Consistent SRG Transformed Chiral Two- plus Three-Body Interactions

Angelo Calci
Institut für Kernphysik
Chiral Effective Field Theory

- based on the fundamental **symmetries of QCD**
- provides NN + 3N interactions **consistently**

best available interaction from χEFT

- NN at N^3LO (Entem & Machleidt, 500 MeV)
- 3N at N^2LO (low energy constants c_D & c_E from triton fit)

- initial chiral Hamiltonian causes strong **correlations**
- **slow convergence** in many-body calculations w.r.t. model space
- apply **unitary transformation**
Similarity Renormalization Group (SRG)

accelerate convergence by pre-diagonalizing the Hamiltonian with respect to the many-body basis

- unitary transformation leads to evolution equation

\[
\frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \quad \text{with} \quad \eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha] = -\eta_\alpha^\dagger
\]

advantages of SRG: flexibility and simplicity

3B-Jacobi HO matrix elements

\[\langle E'|ijT|\tilde{H}_\alpha - T_{\text{int}}|EjT\rangle \]

E-Block averages

\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2} \]

\[\hbar \Omega = 20 \text{ MeV} \]
SRG Evolution in A-Body Space

- SRG induces **irreducible** many-body **contributions**

\[U_\alpha^\dagger H U_\alpha = \tilde{H}_\alpha^{[2]} + \tilde{H}_\alpha^{[3]} + \cdots + \tilde{H}_\alpha^{[A]} \]

- restricted to a SRG evolution in 2B or 3B space

- formal **violation of unitarity**

SRG-evolved Hamiltonians

- **NN only**: start with NN initial Hamiltonian and keep two-body terms only

- **NN+3N-induced**: start with NN initial Hamiltonian and keep two- and three-body terms

- **NN+3N-full**: start with NN+3N initial Hamiltonian and keep all two- and three-body terms

\(\alpha \)-variation provides a **diagnostic tool** to assess the contributions of omitted many-body interactions
4He: Ground-State Energies

NN only
- Strong α-dependence: induced 3N interactions
- IT-NCSM $\hbar\Omega = 20$ MeV

NN+3N-induced
- No α-dependence: no induced 4N interactions

NN+3N-full
- No α-dependence: no induced 4N interactions

\[
E \text{ [MeV]}
\]

\[
N_{\text{max}}
\]

\[
\alpha = 0.04 \text{ fm}^4
\]
\[
\Lambda = 2.24 \text{ fm}^{-1}
\]

\[
\alpha = 0.05 \text{ fm}^4
\]
\[
\Lambda = 2.11 \text{ fm}^{-1}
\]

\[
\alpha = 0.0625 \text{ fm}^4
\]
\[
\Lambda = 2.00 \text{ fm}^{-1}
\]

\[
\alpha = 0.08 \text{ fm}^4
\]
\[
\Lambda = 1.88 \text{ fm}^{-1}
\]

\[
\alpha = 0.16 \text{ fm}^4
\]
\[
\Lambda = 1.58 \text{ fm}^{-1}
\]
16O: Ground-State Energies

- **NN only**
 - IT-NCSM
 - \(\hbar \Omega = 20 \text{ MeV} \)

- **NN+3N-induced**
 - No \(\alpha \)-dependence: no induced 4N contrib.

- **NN+3N-full**
 - Sizable \(\alpha \)-dependence: induced 4N interactions

\begin{align*}
\alpha &= 0.04 \text{ fm}^4 \\
\Lambda &= 2.24 \text{ fm}^{-1} \\
\alpha &= 0.05 \text{ fm}^4 \\
\Lambda &= 2.11 \text{ fm}^{-1} \\
\alpha &= 0.0625 \text{ fm}^4 \\
\Lambda &= 2.00 \text{ fm}^{-1} \\
\alpha &= 0.08 \text{ fm}^4 \\
\Lambda &= 1.88 \text{ fm}^{-1} \\
\alpha &= 0.16 \text{ fm}^4 \\
\Lambda &= 1.58 \text{ fm}^{-1}
\end{align*}
switch off individual contributions of the 3N interaction

two-pion exchange term of the chiral 3N (in particular the c_3-term) is responsible for induced 4N

$\hbar\Omega = 20$ MeV

$\alpha = 0.04$ fm4

$\Lambda = 2.24$ fm$^{-1}$

$\alpha = 0.08$ fm4

$\Lambda = 1.88$ fm$^{-1}$

$\alpha = 0.16$ fm4

$\Lambda = 1.58$ fm$^{-1}$
O: Lowering the Initial 3N Cutoff

no initial 3N

- NN+3N-induced

500 MeV cutoff

- NN+3N-full

400 MeV cutoff

- NN+3N-full

\(E [\text{MeV}] \) vs. \(N_{\text{max}} \)

- \(\hbar \Omega = 20 \text{ MeV} \)

Parameters

- \(\alpha = 0.04 \text{ fm}^4 \), \(\Lambda = 2.24 \text{ fm}^{-1} \)
- \(\alpha = 0.05 \text{ fm}^4 \), \(\Lambda = 2.11 \text{ fm}^{-1} \)
- \(\alpha = 0.0625 \text{ fm}^4 \), \(\Lambda = 2.00 \text{ fm}^{-1} \)
- \(\alpha = 0.08 \text{ fm}^4 \), \(\Lambda = 1.88 \text{ fm}^{-1} \)
- \(\alpha = 0.16 \text{ fm}^4 \), \(\Lambda = 1.58 \text{ fm}^{-1} \)
Conclusions

- **consistent SRG** evolution in 3B space
 - indispensable for converged IT-NCSM calculations
 - initial NN interaction under control

- **two-pion** exchange term of 3N **induces 4N** contributions
 - lowering the cutoff reduces induced contributions

Outlook: Alternative Generators

1. **exclude initial 3N**: include only NN+3N-induced in generator
2. **restrict range**: introduce explicit range in generator definition
3. search **trade-off** between induced 4N & convergence acceleration
thanks to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- **P. Navrátil**
 TRIUMF Vancouver, Canada

- J. Vary, P. Maris
 Iowa State University, USA

- S. Quaglioni
 LLNL Livermore, USA

- P. Piecuch
 Michigan State University, USA

- H. Hergert
 Ohio State University, USA

- P. Papakonstantinou
 IPN Orsay, F

- C. Forssén
 Chalmers University, Sweden

- **H. Feldmeier**, T. Neff
 GSI Helmholtzzentrum