Ab Initio Nuclear Structure for Light and Medium-Mass Nuclei

Sven Binder
INSTITUT FÜR KERNPHYSIK

TECHNISCHE UNIVERSITÄT DARMSTADT
Nature of the Nuclear Interaction

$\rho_0^{-1/3} = 1.8\text{fm}$
NN-interaction is **not fundamental**

\[\rho_0^{-1/3} = 1.8 \text{fm} \]
Nature of the Nuclear Interaction

- NN-interaction is **not fundamental**
- analogous to **van der Waals** interaction between neutral atoms

\[\rho_0^{-1/3} = 1.8 \text{fm} \]
Nature of the Nuclear Interaction

- NN-interaction is **not fundamental**

- analogous to *van der Waals* interaction between neutral atoms

- induced via mutual **polarization** of quark & gluon distributions

\[\rho_0^{-1/3} = 1.8 \text{fm} \]

\[\sim 1.6 \text{fm} \]
Nature of the Nuclear Interaction

- NN-interaction is **not fundamental**
- analogous to **van der Waals** interaction between neutral atoms
- induced via mutual **polarization** of quark & gluon distributions
- acts only if the nucleons overlap, i.e. at **short ranges**

\[\rho_0^{-1/3} = 1.8 \text{fm} \]
Nature of the Nuclear Interaction

- NN-interaction is **not fundamental**
- analogous to **van der Waals** interaction between neutral atoms
- induced via mutual **polarization** of quark & gluon distributions
- acts only if the nucleons overlap, i.e. at **short ranges**
- genuine **3N-interaction** is important

\[\rho_0^{-1/3} = 1.8 \text{fm} \]
Nuclear Interactions from Chiral EFT
- low-energy **effective field theory**
 for relevant degrees of freedom \((\pi, N)\)
 based on symmetries of QCD
Nuclear Interactions from Chiral EFT

- low-energy **effective field theory** for relevant degrees of freedom (π, N) based on symmetries of QCD

- long-range **pion dynamics** explicitly
Nuclear Interactions from Chiral EFT

- low-energy **effective field theory** for relevant degrees of freedom (π,N) based on symmetries of QCD

- long-range **pion dynamics** explicitly

- short-range physics absorbed in **contact terms**, low-energy constants fitted to experiment ($NN, \pi N,...$)
low-energy **effective field theory** for relevant degrees of freedom (π,N) based on symmetries of QCD

- long-range **pion dynamics** explicitly

- short-range physics absorbed in **contact terms**, low-energy constants fitted to experiment ($NN, \pi N,...$)

- hierarchy of **consistent NN, 3N,… interactions** (plus currents)
Nuclear Interactions from Chiral EFT

- **low-energy effective field theory**
 for relevant degrees of freedom (π, N) based on symmetries of QCD

- **long-range pion dynamics** explicitly

- **short-range physics** absorbed in **contact terms**, low-energy constants fitted to experiment ($NN, \pi N, ...$)

- **hierarchy of consistent NN, 3N,... interactions** (plus currents)
Nuclear Interactions from Chiral EFT

- low-energy **effective field theory** for relevant degrees of freedom (π, N) based on symmetries of QCD
- long-range **pion dynamics** explicitly
- short-range physics absorbed in **contact terms**, low-energy constants fitted to experiment (NN, πN, ...)
- hierarchy of **consistent NN, 3N,... interactions** (plus currents)
- many **ongoing developments**
 - 3N interaction at N^3LO
 - explicit inclusion of Δ-resonance
Nuclear Structure

<table>
<thead>
<tr>
<th>NN</th>
<th>3N</th>
<th>4N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>NLO</td>
<td>H</td>
<td>—</td>
</tr>
<tr>
<td>N^2LO</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N^3LO</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- Derive consistent 2N & 3N forces from chiral EFT with nucleons and pions as DOF

NN+3N Interaction from Chiral EFT

Low-Energy QCD
From QCD to Nuclear Structure

Nuclear Structure

- Unitarily Transformed Hamiltonian
 - adapt Hamiltonian to truncated low-energy model space

NN+3N Interaction from Chiral EFT

Low-Energy QCD
From QCD to Nuclear Structure

Nuclear Structure

- Exact & Approx. Many-Body Methods
 - ab initio solution of the many-body problem for light & intermediate masses (NCSM, CC,...)
 - controlled approximations for heavier nuclei (HF & MBPT,...)
 - all rely on restricted model spaces & benefit from unitary transformation

- Unitarily Transformed Hamiltonian

- NN+3N Interaction from Chiral EFT

- Low-Energy QCD
Similarity Renormalization Group

Continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis

- **Unitary transformation** of Hamiltonian (and other observables)
 \[\tilde{H}_\alpha = U_\alpha^\dagger H U_\alpha \]

- **Evolution equations** for \(\tilde{H}_\alpha \) and \(U_\alpha \) depending on generator \(\eta_\alpha \)
 \[\frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \quad \frac{d}{d\alpha} U_\alpha = -U_\alpha \eta_\alpha \]

- **Dynamic generator**: commutator with the operator in whose eigenbasis \(H \) shall be diagonalized
 \[\eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha] \]
Similarity Renormalization Group

Continuous transformation driving **Hamiltonian to band-diagonal form** with respect to a chosen basis.

- **Unitary transformation** of Hamiltonian:
 \[\tilde{H}_\alpha = U_\alpha^\dagger H U_\alpha \]

- **Evolution equations** for \(\tilde{H}_\alpha \) and \(U_\alpha \):
 \[\frac{d}{d\alpha} \tilde{H}_\alpha = [\eta_\alpha, \tilde{H}_\alpha] \]

- **Dynamic generator**: commutator with the operator in whose eigenbasis \(H \) shall be diagonalized
 \[\eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha] \]

Simplicity and flexibility are great advantages of the SRG approach.

Solve SRG evolution equations using two- & three-body matrix representation.
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

chiral NN+3N
N^3LO + N^2LO, triton-fit, 500 MeV

$J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar\Omega = 28$ MeV

NCSM ground state 3H

$E [\text{MeV}]$

N_{max}

$E' \rightarrow E \rightarrow 18 \rightarrow 20 \rightarrow 22 \rightarrow 24 \rightarrow 26 \rightarrow 28$

(E, i')

(E, i)

$0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 \rightarrow 12 \rightarrow 14 \rightarrow 16 \rightarrow 18 \rightarrow 20$
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\[\alpha = 0.000 \text{ fm}^4 \]
\[\Lambda = \infty \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\[\alpha = 0.010 \text{fm}^4 \]
\[\Lambda = 3.16 \text{fm}^{-1} \]

\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar\Omega = 28 \text{MeV} \]

NCSM ground state \(^3\)H
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\[\alpha = 0.020 \text{ fm}^4 \]
\[\Lambda = 2.66 \text{ fm}^{-1} \]

\[J^{\pi} = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

\[\alpha = 0.040 \text{ fm}^4 \]
\[\Lambda = 2.24 \text{ fm}^{-1} \]

\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

\[\alpha = 0.080 \text{ fm}^4 \]
\[\Lambda = 1.88 \text{ fm}^{-1} \]

\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state ^3H
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\[\alpha = 0.160 \text{ fm}^4 \]
\[\Lambda = 1.58 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

NCSM ground state ^3H
SRG Evolution in Three-Body Space

\[\alpha = 0.320 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

NCSM ground state \(^3\text{H}\)
SRG Evolution in Three-Body Space

\[\alpha = 0.320 \text{ fm}^4 \]
\[\Lambda = 1.33 \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

3B-Jacobi HO matrix elements

suppression of off-diagonal coupling \(\hat{=} \) pre-diagonalization

NCSM ground state \(^3\text{H}\)

significant improvement of convergence behavior

\[E \rightarrow 18, 20, 22, 24, 26, 28 \]

\[(E, \imath) \]

\[N_{\text{max}} \]

\[E \text{ [MeV]} \]

\[0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 \rightarrow 12 \rightarrow 14 \rightarrow 16 \rightarrow 18 \rightarrow 20 \]

\[-8 \rightarrow -6 \rightarrow -4 \rightarrow -2 \rightarrow 0 \rightarrow 2 \]
Calculations in A-Body Space

- evolution induces \textit{n-body contributions} $\tilde{H}^{[n]}_\alpha$ to Hamiltonian

\[
\tilde{H}_\alpha = \tilde{H}^{[1]}_\alpha + \tilde{H}^{[2]}_\alpha + \tilde{H}^{[3]}_\alpha + \tilde{H}^{[4]}_\alpha + \ldots
\]

- truncation of cluster series inevitable — formally destroys unitarity and invariance of energy eigenvalues (independence of α)

Three SRG-Evolved Hamiltonians

- **NN only**: start with NN initial Hamiltonian and keep two-body terms only

- **NN+3N-induced**: start with NN initial Hamiltonian and keep two- and induced three-body terms

- **NN+3N-full**: start with NN+3N initial Hamiltonian and keep two- and all three-body terms
Calculations in A-Body Space

- evolution induces n-body contributions $\tilde{H}_\alpha^{[n]}$ to Hamiltonian

$$\tilde{H}_\alpha = \tilde{H}_\alpha^{[1]} + \tilde{H}_\alpha^{[2]} + \tilde{H}_\alpha^{[3]} + \tilde{H}_\alpha^{[4]} + \ldots$$

- truncation of cluster series inevitable — formally destroy α-unitarity
 and invariance of energy eigenvalues (independence of α)

α-variation provides a diagnostic tool to assess
the contributions of omitted many-body interactions

Three SRG-Evolved Hamiltonians

- **NN only**: start with NN initial Hamiltonian and keep two-body
terms only

- **NN+3N-induced**: start with NN initial Hamiltonian and keep two-
and induced three-body terms

- **NN+3N-full**: start with NN+3N initial Hamiltonian and keep two-
and all three-body terms
Importance-Truncated No-Core Shell Model

No-Core Shell Model — Basics

- **many-body basis**: Slater determinants $|\Phi_\nu\rangle$ composed of harmonic oscillator single-particle states (m-scheme)

$$|\psi\rangle = \sum_\nu C_\nu |\Phi_\nu\rangle$$

- **model space**: spanned by basis states $|\Phi_\nu\rangle$ with unperturbed excitation energies of up to $N_{\text{max}}\hbar\Omega$
No-Core Shell Model — Basics
\{ |i\rangle \}

\[e_i = 2n_i + l_i \]
The No-Core Shell Model — Basics

\[\{ |i\rangle \}\]

\[e_i = 2n_i + l_i\]
No-Core Shell Model — Basics

\[\{ |i\rangle \} \]

\[e_i = 2n_i + l_i \]

\[|\Phi_0\rangle \]

\[|\Phi_v\rangle \]

\[X_v = 3 \hbar \Omega \]
No-Core Shell Model — Basics

\(\{ |i\rangle \} \)

\(e_i = 2n_i + l_i \)

\(|\Phi_0\rangle \)

\(X_\nu = 3 \hbar \Omega \)

\(|\Phi_\mu\rangle \)

\(X_\mu = (2 + 3 + 5) \hbar \Omega \)
No-Core Shell Model — Basics

- model space:
 \[\nu = \text{span}\left\{ |\Phi_\nu\rangle : X_\nu \leq N_{\text{max}} \hbar \Omega \right\} \]

- "low-energy part" of the many-body Hilbert space

- allows separation of center-of-mass and intrinsic degrees of freedom

\[
|\Phi_\nu\rangle \quad X_\nu = 3 \hbar \Omega
\]

\[
|\Phi_\mu\rangle \quad X_\mu = (2 + 3 + 5) \hbar \Omega
\]
No-Core Shell Model — Basics

- **many-body basis**: Slater determinants $|\Phi_\nu\rangle$ composed of harmonic oscillator single-particle states (m-scheme)

$$|\psi\rangle = \sum_\nu C_\nu |\Phi_\nu\rangle$$

- **model space**: spanned by basis states $|\Phi_\nu\rangle$ with unperturbed excitation energies of up to $N_{\text{max}} \hbar \Omega$

- numerical solution of **matrix eigenvalue problem** for the intrinsic Hamiltonian H within truncated model space

$$H |\psi\rangle = E |\psi\rangle \rightarrow \begin{pmatrix} \vdots & \langle \Phi_\nu| H |\Phi_\mu\rangle & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} C_\mu \\ \vdots \\ \vdots \end{pmatrix} = E \begin{pmatrix} C_\nu \\ \vdots \\ \vdots \end{pmatrix}$$

- model spaces of **up to 10^9 basis states** are used routinely
Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full $10\hbar\Omega$ calculation for ^{16}O getting very difficult (basis dimension $> 10^{10}$)

![Graph showing energy levels for ^{16}O as a function of N_{max}. The graph indicates a linear decrease in energy with increasing N_{max}. Key points include:

- $E_{\text{NN-only}} = -110 \text{ MeV}$
- $\hbar\Omega = 20 \text{ MeV}$
- $\alpha = 0.04 \text{ fm}^4$]
Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full $10\hbar\Omega$ calculation for ^{16}O getting very difficult (basis dimension $> 10^{10}$)

Importance Truncation

reduce model space to the relevant basis states using an *a priori* importance measure derived from MBPT
4He: Ground-State Energies

![Graph showing ground-state energies for 4He with different parameters.](image)

- $\hbar \Omega = 20$ MeV
- N_{max} values range from 2 to 16, with a continuum limit at ∞.
- Various curves represent different values of α and Λ:
 - $\alpha = 0.04 \text{ fm}^4$, $\Lambda = 2.24 \text{ fm}^{-1}$
 - $\alpha = 0.05 \text{ fm}^4$, $\Lambda = 2.11 \text{ fm}^{-1}$
 - $\alpha = 0.0625 \text{ fm}^4$, $\Lambda = 2.00 \text{ fm}^{-1}$
 - $\alpha = 0.08 \text{ fm}^4$, $\Lambda = 1.88 \text{ fm}^{-1}$
 - $\alpha = 0.16 \text{ fm}^4$, $\Lambda = 1.58 \text{ fm}^{-1}$
$^4\text{He}: \text{Ground-State Energies}$

NN only

- **Strong α-dependence:** induced 3N interactions

$\hbar \Omega = 20 \text{ MeV}$

- $\alpha = 0.04 \text{ fm}^4$
 $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
 $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
 $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
 $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
 $\Lambda = 1.58 \text{ fm}^{-1}$
4He: Ground-State Energies

NN only

NN+3N-induced

![Plot of ground-state energies](image)

- **Strong α-dependence:** induced 3N interactions

- $\hbar \Omega = 20 \text{ MeV}$

Parameters:
- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
\[^4\text{He}: \text{Ground-State Energies} \]

NN only
- Strong α-dependence: induced 3N interactions

\[E \text{ [MeV]} \]
\[\hbar \Omega = 20 \text{ MeV} \]

\[N_{\text{max}} \]
\[\alpha = 0.04 \text{ fm}^4 \]
\[\Lambda = 2.24 \text{ fm}^{-1} \]

\[\alpha = 0.05 \text{ fm}^4 \]
\[\Lambda = 2.11 \text{ fm}^{-1} \]

\[\alpha = 0.0625 \text{ fm}^4 \]
\[\Lambda = 2.00 \text{ fm}^{-1} \]

\[\alpha = 0.08 \text{ fm}^4 \]
\[\Lambda = 1.88 \text{ fm}^{-1} \]

\[\alpha = 0.16 \text{ fm}^4 \]
\[\Lambda = 1.58 \text{ fm}^{-1} \]

NN+3N-induced
- No α-dependence: no induced 4N interactions

Exp.
4He: Ground-State Energies

NN only
- Strong α-dependence:
 - induced 3N interactions

NN+3N-indcuded
- No α-dependence:
 - no induced 4N interactions

$\hbar\Omega = 20$ MeV

NN+3N-full

$\alpha = 0.04$ fm4
$\Lambda = 2.24$ fm$^{-1}$

$\alpha = 0.05$ fm4
$\Lambda = 2.11$ fm$^{-1}$

$\alpha = 0.0625$ fm4
$\Lambda = 2.00$ fm$^{-1}$

$\alpha = 0.08$ fm4
$\Lambda = 1.88$ fm$^{-1}$

$\alpha = 0.16$ fm4
$\Lambda = 1.58$ fm$^{-1}$
^4He: Ground-State Energies

NN only
- strong α-dependence: induced 3N interactions

$\hbar\Omega = 20\text{ MeV}$

NN+3N-induced
- no α-dependence: no induced 4N interactions

$\alpha = 0.04\text{ fm}^4$
$\Lambda = 2.24\text{ fm}^{-1}$

$\alpha = 0.05\text{ fm}^4$
$\Lambda = 2.11\text{ fm}^{-1}$

$\alpha = 0.0625\text{ fm}^4$
$\Lambda = 2.00\text{ fm}^{-1}$

$\alpha = 0.08\text{ fm}^4$
$\Lambda = 1.88\text{ fm}^{-1}$

$\alpha = 0.16\text{ fm}^4$
$\Lambda = 1.58\text{ fm}^{-1}$

NN+3N-full
- no α-dependence: no induced 4N interactions

- Exp.
$^6\text{Li}:\text{ Ground-State Energies}$

NN only

- $\hbar \Omega = 20 \text{ MeV}$

NN+3N-induced

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$

- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$
12C: Ground-State Energies

NN only

- $\hbar \Omega = 20 \text{ MeV}$
- N_{max} values: 2, 4, 6, 8, 10, 12, 14, ∞

NN+3N-induced

- $\alpha = 0.04 \text{ fm}^4$, $\Lambda = 2.24 \text{ fm}^{-1}$
- $\alpha = 0.05 \text{ fm}^4$, $\Lambda = 2.11 \text{ fm}^{-1}$
- $\alpha = 0.0625 \text{ fm}^4$, $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$, $\Lambda = 1.88 \text{ fm}^{-1}$

NN+3N-full

- $\alpha = 0.16 \text{ fm}^4$, $\Lambda = 1.58 \text{ fm}^{-1}$

Exp.

- E in MeV, N_{max} values: 2, 4, 6, 8, 10, 12, ∞
$^{16}\text{O}: \text{Ground-State Energies}$

NN only

- $\hbar\Omega = 20 \text{ MeV}$

NN+3N-induced

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$
- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$
- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$

NN+3N-full

- Exp.
\[O: \text{Ground-State Energies} \]

NN only

- \(h\Omega = 20 \text{MeV} \)

NN+3N-induced

- \(\alpha = 0.04 \text{fm}^4 \)
 - \(\Lambda = 2.24 \text{fm}^{-1} \)
- \(\alpha = 0.05 \text{fm}^4 \)
 - \(\Lambda = 2.11 \text{fm}^{-1} \)
- \(\alpha = 0.0625 \text{fm}^4 \)
 - \(\Lambda = 2.00 \text{fm}^{-1} \)
- \(\alpha = 0.08 \text{fm}^4 \)
 - \(\Lambda = 1.88 \text{fm}^{-1} \)
- \(\alpha = 0.16 \text{fm}^4 \)
 - \(\Lambda = 1.58 \text{fm}^{-1} \)

NN+3N-full

- clear signature of induced 4N originating from initial 3N

caused by long-range \(2\pi\) terms \(c_i\)
$^{16}\text{O}: \text{Ground-State Energies}$

NN only

- $\hbar \Omega = 20 \text{ MeV}$

NN+3N-induced

- $\alpha = 0.04 \text{ fm}^4$
 - $\Lambda = 2.24 \text{ fm}^{-1}$
- $\alpha = 0.05 \text{ fm}^4$
 - $\Lambda = 2.11 \text{ fm}^{-1}$
- $\alpha = 0.0625 \text{ fm}^4$
 - $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$
 - $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
 - $\Lambda = 1.58 \text{ fm}^{-1}$

NN+3N-full

- Exp.

3N interaction with 400 MeV cutoff, c_E refitted to ^4He ground state
Spectroscopy of 12C

E_x [MeV] vs N_{max} for:
- **NN only**
- **NN+3N-induced**
- **NN+3N-full**

$\hbar \Omega = 16$ MeV

$\alpha = 0.04 \text{ fm}^4$
$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$
$\Lambda = 1.88 \text{ fm}^{-1}$
Spectroscopy of 12C

$\hbar\Omega = 16$ MeV

$\alpha = 0.04 \text{ fm}^4$
$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$
$\Lambda = 1.88 \text{ fm}^{-1}$
Spectroscopy of ^{12}C

NN only

NN+3N-induced

NN+3N-full

E_x [MeV]

N_{max}

N_{max}

N_{max}

$\hbar \Omega = 16 \text{ MeV}$

^{12}C

spectra largely insensitive to induced 4N

$\alpha = 0.04 \text{ fm}^4$

$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$

$\Lambda = 1.88 \text{ fm}^{-1}$
Normal-Ordered 3N Interaction

Normal-Ordered 3N Interaction

avoid technical challenge of including explicit 3N interactions in many-body calculation
Normal-Ordered 3N Interaction

avoid technical challenge of including explicit 3N interactions in many-body calculation

idea: write 3N interaction in normal-ordered form with respect to an A-body reference Slater-determinant ($0\hbar\Omega$ state)

\[
\hat{V}_{3N} = \sum V_{\cdots}^{3N} \hat{a}^\dagger \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} \hat{a}
\]

\[
= W_0^{0B} + \sum W_1^{1B} \{ \hat{a}^\dagger \hat{a} \} + \sum W_2^{2B} \{ \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} \hat{a} \}
+ \sum W_3^{3B} \{ \hat{a}^\dagger \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} \hat{a} \}
\]
Normal-Ordered 3N Interaction

avoid technical challenge of including explicit 3N interactions in many-body calculation

idea: write 3N interaction in normal-ordered form with respect to an A-body reference Slater-determinant (0ℏΩ state)

\[
\hat{V}_{3N} = \sum_{\cdots\cdots} V_{\cdots\cdots亨} \hat{a}^\dagger \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} \hat{a} \\
= W^{0B} + \sum W^{1B} \{\hat{a}^\dagger \hat{a} \} + \sum W^{2B} \{\hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} \}
+ \sum W^{3B} \{\hat{a}^\dagger \hat{a}^\dagger \hat{a}^\dagger \hat{a} \hat{a} \hat{a} \}
\]

Normal-Ordering Approximation (NO2B): discard residual 3B part \(W^{3B}\)
Benchmark of Normal-Ordered 3N

4He

16O

compare IT-NCSM results with explicit 3N to normal-ord. 3N truncated at the 2B level

$\alpha = 0.04 \text{ fm}^4$
$\alpha = 0.05 \text{ fm}^4$
$\alpha = 0.0625 \text{ fm}^4$
$\alpha = 0.08 \text{ fm}^4$
$\hbar \Omega = 20 \text{ MeV}$
Benchmark of Normal-Ordered 3N

- Compare IT-NCSM results with explicit 3N to normal-ord. 3N truncated at the 2B level
- Typical deviations up to 2% for 4He and 1% for 16O

4He

- NN+3N-ind.
- NN+3N-full

16O

- NN+3N-ind.
- NN+3N-full

E [MeV] vs N_{\max}

- Explicit / NO2B
 - $\alpha = 0.04 \text{ fm}^4$
 - $\alpha = 0.05 \text{ fm}^4$
 - $\alpha = 0.0625 \text{ fm}^4$
 - $\alpha = 0.08 \text{ fm}^4$

$\hbar \Omega = 20 \text{ MeV}$
Coupled Cluster Method

Coupled Cluster Approach
Coupled Cluster Approach

- **exponential Ansatz** for wave operator

\[|\psi\rangle = \hat{\Omega} |\Phi_0\rangle = e^{\hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \cdots + \hat{T}_A} |\Phi_0\rangle \]
Coupled Cluster Approach

- **exponential Ansatz** for wave operator

\[
|\psi\rangle = \Omega|\Phi_0\rangle = e^{\hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \cdots + \hat{T}_A}|\Phi_0\rangle
\]

- \(\hat{T}_n\): *npnh excitation* ("cluster") operators

\[
\hat{T}_n = \frac{1}{(n!)^2} \sum_{ijk...} t_{abc...} \{\hat{a}_a^\dagger \hat{a}_b^\dagger \hat{a}_c^\dagger \cdots \hat{a}_k \hat{a}_j \hat{a}_i\}
\]
Coupled Cluster Approach

- **exponential Ansatz** for wave operator

\[|\psi\rangle = \Omega |\phi_0\rangle = e^{\hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \cdots + \hat{T}_A} |\phi_0\rangle \]

- \(\hat{T}_n \): *npnh excitation* ("cluster") operators

\[\hat{T}_n = \frac{1}{(n!)^2} \sum_{ijk\ldots} t^{abc\ldots} \{ \hat{a}_a^\dagger \hat{a}_b^\dagger \hat{a}_c^\dagger \cdots \hat{a}_k \hat{a}_j \hat{a}_i \} \]

- **similarity transformed** Schrödinger Eq.

\[\hat{H} |\phi_0\rangle = \Delta E |\phi_0\rangle, \quad \hat{H} \equiv e^{-\hat{T}} \hat{H}_N e^{\hat{T}} \]
Coupled Cluster Approach

- **exponential Ansatz** for wave operator

\[|\Psi\rangle = \Omega |\Phi_0\rangle = e^{\hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \cdots + \hat{T}_A} |\Phi_0\rangle \]

- \(\hat{T}_n \): *npnh excitation* ("cluster") operators

\[
\hat{T}_n = \frac{1}{(n!)^2} \sum_{ijk\ldots} t_{abc\ldots} \{ \hat{a}_a \hat{a}_b \hat{a}_c \hat{c}_d \cdots \hat{a}_k \hat{a}_j \hat{a}_i \}
\]

- **similarity transformed** Schrödinger Eq.

\[
\hat{\mathcal{H}} |\Phi_0\rangle = \Delta E |\Phi_0\rangle, \quad \hat{\mathcal{H}} \equiv e^{-\hat{T}} \hat{H}_N e^{\hat{T}}
\]

- \(\hat{\mathcal{H}} \): non-Hermitian **effective Hamiltonian**
Coupled Cluster Approach
Coupled Cluster Approach

- **CCSD**: truncate \hat{T} at 2p2h level, $\hat{T} = \hat{T}_1 + \hat{T}_2$
Coupled Cluster Approach

- **CCSD**: truncate \hat{T} at 2p2h level, $\hat{T} = \hat{T}_1 + \hat{T}_2$
Coupled Cluster Approach

- **CCSD**: truncate \hat{T} at 2p2h level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

\[|\Phi_0\rangle \quad \hat{T}_1 |\Phi_0\rangle \]
Coupled Cluster Approach

- **CCSD**: truncate \hat{T} at 2p2h level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

| $|\Phi_0\rangle$ | $\hat{T}_1 |\Phi_0\rangle$ | $\hat{T}_2 |\Phi_0\rangle$ |
Coupled Cluster Approach

- **CCSD**: truncate \hat{T} at 2p2h level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

\[|\Phi_0\rangle \]
\[\hat{T}_1 |\Phi_0\rangle \]
\[\hat{T}_2 |\Phi_0\rangle \]
\[\hat{T}_1 \hat{T}_2 \hat{T}_2 |\Phi_0\rangle \]
Coupled Cluster Approach

- **CCSD**: truncate \hat{T} at 2p2h level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

 - higher excitations from products of lower-excitation operators

\[|\Phi_0\rangle \]
\[\hat{T}_1 |\Phi_0\rangle \]
\[\hat{T}_2 |\Phi_0\rangle \]
Coupled Cluster Approach

- $|\Psi\rangle$ is parametrized by cluster operator amplitudes t^a_i, t^{ab}_{ij}
- avoid explicit expansion in **many-body basis** (particle number information carried by $|\Phi_0\rangle$)
- **polynomial**, rather than factorial, scaling with mass number A
- exploit **symmetries** (esp. spherical symmetry for closed-shell nuclei)

\[
\hat{T}_1 = \sum_{ai} t^a_i \left\{ \hat{a}_a^{\dagger} \otimes \hat{a}_i \right\}_0^{(0)}
\]
\[
\hat{T}_2 = \sum_{abij} \sum_J t^{ab}_{ij}(J) \left\{ \left\{ \hat{a}_a^{\dagger} \otimes \hat{a}_b^{\dagger} \right\}^{(J)} \otimes \left\{ \hat{a}_j \otimes \hat{a}_i \right\}^{(J)} \right\}_0^{(0)}
\]

- CC suited for **medium-mass** and **heavy regime**
\[16^O: \text{Coupled-Cluster with } 3N_{NO2B} \]

NN only

- \(E \) vs. \(e_{max} \)
- Various curves for different parameters:
 - \(\alpha = 0.04 \text{ fm}^4 \)
 - \(\Lambda = 2.24 \text{ fm}^{-1} \)

NN+3N-induced

- \(E \) vs. \(e_{max} \)
- Various curves for different parameters:
 - \(\alpha = 0.05 \text{ fm}^4 \)
 - \(\Lambda = 2.11 \text{ fm}^{-1} \)

NN+3N-full

- \(E \) vs. \(e_{max} \)
- Various curves for different parameters:
 - \(\alpha = 0.0625 \text{ fm}^4 \)
 - \(\Lambda = 2.00 \text{ fm}^{-1} \)

CCSD

- \(\hbar \Omega = 20 \text{ MeV} \)
- \(E_{3max} = 14 \)
- HO basis

- \(\alpha = 0.08 \text{ fm}^4 \)
- \(\Lambda = 1.88 \text{ fm}^{-1} \)
^{16}O: Coupled-Cluster with $3N_{NO2B}$

NN only

NN+3N-induced

NN+3N-full

E [MeV] vs. e_{\max}

- **NN only**
 - $\alpha = 0.04 \text{ fm}^4$
 - $\Lambda = 2.24 \text{ fm}^{-1}$

- **NN+3N-induced**
 - $\alpha = 0.05 \text{ fm}^4$
 - $\Lambda = 2.11 \text{ fm}^{-1}$

- **NN+3N-full**
 - $\alpha = 0.0625 \text{ fm}^4$
 - $\Lambda = 2.00 \text{ fm}^{-1}$
 - $\alpha = 0.08 \text{ fm}^4$
 - $\Lambda = 1.88 \text{ fm}^{-1}$

CCSD

3N interaction with 400 MeV cutoff, c_E refitted to ^4He ground state

$\hbar \Omega = 20 \text{ MeV}$

e_{\max}

Exp.
48Ca: Coupled-Cluster with $3N_{NO2B}$

NN only

- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$

NN+3N-induced

- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$

NN+3N-full

- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$

$\hbar\Omega = 20 \text{ MeV}$

$E_{3\text{max}} = 14$

HO basis

CCSD

Exp.
Coupled Cluster Method with Explicit 3N Interactions

CCSD with Explicit 3N Interaction

NN+3N induced

\[E^{\text{NN+3N induced}} [\text{MeV}] \]

16\(^{16}\)O

\[\hbar \Omega = 20 \text{ MeV} \]

exp

NN+3N full

\[E^{\text{NN+3N full}} [\text{MeV}] \]

\[24\(^{24}\)O \]

\[\hbar \Omega = 20 \text{ MeV} \]

exp

CCSD

3B / NO2B

\[\alpha = 0.02 \text{ fm}^4 \]

\[\alpha = 0.04 \text{ fm}^4 \]

\[\alpha = 0.08 \text{ fm}^4 \]

HF basis

\[E_{3\text{ max}} = 12 \]
CCSD with Explicit 3N Interaction

NN+3N induced

- **40Ca**
 - $\hbar \Omega = 24$ MeV
 - $E_{3 \text{max}} = 12$

NN+3N full

- **48Ca**
 - $\hbar \Omega = 28$ MeV
 - $E_{3 \text{max}} = 12$

Graph Details

- **Energy** E [MeV]
- **e$_{\text{max}}$**
- **Comparison**
 - **CCSD**
 - **3B / NO2B**
 - **HF basis**
 - Symbols:
 - $\alpha = 0.02 \text{ fm}^4$
 - $\alpha = 0.04 \text{ fm}^4$
 - $\alpha = 0.08 \text{ fm}^4$

Additional Information

- *NN* + 3N induced interaction
- *NN* + 3N full interaction
- Experimental data (exp)
$E_{3\text{max}}$ truncation

- full \hat{V}_{3B} matrix too large to handle

- $E_{3\text{max}}$ truncation: use \hat{V}_{3B} matrix elements $\langle pqr|\hat{V}_{3B}|stu \rangle$ with

 $$e_p + e_q + e_r \leq E_{3\text{max}} \lor e_s + e_t + e_u \leq E_{3\text{max}}$$

 $$e_p = 2n_p + l_p$$

- current limits:

 $$E_{3\text{max}} \leq \begin{cases}
 12 & : \text{CC, explicit 3N} \\
 14, \ldots & : \text{NCSM, explicit 3N} \\
 14, \ldots & : \text{CC,NCSM NO2B}
 \end{cases}$$

- storage

- availability
$E_{3\text{max}}$ Dependence (CCSD$_{\text{NO2B}}$)

- $E_{3\text{max}}$ not significant for **soft** interactions

- **harder interactions**: up to 2% change in g.s. energies for $E_{3\text{max}} = 12 \rightarrow 14$

- α-dependence for **NN+3N induced reduced** for larger $E_{3\text{max}}$

- α-dependence for **NN+3N full enhanced** for larger $E_{3\text{max}}$

- $\alpha = 0.02 \text{ fm}^4$, $\Lambda = 2.66 \text{ fm}^{-1}$
- $\alpha = 0.04 \text{ fm}^4$, $\Lambda = 2.24 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$, $\Lambda = 1.88 \text{ fm}^{-1}$
ΛCCSD(T) - Improving upon CCSD
CCSD(T) - Improving upon CCSD

- CCSDT, i.e., $\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$, expensive
CCSD(T) - Improving upon CCSD

- CCSDT, i.e., $\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$, **expensive**

- solution of the Coupled Cluster Λ equations give **a posteriori** fourth order correction to CC energy functional

$$\mathcal{E} = \langle \Phi_0 | (1 + \Lambda) \hat{H} | \Phi_0 \rangle_C$$

due to triples excitations

$$\delta E_{\text{CCSD(T)}} = \frac{1}{(3!)^2} \sum_{abc} \tilde{\lambda}_{ijk} \frac{1}{\epsilon_{ijk}} \tilde{\tau}_{abc}$$
\[\Lambda_{\text{CCSD}(T)}_{\text{NO2B}} \]

NN+3N induced

\begin{align*}
\text{\textit{40Ca}} & \quad \hbar \Omega = 24 \text{ MeV} \\
\text{\textit{48Ca}} & \quad \hbar \Omega = 28 \text{ MeV}
\end{align*}

![Graph showing energy levels for NN+3N induced and full calculations with various alpha values and E_{max} configurations.](image)

NN+3N full

HF basis

\[E_{3\text{max}} = 12 \]
\(\Lambda \text{CCSD(T)}_{\text{NO2B}} \)

NN+3N induced

<table>
<thead>
<tr>
<th>40Ca</th>
<th>(h\Omega = 24 \text{ MeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{\text{exp}} [MeV]</td>
<td>(E_{\text{3 max}} = 12)</td>
</tr>
</tbody>
</table>

- \(\Lambda \text{CCSD(T)} / \text{CCSD} \)
 - \(\alpha = 0.02 \text{ fm}^4 \)
 - \(\alpha = 0.04 \text{ fm}^4 \)
 - \(\alpha = 0.08 \text{ fm}^4 \)

NN+3N full

<table>
<thead>
<tr>
<th>48Ca</th>
<th>(h\Omega = 28 \text{ MeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{\text{exp}} [MeV]</td>
<td>(E_{\text{3 max}} = 12)</td>
</tr>
</tbody>
</table>

- \(\Lambda \text{CCSD(T)} / \text{CCSD} \)
 - \(\alpha = 0.02 \text{ fm}^4 \)
 - \(\alpha = 0.04 \text{ fm}^4 \)
 - \(\alpha = 0.08 \text{ fm}^4 \)

HF basis
CCSD\textsubscript{NO2B} vs. ΛCCSD(T)\textsubscript{NO2B}

- inclusion of **triples excitations mandatory** (up to 6 % more binding for heavier nuclei)

- cluster truncation works better for **softer interactions**

- $\alpha = 0.02 \text{ fm}^4$ results not necessarily closer to **exact result** than $\alpha = 0.08 \text{ fm}^4$

- \Rightarrow calculations with **bare** 3N interaction suffer from cluster truncation and $E_{3\text{max}}$ cut

\[\alpha = 0.02 \text{ fm}^4, \Lambda = 2.66 \text{ fm}^{-1}\]
\[\alpha = 0.04 \text{ fm}^4, \Lambda = 2.24 \text{ fm}^{-1}\]
\[\alpha = 0.08 \text{ fm}^4, \Lambda = 1.88 \text{ fm}^{-1}\]
Goal: Heavy Nuclei

Current $E_{3\text{max}}$ limits do not allow for reasonable calculations beyond $A \geq 60$
Conclusions

■ new era of **ab-initio nuclear structure theory** connected to QCD via chiral EFT

■ consistent **inclusion of 3N interactions** in similarity transformations & many-body calculations

■ normal-ordering approximation as **efficient and accurate way** to include 3N interactions

■ many-body calculations extended to the **medium-mass** regime
thanks to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- **P. Navrátil**
 TRIUMF Vancouver, Canada

- J. Vary, P. Maris
 Iowa State University, USA

- S. Quaglioni
 LLNL Livermore, USA

- P. Piecuch
 Michigan State University, USA

- H. Hergert
 Ohio State University, USA

- P. Papakonstantinou
 IPN Orsay, F

- C. Forssén
 Chalmers University, Sweden

- H. Feldmeier, T. Neff
 GSI Helmholtzzentrum