ref}}$ via first-order multiconfigurational perturbation theory

 $\kappa_{\nu} = -\left\langle \Phi_{\nu} | H_{\text{int}} | \psi_{\text{ref}} \right\rangle$

 importance measure only probes 2p2h excitations on top of \mathcal{M}_{ref} for a two-body Hamiltonian

- construct importance-truncated space $\mathcal{M}(\kappa_{\text{min}})$ spanned by basis states with $|\kappa_{\nu}| \geq \kappa_{\text{min}}$

- solve eigenvalue problem in $\mathcal{M}(\kappa_{\text{min}})$ and obtain improved approximation of target state

 embed into iterative scheme to access full model space
Importance Truncation: Iterative Schemes

IT-NCSM(i) or IT-CI(i)

- simple iterative scheme for arbitrary model spaces
- ✧ start with $|\psi_{\text{ref}}\rangle = |\Phi_0\rangle$
- ① construct importance truncated space containing up to $2p^2\hbar$ on top of $|\psi_{\text{ref}}\rangle$
- ② solve eigenvalue problem
- ③ use components of eigenstate with $|C_\nu| \geq C_{\text{min}}$ as new $|\psi_{\text{ref}}\rangle$
- ④ goto ① (until convergence)

IT-NCSM(seq)

- sequential update scheme for a set of $N_{\text{max}}\hbar\Omega$ spaces
- ✧ start with full NCSM eigenstate for small N_{max} as initial $|\psi_{\text{ref}}\rangle$
- ① construct importance truncated space for $N_{\text{max}} + 2$
- ② solve eigenvalue problem
- ③ use components of eigenstate with $|C_\nu| \geq C_{\text{min}}$ as new $|\psi_{\text{ref}}\rangle$
- ④ goto ①

Full NCSM space is recovered in the limit $(\kappa_{\text{min}}, C_{\text{min}}) \to 0$
Threshold Extrapolation

- do calculations for a sequence of importance thresholds κ_{min}
- observables show smooth threshold dependence
- systematic approach to the full NCSM limit
- use a posteriori extrapolation $\kappa_{\text{min}} \to 0$ of observables to account for effect of excluded configurations
Constrained Threshold Extrapolation

\[^{16}\text{O}, \text{IT-NCSM(seq)} \]
\[\text{S-SRG(CDB2k), } \hbar \Omega = 24 \text{ MeV, } N_{\text{max}} = 12 \]

- estimate energy contribution of excluded states perturbatively → \(\Delta_{\text{excl}}(\kappa_{\text{min}}) \)

- **simultaneous fit** of combined energy

\[
E_{\lambda}(\kappa_{\text{min}}) = E_{\text{int}}(\kappa_{\text{min}}) + \lambda \Delta_{\text{excl}}(\kappa_{\text{min}})
\]

for set of \(\lambda \)-values with the constraint \(E_{\lambda}(0) = E_{\text{extrap}} \)

- **robust threshold extrapolation** with error bars determined by variation of fit function
Benchmarking SRG-Evolved Chiral NN+3N Hamiltonians
A Tale of Three Hamiltonians

- **NN only**: start with NN-only initial Hamiltonian and evolve in two-body space

\[\tilde{H}^{\text{NN-only}}_{\alpha} = T_{\text{int}} + \tilde{T}^{[2]}_{\text{int, } \alpha} + \tilde{V}^{[2]}_{\text{NN}, \alpha} \]

- **NN+3N-induced**: start with NN-only initial Hamiltonian and evolve in three-body space

\[\tilde{H}^{\text{NN+3N-induced}}_{\alpha} = T_{\text{int}} + \tilde{T}^{[2]}_{\text{int, } \alpha} + \tilde{V}^{[2]}_{\text{NN}, \alpha} + \tilde{T}^{[3]}_{\text{int, } \alpha} + \tilde{V}^{[3]}_{\text{NN}, \alpha} \]

- **NN+3N-full**: start with NN+3N initial Hamiltonian and evolve in three-body space

\[\tilde{H}^{\text{NN+3N-full}}_{\alpha} = T_{\text{int}} + \tilde{T}^{[2]}_{\text{int, } \alpha} + \tilde{V}^{[2]}_{\text{NN}, \alpha} + \tilde{T}^{[3]}_{\text{int, } \alpha} + \tilde{V}^{[3]}_{\text{NN}, \alpha} \]

α-variation provides a diagnostic tool to assess the contributions of omitted many-body interactions.
\(^4\text{He}: \text{Ground-State Energies}\)

- **NN only**
 - strong \(\alpha\)-dependence: induced 3N interactions
 - \(\hbar\Omega = 20 \text{ MeV}\)

- **NN+3N-induced**
 - no \(\alpha\)-dependence: no induced 4N interactions

- **NN+3N-full**
 - no \(\alpha\)-dependence: no induced 4N interactions

\[\begin{align*}
\alpha &= 0.04 \text{ fm}^4 & \alpha &= 0.05 \text{ fm}^4 & \alpha &= 0.0625 \text{ fm}^4 & \alpha &= 0.08 \text{ fm}^4 & \alpha &= 0.16 \text{ fm}^4 \\
\Lambda &= 2.24 \text{ fm}^{-1} & \Lambda &= 2.11 \text{ fm}^{-1} & \Lambda &= 2.00 \text{ fm}^{-1} & \Lambda &= 1.88 \text{ fm}^{-1} & \Lambda &= 1.58 \text{ fm}^{-1}
\end{align*}\]
\[\hbar \Omega = 20 \text{ MeV}\]

NN only

\[E = -22, -24, -26, -28, -30, -32, -34\] MeV

\[N_{\text{max}} = 2, 4, 6, 8, 10, 12, 14\]

\[\alpha = 0.04 \text{ fm}^4, \quad \Lambda = 2.24 \text{ fm}^{-1}\]

NN+3N-induced

\[E = -22, -24, -26, -28, -30, -32, -34\] MeV

\[N_{\text{max}} = 2, 4, 6, 8, 10, 12, 14\]

\[\alpha = 0.05 \text{ fm}^4, \quad \Lambda = 2.11 \text{ fm}^{-1}\]

NN+3N-full

\[E = -22, -24, -26, -28, -30, -32, -34\] MeV

\[N_{\text{max}} = 2, 4, 6, 8, 10, 12, 14\]

\[\alpha = 0.0625 \text{ fm}^4, \quad \Lambda = 2.00 \text{ fm}^{-1}\]
^6Li: Excitation Energies

NN only

- E_x vs N_{max}
- $\hbar \Omega = 20 \text{ MeV}$
- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- E_x vs N_{max}
- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- E_x vs N_{max}
- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
^{12}C: Ground-State Energies

NN only

- $\hbar \Omega = 20 \text{ MeV}$
- N_{max}
- E [MeV]
- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- no α-dependence:
 - no induced 4N contrib.

NN+3N-full

- some α-dependence:
 - induced 4N interactions

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$
- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
\(E_x \) [MeV]

\begin{align*}
\hbar \Omega &= 20 \text{ MeV} \\
N_{\text{max}}
\end{align*}

\[\alpha = 0.04 \text{ fm}^4 \quad \Lambda = 2.24 \text{ fm}^{-1} \]
\[\alpha = 0.05 \text{ fm}^4 \quad \Lambda = 2.11 \text{ fm}^{-1} \]
\[\alpha = 0.0625 \text{ fm}^4 \quad \Lambda = 2.00 \text{ fm}^{-1} \]
\[\alpha = 0.08 \text{ fm}^4 \quad \Lambda = 1.88 \text{ fm}^{-1} \]
\[\alpha = 0.16 \text{ fm}^4 \quad \Lambda = 1.58 \text{ fm}^{-1} \]
16O: Ground-State Energies

NN only

- \(\hbar \Omega = 20 \text{ MeV} \)
- \(N_{\text{max}} \) vs. \(E \) [MeV]

NN+3N-induced

- no \(\alpha \)-dependence: no induced 4N contrib.
- \(\alpha = 0.04 \text{ fm}^4 \)
- \(\Lambda = 2.24 \text{ fm}^{-1} \)

NN+3N-full

- sizable \(\alpha \)-dependence: induced 4N interactions
- \(\alpha = 0.05 \text{ fm}^4 \)
- \(\Lambda = 2.11 \text{ fm}^{-1} \)

\(\alpha = 0.0625 \text{ fm}^4 \)
\(\Lambda = 2.00 \text{ fm}^{-1} \)
\(\alpha = 0.08 \text{ fm}^4 \)
\(\Lambda = 1.88 \text{ fm}^{-1} \)
\(\alpha = 0.16 \text{ fm}^4 \)
\(\Lambda = 1.58 \text{ fm}^{-1} \)
\[16^O: \text{Energy vs. Flow Parameter}\]

- **NN only**: strong \(\alpha\)-dependence \(\Rightarrow\) significant induced 3N contributions

- **NN+3N-induced**: no \(\alpha\)-dependence \(\Rightarrow\) all relevant induced terms from initial NN captured at 3N level

- **NN+3N-full**: sizable \(\alpha\)-dependence \(\Rightarrow\) additional induced terms caused by initial 3N appear at 4N level
\[16\text{O} \; \text{&} \; ^4\text{He}: \text{Energy vs. Flow Parameter}\]

\[\hbar \Omega = 20 \text{ MeV}\]

\[\begin{align*}
\text{\(16\text{O}\)} & \quad \begin{array}{c}
\text{\(E_\infty\)} \quad [\text{MeV}]
\end{array} \\
\text{\(\alpha\)} \quad [\text{fm}^4] & \quad \begin{array}{c}
-110 \\
-120 \\
-130 \\
-140 \\
-150 \\
-160 \\
-170 \\
-180
\end{array}
\end{align*}\]

\[\begin{align*}
\text{\(4\text{He}\)} & \quad \begin{array}{c}
\text{\(E_\infty\)} \quad [\text{MeV}]
\end{array} \\
\text{\(\alpha\)} \quad [\text{fm}^4] & \quad \begin{array}{c}
-25 \\
-26 \\
-27 \\
-28 \\
-29
\end{array}
\end{align*}\]

\[\text{\(\bullet\)} \quad \text{NN only} \quad \text{\(\text{\(\bullet\)}\)} \quad \text{NN+3N-induced} \quad \text{\(\text{\(\Delta\)}\)} \quad \text{NN+3N-full}\]
Approximate Many-Body Methods

Hartree-Fock & Perturbation Theory

Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010)
Hartree-Fock & Perturbation Theory

HF & PT provides information on the systematics of ground-state observables over a wide mass range

- solution of the HF equations with 3N interaction computationally simple
- second-order PT for energy with 3N interaction also straightforward
- all following results preliminary with some limitations, but none of them will change the conclusions
 - 3N matrix elements only up to $E_{3\text{max}} = 12$
 - fixed oscillator frequency $\hbar\Omega = 28$ MeV
 - second-order perturbative correction includes NN contribution only
Systematics: E/A and R_{ch}

E/A [MeV]

R_{ch} [fm]

NN-only

$\alpha = 0.02 \text{ fm}^4$

$\alpha = 0.04 \text{ fm}^4$

$\alpha = 0.08 \text{ fm}^4$

experiment

$e_{\text{max}} = 14$

$E_{3,\text{max}} = 12$

$\hbar\Omega = 28 \text{ MeV}$

Robert Roth – TU Darmstadt – 02/2011
Systematics: E/A and R_{ch}

![Graph showing systematics for E/A and R_{ch}](image)

- E/A [MeV]
- R_{ch} [fm]

- **NN-only**
- **HF+PT**
- **HF**

- $\alpha = 0.02 \text{ fm}^4$
- $\alpha = 0.04 \text{ fm}^4$
- $\alpha = 0.08 \text{ fm}^4$

- $e_{\text{max}} = 14$
- $E_{3,\text{max}} = 12$
- $\hbar\Omega = 28 \text{ MeV}$

Robert Roth – TU Darmstadt – 02/2011
Systematics: E/A and R_{ch}

NN + 3N-induced

E/A [MeV]

R_{ch} [fm]

$\alpha = 0.02 \text{ fm}^4$

$\alpha = 0.04 \text{ fm}^4$

$\alpha = 0.08 \text{ fm}^4$

$e_{\text{max}} = 14$

$E_{3,\text{max}} = 12$

$\hbar \Omega = 28 \text{ MeV}$

Robert Roth – TU Darmstadt – 02/2011
Systematics: E/A and \(R_{\text{ch}} \)

\[\begin{align*}
\alpha &= 0.02 \text{ fm}^4 \\
\alpha &= 0.04 \text{ fm}^4 \\
\alpha &= 0.08 \text{ fm}^4 \\
\end{align*} \]

\[e_{\text{max}} = 14 \]
\[E_{3,\text{max}} = 12 \]
\[\hbar \Omega = 28 \text{ MeV} \]

\(\text{HF+PT} \)

\(\text{HF} \)
Systematics: E/A and R_{ch}

\[E/A \text{[MeV]} \]

\[R_{ch} \text{[fm]} \]

\begin{align*}
\alpha &= 0.02 \text{ fm}^4 \\
\alpha &= 0.04 \text{ fm}^4 \\
\alpha &= 0.08 \text{ fm}^4
\end{align*}

\[e_{\text{max}} = 14 \]
\[E_{3,\text{max}} = 12 \]
\[\hbar \Omega = 28 \text{ MeV} \]
Systematics: E/A and R_{ch}

\begin{itemize}
 \item \textbf{HF+PT} \quad \text{strong } \alpha\text{-dependence: induced 4N contributions are sizable}
 \item \textbf{HF}
\end{itemize}

\begin{align*}
 e_{\text{max}} &= 14 \\
 E_{3,\text{max}} &= 12 \\
 \hbar \Omega &= 28 \text{ MeV}
\end{align*}
Conclusions
Conclusions

- ab initio nuclear structure calculations with consistently SRG-evolved chiral NN+3N interactions
 - consistent SRG evolution up to the 3N level
 - efficient transformation and management of JT-coupled 3N matrix elements
 - IT-NCSM with full 3N interactions up to \(N_{\text{max}} = 12 \) (14) for all p-shell nuclei (and lower sd-shell)

- indications that induced 4N contributions resulting from initial 3N interaction become significant beyond mid-p-shell

- use modified SRG generators to suppress induced 4N contributions from the outset

- many exciting applications ahead...
thanks to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- **P. Navrátil**
 TRIUMF Vancouver, Canada

- **S. Quaglioni**
 Lawrence Livermore National Laboratory, USA

- **H. Hergert, P. Piecuch**
 Michigan State University, USA

- **C. Forssén**
 Chalmers University of Technology, Sweden

- **H. Feldmeier, T. Neff,**...
 Gesellschaft für Schwerionenforschung (GSI)