Frontiers in Ab Initio Nuclear Structure Theory

Robert Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

QCD at low energies

improved understanding through effective field theories & lattice simulations

QCD at low energies

improved understanding through effective field theories & lattice simulations

quantum many-body methods

advances in ab initio treatment of the nuclear many-body problem

QCD at low energies

improved understanding through effective field theories & lattice simulations

quantum many-body methods

advances in ab initio treatment of the nuclear many-body problem

computing & algorithms

increase of computational resources & improved algorithms

QCD at low energies

improved understanding through effective field theories & lattice simulations

quantum many-body methods

advances in ab initio treatment of the nuclear many-body problem

computing & algorithms

increase of computational resources & improved algorithms

experimental facilities

amazing perspectives for the study of nuclei far-off stability

Nuclear Structure Observables

Low-Energy Quantum Chromodynamics

Low-Energy Quantum Chromodynamics

Nuclear Interactions from Chiral EFT

Weinberg, van Kolck, Machleidt, Entem, Meißner, Epelbaum, Krebs, Bernard,...

- low-energy effective field theory for relevant degrees of freedom (π,N) based on symmetries of QCD
- long-range pion dynamics explicitly, short-range physics absorbed in contact terms fitted to data (NN, πN,...)
- hierarchy of consistent NN, 3N,... interactions plus currents
- standard Hamiltonian:
 - NN at N3LO: Entem & Machleidt, 500 MeV cutoff
 - 3N at N2LO: Navrátil, A=3 fit, 500 MeV cutoff
- many ongoing developments

D

Ē

σ

 $\overline{\mathbf{O}}$

<u>ons</u>

 $\overline{\mathsf{O}}$

Z

Ŏ

ttice

Ω t

> С 0

gluon

Z

guarks

U

Ŏ

Ľ

Γ

Exact Solutions solve nuclear manybody problem with converged truncations **Controlled Approx.** treat many-body problem with controlled & improvable approximations

Similarity Transformations

physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians

consistent NN,3N,... interactions & current operators

Chiral Effective Field Theory

based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Funct.

5

ensi

ergy

с С Р

 $\frac{2}{2}$

0 0

 $\overline{\mathbf{O}}$

5

Similarity Renormalization Group

Wegner, Glazek, Wilson, Perry, Bogner, Furnstahl, Hergert, Roth, Jurgenson, Navratil,...

continuous transformation driving
Hamiltonian to band-diagonal form
with respect to a uncorrelated basis
simplicity and flexibility
are great advantages of
the SRG approach

$$G_{\alpha}^{\dagger} H U_{\alpha}$$

evolution equations for H_{α} and I_{α}
 $\frac{d}{d\alpha}H_{\alpha} = [\eta_{\alpha}, H_{\alpha}]$
solve SRG evolution
equations using two-,
three- & four-body matrix
representation
dynamic generator: commutator with the operator in whose
eigenbasis H_{α} shall be diagonalized

$$\eta_{\alpha} = (2\mu)^2 [\mathsf{T}_{int}, \mathsf{H}_{\alpha}]$$

SRG Evolution in Three-Body Space

Robert Roth - TU Darmstadt - 01/2014

SRG Evolution in Three-Body Space

Robert Roth - TU Darmstadt - 01/2014

Hamiltonian in A-Body Space

• evolution induces *n*-body contributions $H_{\alpha}^{[n]}$ to Hamiltonian

$$\mathsf{H}_{\alpha} = \mathsf{H}_{\alpha}^{[1]} + \mathsf{H}_{\alpha}^{[2]} + \mathsf{H}_{\alpha}^{[3]} + \mathsf{H}_{\alpha}^{[4]} + \mathsf{H}_{\alpha}^{[5]} + \dots$$

- truncation of cluster series formally destroys unitarity and invariance of energy eigenvalues (independence of α)
- flow-parameter α provides diagnostic tool to assess neglected higher-order contributions

SRG-Evolved Hamiltonians

NN_{only}	use initial NN, keep evolved NN
NN + 3N _{ind}	use initial NN, keep evolved NN+3N
NN + 3N _{full}	use initial NN+3N, keep evolved NN+3N
$NN + 3N_{full} + 4N_{ind}$	use initial NN+3N, keep evolved NN+3N+4N

No-Core Shell Model

Barrett, Vary, Navratil, Maris, Nogga, Roth,...

NCSM is one of the most powerful and universal exact ab-initio methods

- construct matrix representation of Hamiltonian using a **basis of HO** Slater determinants truncated w.r.t. HO excitation energy $N_{max}h\Omega$
- solve large-scale eigenvalue problem for a few extremal eigenvalues
- all relevant observables can be computed from the eigenstates
- range of applicability limited by **factorial growth** of basis with $N_{max} \& A$
- adaptive importance truncation extends the range of NCSM by reducing the model space to physically relevant states

Importance Truncated NCSM

Roth, PRC 79, 064324 (2009); PRL 99, 092501 (2007)

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full $N_{max} = 10$ calculation for ¹⁶O very difficult (basis dimension > 10¹⁰)

Importance Truncation

reduce model space to the relevant basis states using an **a priori importance measure** derived from MBPT

⁴He: Ground-State Energies

¹⁶O: Ground-State Energies

¹⁶O: Lowering the Initial 3N Cutoff

Robert Roth - TU Darmstadt - 01/2014

oxygen isotopic chain has received significant attention and documents the rapid progress over the past years

Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)

2010: shell-model calculations with 3N effects highlighting the role of 3N interaction for drip line physics

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, PRL 108, 242501 (2012)

2012: coupled-cluster calculations with phenomenological two-body correction simulating chiral 3N forces

Hergert, Binder, Calci, Langhammer, Roth, PRL 110, 242501 (2013)

■ 2013: **ab initio IT-NCSM** with explicit chiral 3N interactions...

Spectroscopy of Carbon Isotopes

Forssen et al., JPG 40, 055105 (2013); Roth et al., in prep.

Spectroscopy of Carbon Isotopes

Robert Roth – TU Darmstadt – 01/2014

Frontier: Medium-Mass Nuclei

advent of novel ab initio many-body approaches applicable in the medium-mass regime

Hagen, Papenbrock, Dean, Piecuch, Binder,...

coupled-cluster theory: ground-state parametrized by vponential wave operator applied to single-determinant refer

- uncertainties due to various truncations is truncation at doubles level (CCSD) plus tri
- equations of motion for excited c

■ in-medium SP many-bod

- normal-o
- both close

yama, Schwenk, Hergert,...

D(T)

Je excitations from

- mitonian truncated at two-body level
- ground states; excitations via EOM or SM

Barbieri, Soma, Duquet,...

self-consistent Green's function approaches and others...

Towards Heavy Nuclei - Ab Initio ?

Roth, et al., PRL 109, 052501 (2012); Binder et al., PRC 87, 021303(R) (2013); PRC 88, 054319 (2013); arXiv:1312.5685 (2013)

- calculations for medium-mass and heavy nuclei are computationally feasible with CC or IM-SRG
- however, many of the technical truncations that are good in light nuclei fail for heavier systems
- we analysed and improved all of these truncations...
- **2% residual uncertainty** of the many-body approach for *A* ≤ 130

Towards Heavy Nuclei - Ab Initio !

Binder et al., arXiv:1312.5685 (2013)

Robert Roth – TU Darmstadt – 01/2014

Towards Heavy Nuclei - Ab Initio !

Binder et al., arXiv:1312.5685 (2013)

Robert Roth – TU Darmstadt – 01/2014

Low-Energy Quantum Chromodynamics

Ab Initio Hyper-Nuclear Structure

U

Ŏ

0

ŭ

Ł

Hyper-Nuclear Structure Observables **Exact Solutions Controlled Approx. (**) solve nuclear manytreat many-body prob-σ body problem with lem with controlled & im-LT O converged truncations provable approximations Ω t 0 5 **Similarity Transformations** Т 6 \bigcirc physics-conserving unitary transformation to Ο <u>o</u>lu adapt Hamiltonian to limited model space ທ O Z $\overline{\mathbf{O}}$ Ð **Chiral EFT Hamiltonians** S guarl consistent NN, 3N, YN, YY, ... interactions & current operators **Chiral Effective Field Theory** based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Ab Initio Hyper-Nuclear Structure

- precise data on ground states & spectroscopy of hyper-nuclei
- ab initio few-body (A ≤ 4) and phenomenological shell model or cluster calculations
- chiral YN & YY interactions at (N)LO are available
- constrain YN & YY interaction by ab initio hyper-nuclear structure calculations

Ab Initio Toolbox

Hamiltonian from chiral EFT

- NN+3N: standard chiral Hamiltonian (Entem&Machleidt, Navrátil)
- YN: LO chiral interaction (Haidenbauer et al.), NLO in progress

Similarity Renormalization Group

- consistent SRG-evolution of NN, 3N, YN interactions
- using particle basis and including $\Lambda\Sigma$ -coupling (larger matrices)
- Λ - Σ mass difference and $p\Sigma^{\pm}$ Coulomb included consistently

Importance Truncated No-Core Shell Model

- include explicit $(p, n, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-)$ with physical masses
- larger model spaces easily tractable with importance truncation
- all p-shell single-∧ hypernuclei are accessible

Application: $^{7}_{\Lambda}$ Li

Application: $^{7}_{\Lambda}$ Li

Application: $^{7}_{\Lambda}$ Li

Application: ⁹_^Be

Application: $^{13}_{\Lambda}C$

Frontiers

ab initio theory is entering new territory...

• QCD frontier

nuclear structure connected systematically to QCD via chiral EFT

precision frontier

precision spectroscopy of light nuclei, including current contribution

mass frontier

ab initio calculations up to heavy nuclei with quantified uncertainties

open-shell frontier extend to medium-mass open-shell nuclei and their excitation spectrum

• continuum frontier

include continuum effects and scattering observables consistently

strangeness frontier ab initio predictions for hyper-nuclear structure & spectroscopy

...providing a coherent theoretical framework for nuclear structure & reaction calculations

Epilogue

thanks to my group & my collaborators

- S. Binder, J. Braun, A. Calci, S. Fischer,
 E. Gebrerufael, H. Spiess, J. Langhammer, S. Schulz,
 C. Stumpf, A. Tichai, R. Trippel, R. Wirth, K. Vobig Institut f
 ür Kernphysik, TU Darmstadt
- P. Navrátil

TRIUMF Vancouver, Canada

- J. Vary, P. Maris Iowa State University, USA
- S. Quaglioni, G. Hupin LLNL Livermore, USA
- P. Piecuch Michigan State University, USA

• H. Hergert

- Ohio State University, USA
- P. Papakonstantinou IBS/RISP, Korea
- C. Forssén Chalmers University, Sweden
- H. Feldmeier, T. Neff GSI Helmholtzzentrum

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

COMPUTING TIME

Bundesministerium für Bildung und Forschung