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(IT-)NCSM 
Ab-initio description of 

nuclear clusters

RGM 
Describing relative 
motion of clusters

Successfully applied with NN interactions 
Now: Inclusion of 3N Forces

(IT-)NCSM/RGM 
& NCSMC approaches

A-a a

Realistic ab-initio description of light nuclei
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Weinberg, van Kolck, Machleidt, Entem, Meißner, Epelbaum, Krebs, Bernard, Skibinski, Golak...

The Chiral NN+3N Hamiltonian
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Hierarchy of consistent nuclear NN, 
3N,... forces (and currents) 
!
NN interaction @ N3LO (Λ=500MeV)  
[Entem, Machleidt, Phys.Rev C 68, 041001(R) (2003)] 

!
Standard Hamiltonian 

3N interaction @ N2LO(Λ3N=500MeV) 

•LECs cD, cE fitted to β-decay halflife 
& binding energy of 3H 

[Gazit et.al., Phys.Rev.Lett. 103, 102502 (2009)] 
!

Reduced-Cutoff Hamiltonian 
3N interaction @ N2LO(Λ3N=400MeV) 

•cD=-0.2, cE fitted to 4He
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Wegner, Glazek, Wilson, Perry, Bogner, Furnstahl, Hergert, Calci, Langhammer, Roth, Jurgenson, Navrátil,...

The Similarity Renormalization Group

Unitary transformation of Hamiltonian 
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...yields an evolved 
Hamiltonian with improved convergence properties in 

many-body calculations

H� = U†
�HU�

•NN+3N-induced: start with NN initial Hamiltonian and 
keep two- and three-body terms 

•NN+3N-full: start with NN+3N initial Hamiltonian and keep 
two- and three-body terms

Different SRG-Evolved Hamiltonians
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Nucleon-4He Scattering 
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In collaboration with 
G. Hupin, S. Quaglioni, P. Navrátil & R. Roth 

G. Hupin, J. Langhammer et al. ----- Phys. Rev C 88 054622 (2013)
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13.2 Three-Nucleon Force Effects on Scattering Phase Shifts
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Figure 13.9 – Comparison of the n-4He (left-hand panel) and p-4He (right-hand panel) scattering
phase shifts for partial wave 2S1/2, 2P1/2, 2P3/2 and 2D3/2 obtained with the NN+3N-induced ( )
and NN+3N-full ( ) Hamiltonians to experimental phase shifts (+) obtained from R-matrix
analysis [208]. The calculations include seven eigenstates of 4He and use Nmax = 13. Remaining
parameters are E3max= 14 and ħhΩ= 20 MeV. (published in [51])

for the 2P1/2 phase shift below its resonance energy and for the 2S1/2 phase shift at large

energies. The 2P3/2 phase shift is clearly enhanced by the chiral 3N interaction leading to

quite good agreement with experiment beyond 4 MeV energy in the center-of-mass frame.

As mentioned before, a particularly interesting feature in n-4He scattering is the spin-orbit

splitting between the P waves. When we compare the difference of the resonance positions

of both P wave phase shifts obtained with the NN+3N-induced Hamiltonian to the split-

ting resulting from the additional inclusion of the chiral 3N, the latter indeed increases

the difference. However, the enhancement of the 2P3/2 phase shift remains too small for

energies around its resonance centroid and below. Consequently, a clear discrepancy to

the experimental resonance energy at 0.78 MeV remains. However, we are not in the posi-

tion to blame this on the initial chiral Hamiltonian because one possible explanation is of

course connected to the still limited NCSM/RGM model space. As evident from Table 13.1

we have included 4He states up to excitation energies of 24 MeV. However, the deuteron-
3H channels opens experimentally at 17.63 MeV and the coupling to this channel is likely

to impact the results and would yield a more complete picture. In order to include this

channel it is required to extend the NCSM/RGM formalism for two-nucleon projectiles to

include 3N interactions. Another possibility to overcome the limited convergence of the

NCSM/RGM approach is the use of the no-core shell model with continuum, discussed

in Section 14, that includes low-lying 5He states into the basis expansion. Work in both

directions is currently underway [209].

The discussion of the p-4He phase shifts, shown in the right-hand panel of Figure 13.9,

is qualitatively identical. We find the 2S1/2 and 2D3/2 in good agreement with experiment
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13.3 Cross Sections and Analyzing Powers
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Figure 13.11 – Differential cross section for proton-4He elastic scattering at different proton ener-
gies Ep obtained with the NN+3N-induced and NN+3N-full Hamiltonians compared to experi-
mental data of Ref. [211]. Note that the 2% uncertainty of the data is hidden by the plot markers.
The remaining parameters are identical to Figure 13.10. (published in [51])

excited states of 4He. Note, however, that this is related to the artificial enhancement of the

NN-only phase shifts due to the omission of SRG-induced 3N interactions. In the follow-

ing we discuss differential cross sections and analyzing powers computed with the chiral

NN+3N Hamiltonians and with the set of parameters used in the previous Section, i.e., in

particular including the first seven states of 4He.

We begin with the investigation of the differential cross section at incident neutron en-

ergy of 17.6 MeV shown in Figure 13.10 for the NN-only (green-dotted line), the NN+3N-

induced (blue-dashed line), and the NN+3N-full Hamiltonian (solid-red line) in compar-

ison to the experimental data of Drosg et al. [210] (crosses). At all angles we find good

agreement with experiment. Between 45 and 135 degrees all three Hamiltonians yield

practically the identical results. Strikingly, in particular the inclusion of the 3N interaction

does not affect the differential cross section for these angles, which might be expected due

to the limited effects also in the phase shifts at the corresponding center-of-mass frame

energy of 14.08 MeV. However, at smaller angles the inclusion of both, the SRG-induced

3N and the initial 3N interaction slightly reduces the differential cross section, leading to

a marginal underestimation of the data point at 30 degrees. Also at large angles the inclu-

sion of both 3N interactions leads to a minor decrease of the differential cross section. In
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pared to experimental data (+) of Ref. [211]. The NCSM/RGM calculations include the first
seven low-lying states of 4He I π1

1 T1 = (g.s., 0+0, 0−0, 2−0, 2−1, 1−1, 1−0). Remaining parameters are
identical to Figure 13.10. (published in [51])

convergence with respect to model-space size. For instance, the small deviations of the

phase shifts from experiment present in Figure 13.9 at Ekin = 8.8MeV corresponding to

11 MeV neutron energy are amplified in the Ay . A second reason for the deviations is re-

lated to the fact that the Ay at energies above 11 MeV is sensitive to partial waves up to

at least J = 11
2 before convergence is reached. However, for the discussed results at 15

and 17 MeV we have limited this expansion to partial waves with J ≤ 7
2 because we found

phase shifts corresponding to higher partial waves at these energies to be biased by the

E3max truncation. However, for the lower energy of 11 MeV we include partial waves up

to J = 11
2 , and this is also the case for the Ay of p-4He shown in Figure 13.13 where we

study again the four incident proton energies below 12 MeV. Overall, for all four energies

the NN+3N-full Hamiltonian improves the agreement with experiment compared to the

NN+3N-induced results except for the minimum near 90 degrees for 5.95 MeV incident

proton energy and the peak at 110 degrees for the 7.89 MeV case. However, at small angles

below the minimum discrepancies between the Ay and experiment remain for all energies

also for the NN+3N-full Hamiltonian. The experimental data around the minimum is best

reproduced at Ep = 7.89 and 9.89 MeV. For angles larger than 135 degrees we find devi-
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energy of 14.08 MeV. However, at smaller angles the inclusion of both, the SRG-induced

3N and the initial 3N interaction slightly reduces the differential cross section, leading to

a marginal underestimation of the data point at 30 degrees. Also at large angles the inclu-

sion of both 3N interactions leads to a minor decrease of the differential cross section. In
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or even scattering states, because they are expanded in a finite HO basis. However, the

weakly-bound or scattering states are well-described by the cluster states adopted from

the NCSM/RGM approach. In this way one obtains a symbiotic basis, where the advan-

tages of both parts remedy the drawbacks of each other. In combination with the R-matrix

theory the NCSMC treats bound- and scattering states on equal footing suitable for the

ab-initio predictions of structural and scattering observables within a unified framework.

So far, the NCSMC has been successfully applied to the unbound 7He nucleus with

NN-only Hamiltonians [50, 49]. In this section, we aim at the application of the NCSMC

formalism including explicit 3N interactions. As demonstrated in the next subsection, the

extension of the NCSM/RGM kernels to include 3N interactions discussed in Section 11

constitutes a major step towards the extension of the NCSMC formalism to 3N interac-

tions. In the next subsection we outline the general formalism of the NCSMC. Afterwards,

we present first results for NCSMC with explicit 3N interactions for the neutron-8Be sys-

tem. The results presented in the following are achieved in collaboration with Petr Navrátil

(TRIMUF).

14.1 Formalism

We start with a brief overview of the NCSMC approach following Ref. [49], where further

details about the formalism for NN interactions can be found. In particular, we highlight

which quantities are affected by the extension of the formalism to 3N interactions.

The ansatz for the eigenstates of the A-body system in the NCSMC formalism reads

|ΨJπT 〉=
∑

λ

cλ |ΨA Eλ J πT 〉+
∑

ν

ˆ

dr r 2χν (r )

r
|ξJπT
νr 〉 , (14.1)

where the first term is a superposition of NCSM eigenstates of the A-body system (cf. Sec-

tion 4.1), and the second term represents the expansion in binary-cluster channel states

analogous to Eq. (11.4). We have dropped the projection quantum numbers M and MT

and the superscript JπT at the relative motion wave function χν (r ) for brevity. Note that

we wrote the expansion in terms of the orthogonalized NCSM/RGM channel states (11.15),

which are related to the non-orthogonalized channel states by

|ξJπT
νr 〉=

∑

ν ′

ˆ

dr ′r ′2#
− 1

2
ν ′ν (r

′,r )%̂ν ′ |Φ JπT
ν ′r ′ 〉 , (14.2)

with the inverse of the square root of the norm kernel as given in Eq. (11.19), and the un-

knowns of this expansion are the coefficients cλ and the relative wave functions χν (r ).

It is evident, that the basis states (14.1) are well-suited to describe bound and scattering

states. The appropriate treatment of correlations of the A-body system, which are prob-

lematic in the NCSM/RGM cluster basis, is accomplished by the NCSM eigenstates. Thus,

if the existence of nucleon sub-clusters is relevant for the description of the A-nucleon sys-

tem this ansatz improves the model-space convergence compared to both, the NCSM and

NCSM/RGM approach.

198
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knowns of this expansion are the coefficients cλ and the relative wave functions χν (r ).

It is evident, that the basis states (14.1) are well-suited to describe bound and scattering

states. The appropriate treatment of correlations of the A-body system, which are prob-

lematic in the NCSM/RGM cluster basis, is accomplished by the NCSM eigenstates. Thus,

if the existence of nucleon sub-clusters is relevant for the description of the A-nucleon sys-

tem this ansatz improves the model-space convergence compared to both, the NCSM and

NCSM/RGM approach.

198

Representing                             using the over-complete basisH |� J�T i = E |� J�T i

Identical to the 
 NCSM/RGM expansion

Expansion in A-body 
 (IT-)NCSM eigenstates 

14.1 Formalism

To derive the conditional equations for the coefficients cλ and the relative wave func-

tionsχν (r )we insert ansatz (14.1) in the time-independent Schrödinger equation Ĥ |ΨJ πT 〉=
E |ΨJ πT 〉. In addition, multiplication from the left by another NCSM eigenstate 〈ΨA Eλ′ J πT |
leads to

∑

λ

(HNCSM)λ′λ cλ+
∑

ν

ˆ

dr r 2hλ′ν (r )
χν (r )

r
= E

∑

λ

δλ′λ cλ+
∑

ν

ˆ

dr r 2gλ′ν (r )
χν (r )

r
(14.3)

with the definitions

(HNCSM)λ′λ = 〈ΨA Eλ′ J
πT |Ĥ |ΨA Eλ J πT 〉= Eλδλ′,λ , (14.4)

hλ′ν (r ) = 〈ΨA Eλ′ J
πT |Ĥ |ξJπT

νr 〉 (14.5)

=
∑

ν ′

ˆ

dr ′r ′2〈ΨA Eλ′ J
πT |Ĥ$̂ν ′ |Φ JπT

ν ′r ′ 〉 %
− 1

2
ν ′ν (r

′,r ) , (14.6)

gλ′ν (r ) = 〈ΨA Eλ′ J
πT |ξJπT

νr 〉 (14.7)

=
∑

ν ′

ˆ

dr ′r ′2〈ΨA Eλ′ J
πT |$̂ν ′ |Φ JπT

ν ′r ′ 〉%
− 1

2
ν ′ν (r

′,r ) . (14.8)

In Eqs. (14.6) and (14.8) we have inserted Eq. (14.2) to express the functions hλ′ν (r ) and

gλ′ν (r ) in terms of the non-orthogonalized channel states, because this is more convenient

regarding the implementation. Multiplication from the left by an orthogonalized channel

state 〈ξJπT
ν ′r ′ | leads to

∑

λ

hλν ′ cλ+
∑

ν

ˆ

dr r 2' (r ′,r )
χν (r )

r
= E

∑

λ

gλν ′ (r )cλ+
∑

ν

ˆ

dr r 2δ(r
′ − r )δν ′,ν

r ′r

χν (r )

r
, (14.9)

with

' (r ′,r ) = 〈ξJπT
ν ′r ′ |Ĥ |ξ

JπT
νr 〉

=
∑

γγ′

ˆ

dy y 2
ˆ

dy ′y ′2%
− 1

2
γν ′ (y ,r ′)〈Φ JπT

γy |$̂γĤ$̂γ′ |Φ JπT
γ′y ′ 〉%

− 1
2

y ′ν (y
′,r ) , (14.10)

which is exactly the NCSM/RGM Hamiltonian kernel with respect to the orthogonalized

basis (11.12). The latter contains with 〈Φ JπT
γy |$̂γĤ$̂γ′ |Φ JπT

γ′y ′ 〉 the Hamiltonian kernel for

which we have derived the explicit formulas for the inclusion of 3N interactions and dis-

cussed implementation strategies in Section 11. The remaining quantity that needs to be

generalized to 3N interactions is the coupling form factor hλ′ν (r ) of Eq. (14.6), which has

been completed by Petr Navrátil. With help of above definitions we can cast the NCSMC

Eqs. (14.3) and (14.9) in a more compact form by means of matrix notation

"

HNCSM h

h '

#"

c

χ(r )/r

#

= E

"

1 g

g 1

#"

c

χ(r )/r

#

. (14.11)
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πT |Ĥ$̂ν ′ |Φ JπT

ν ′r ′ 〉 %
− 1

2
ν ′ν (r

′,r ) , (14.6)

gλ′ν (r ) = 〈ΨA Eλ′ J
πT |ξJπT

νr 〉 (14.7)

=
∑

ν ′

ˆ

dr ′r ′2〈ΨA Eλ′ J
πT |$̂ν ′ |Φ JπT

ν ′r ′ 〉%
− 1

2
ν ′ν (r

′,r ) . (14.8)

In Eqs. (14.6) and (14.8) we have inserted Eq. (14.2) to express the functions hλ′ν (r ) and

gλ′ν (r ) in terms of the non-orthogonalized channel states, because this is more convenient

regarding the implementation. Multiplication from the left by an orthogonalized channel

state 〈ξJπT
ν ′r ′ | leads to

∑

λ

hλν ′ cλ+
∑

ν

ˆ

dr r 2' (r ′,r )
χν (r )

r
= E

∑

λ

gλν ′ (r )cλ+
∑

ν

ˆ

dr r 2δ(r
′ − r )δν ′,ν

r ′r

χν (r )

r
, (14.9)

with

' (r ′,r ) = 〈ξJπT
ν ′r ′ |Ĥ |ξ
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tionsχν (r )we insert ansatz (14.1) in the time-independent Schrödinger equation Ĥ |ΨJ πT 〉=
E |ΨJ πT 〉. In addition, multiplication from the left by another NCSM eigenstate 〈ΨA Eλ′ J πT |
leads to

∑

λ

(HNCSM)λ′λ cλ+
∑

ν

ˆ

dr r 2hλ′ν (r )
χν (r )

r
= E

∑

λ

δλ′λ cλ+
∑

ν

ˆ

dr r 2gλ′ν (r )
χν (r )

r
(14.3)

with the definitions

(HNCSM)λ′λ = 〈ΨA Eλ′ J
πT |Ĥ |ΨA Eλ J πT 〉= Eλδλ′,λ , (14.4)

hλ′ν (r ) = 〈ΨA Eλ′ J
πT |Ĥ |ξJπT

νr 〉 (14.5)

=
∑

ν ′

ˆ

dr ′r ′2〈ΨA Eλ′ J
πT |Ĥ$̂ν ′ |Φ JπT

ν ′r ′ 〉 %
− 1

2
ν ′ν (r

′,r ) , (14.6)

gλ′ν (r ) = 〈ΨA Eλ′ J
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νr 〉 (14.7)
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ν ′r ′ 〉%
− 1

2
ν ′ν (r

′,r ) . (14.8)

In Eqs. (14.6) and (14.8) we have inserted Eq. (14.2) to express the functions hλ′ν (r ) and

gλ′ν (r ) in terms of the non-orthogonalized channel states, because this is more convenient

regarding the implementation. Multiplication from the left by an orthogonalized channel

state 〈ξJπT
ν ′r ′ | leads to

∑

λ

hλν ′ cλ+
∑

ν

ˆ

dr r 2' (r ′,r )
χν (r )
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∑

ν

ˆ

dr r 2δ(r
′ − r )δν ′,ν
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with
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− 1
2

y ′ν (y
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which is exactly the NCSM/RGM Hamiltonian kernel with respect to the orthogonalized

basis (11.12). The latter contains with 〈Φ JπT
γy |$̂γĤ$̂γ′ |Φ JπT

γ′y ′ 〉 the Hamiltonian kernel for

which we have derived the explicit formulas for the inclusion of 3N interactions and dis-

cussed implementation strategies in Section 11. The remaining quantity that needs to be

generalized to 3N interactions is the coupling form factor hλ′ν (r ) of Eq. (14.6), which has

been completed by Petr Navrátil. With help of above definitions we can cast the NCSMC

Eqs. (14.3) and (14.9) in a more compact form by means of matrix notation

"

HNCSM h

h '

#"

c

χ(r )/r

#

= E

"

1 g

g 1

#"

c

χ(r )/r

#

. (14.11)
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Ab-initio Description of 9Be via NCSMC

All excited states are resonances 
!
Study the impact of the continuum by 
investigating neutron-8Be scattering

!14

Collaboration with Petr Navrátil

•  The unnatural parity states are predicted too high in the 
NCSM calculations. Is this a HO basis size problem? Is 
this an interaction dependent problem?   

Structure of 9Be 
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 Large HO basis size (Nmax)  
definitely helps. 

 

But…  
preliminary 

•  The lightest nucleus where the 3N interaction appear to 
make the description of low lying states worse: Does this 
suggest our 3N interaction models are wrong? 

Structure of 9Be 
in collaboration with Joachim Langhammer et al. 
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Joachim Langhammer - DPG Tagung Frankfurt - March 2014

3N Force Effects on Phase Shifts

!15

Collaboration with Petr Navrátil

8Be

n
8Be

n

14.2 Ab-Initio Description of 9Be via n-8Be Scattering
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Figure 14.5 – n-8Be NCSMC (eigen)phase shifts for the NN+3N-induced ( ) vs. the NN+3N-
full ( ) Hamiltonians at α = 0.0625fm4 and Nmax = 12 using IT-NCSM vectors. The remaining
parameters are ħhΩ= 20MeV and E3max= 14.

14.2.4 3N-force Effects on n-8Be Scattering Phase Shifts

In this section we aim at disentangling the effects of the SRG-induced 3N interactions on

the (eigen)phase shifts from the effects originating from the initial chiral 3N interaction.

Therefore, we compare the (eigen)phase shifts for the NN+3N-induced and NN+3N-full

Hamiltonians in the left- and right-hand panels of Figure 14.5 for positive- and negative-

parity partial waves, respectively. For all partial waves we find some sensitivity to the in-

clusion of the initial chiral 3N interactions, except for the narrow 2F5/2 resonance which

is practically identical for both Hamiltonians. In general, we observe larger effects of the

chiral 3N interactions for the negative-parity than for the positive-parity partial waves,

particularly near resonance energies. We note that the initial chiral 3N interaction always

moves the resonance energy of all eigenphase shifts to larger energies relative to the n-8Be

threshold. The non-resonant 5
2
−

or 3
2
+

eigenphase shifts are basically unaffected. This is

also true for all remaining non-resonant phase shifts that we do not show here. For nega-

tive parity, the largest effect caused by the initial chiral 3N interaction is found in the rather

broad 5
2
−

resonance around 6 MeV. All other negative-parity partial-wave phase shifts en-

counter roughly the same shift of their resonance position due to the initial 3N interaction.

In addition, the chiral 3N interaction yields almost identical resonance positions for the
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Figure 14.3 – NCSMC n-8Be (eigen)phase shifts for positive (negative) parity for Nmax = 6(7) ( ), 8
(9) ( ), 10 (11) ( ), 12 (13) ( ) using IT-NCSM vectors for Nmax > 7. The left- and right-hand
columns show the results for the NN+3N-induced and NN+3N-full Hamiltonian, respectively.
Remaining parameters are ħhΩ= 20MeV, α= 0.0625fm4, and E3max = 14. Same colors correspond
to identical angular momenta.
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9Be Energy Levels: NCSM vs. NCSMC
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Figure 14.6 – Negative (left-hand panel) and positive (right-hand panel) parity spectrum of 9Be
relative to the n-8Be threshold ( ) at Nmax = 6 (7) and 12 (11) for IT-NCSM (first two columns)
and NCSMC (last two columns) compared to experiment [148]. Remaining parameters are ħhΩ=
20MeV and α= 0.0625fm4. For further explanations see text.

find excellent agreement for the 1
2
−

and second 5
2
−

resonances at Nmax = 12. Note that also

the energy of the 3
2
−

ground state is lowered by about 0.5 .MeV due to continuum contribu-

tions and the agreement with experiment is improved. Next we compare the changes for

Nmax = 6 to 12 for both methods, respectively. For the NCSMC energies we find only small

effects from the increased model-space size that are slightly larger for the higher-excited

states but still remain below 0.5 MeV. Thus, the NCSMC calculations seem to be well con-

verged with respect to Nmax as already observed for the eigenphase shifts in the previous

subsection. This is different for the IT-NCSM energies, where we find significantly larger

effects hinting at less converged calculations. This is of course not unexpected due to the

fact that all excited states of 9Be are resonances and the IT-NCSM with its basis of A-body

HO Slater determinants is not designed for a proper description of continuum states.

The discussion of the positive-parity states of 9Be in context of the right-hand panel of

Figure 14.6 is similar: we find even more dramatic effects of the continuum as evident from

comparing the energies for fixed Nmax between the two approaches. Again, the NCSMC

reduces all energy differences relative to the n-8Be threshold compared to the IT-NCSM,

leading to improved agreement with experiment. The agreement is particularly striking for

the S-wave dominated 1
2
+

state, which for Nmax = 7 is shifted by about 5 MeV right on top

of its experimental position slightly above the threshold, and remains practically constant

for the step to Nmax = 11 in the NCSMC. Also the 3
2
+

resonance dominated by the 4S 3
2

partial

wave is found in good agreement with experiment, while the discrepancies remain larger

for the 5
2
+

and 9
2
+

resonances. Note that one might expect contributions from the broad 4+

state of 8Be that might improve the 9
2
+

resonance of 9Be. As for the negative parities, the

NCSMC energies are much less affected by increasing the model space from Nmax = 7 to 11
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Collaboration with Petr Navrátil
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effects hinting at less converged calculations. This is of course not unexpected due to the

fact that all excited states of 9Be are resonances and the IT-NCSM with its basis of A-body

HO Slater determinants is not designed for a proper description of continuum states.

The discussion of the positive-parity states of 9Be in context of the right-hand panel of

Figure 14.6 is similar: we find even more dramatic effects of the continuum as evident from

comparing the energies for fixed Nmax between the two approaches. Again, the NCSMC

reduces all energy differences relative to the n-8Be threshold compared to the IT-NCSM,

leading to improved agreement with experiment. The agreement is particularly striking for

the S-wave dominated 1
2
+

state, which for Nmax = 7 is shifted by about 5 MeV right on top

of its experimental position slightly above the threshold, and remains practically constant

for the step to Nmax = 11 in the NCSMC. Also the 3
2
+

resonance dominated by the 4S 3
2

partial

wave is found in good agreement with experiment, while the discrepancies remain larger

for the 5
2
+

and 9
2
+

resonances. Note that one might expect contributions from the broad 4+

state of 8Be that might improve the 9
2
+

resonance of 9Be. As for the negative parities, the

NCSMC energies are much less affected by increasing the model space from Nmax = 7 to 11
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Figure 14.7 – Negative (left-hand panel) and positive (right-hand panel) parity spectrum of 9Be
relative to the n-8Be threshold ( ) at Nmax = 12 and 11, respectively. Shown are from IT-
NCSM (first two columns) and NCSMC (last two columns) results and experiment (middle
columns) [148]. The first and last columns contain the energies for the NN+3N-induced and
the second and fourth column for the NN+3N-full Hamiltonian, respectively. Remaining pa-
rameters are ħhΩ= 20MeV and α= 0.0625fm4. For further explanations see text.

than the IT-NCSM energies, which exhibit significant changes.

We add a comment on excitation energies that can be read off Figure 14.6 by the energy

differences to the ground-state. The excitation energy of the 5
2
−

resonance and similarly all

excitation energies of the positive-parity states relative to the 1
2
+

state are in good agree-

ment with experiment already at the level of IT-NCSM calculations. It seems as if the main

issue of the IT-NCSM is to produce the correct threshold energy.

So far we have found significant effects due to the continuum in the 9Be energy levels

for the NN+3N-full Hamiltonian. In Figure 14.7 we go on with distinguishing effects caused

by the SRG-induced 3N interaction from those originating from the initial chiral 3N inter-

action. Again the left hand-panel covers the negative-parity spectrum at Nmax = 12, and

the right-hand panel contains the energies of positive-parity states at Nmax = 11. Within

each panel the first two columns depict the results from the IT-NCSM while the two last

columns cover the results from the NCSMC, and we include the experimental energy in

the middle. Furthermore, the first column contains the results from the NN+3N-induced

Hamiltonian and the second the energies for NN+3N-full. This is reversed for the columns

corresponding to NCSMC (see column labels). In the negative-parity spectrum we find

all states, except the first 5
2
−

resonance, sensitive to the inclusion of the initial chiral 3N

interaction with effects of roughly similar size for both, the IT-NCSM and the NCSMC. Ex-

cept for the ground state the inclusion of the initial chiral 3N interaction increases the

energy difference to the threshold. Since the IT-NCSM energy differences for the NN+3N-

induced Hamiltonian are typically close to or above the experimental energies, the agree-
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rameters are ħhΩ= 20MeV and α= 0.0625fm4. For further explanations see text.
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ment with experiment already at the level of IT-NCSM calculations. It seems as if the main

issue of the IT-NCSM is to produce the correct threshold energy.

So far we have found significant effects due to the continuum in the 9Be energy levels

for the NN+3N-full Hamiltonian. In Figure 14.7 we go on with distinguishing effects caused

by the SRG-induced 3N interaction from those originating from the initial chiral 3N inter-

action. Again the left hand-panel covers the negative-parity spectrum at Nmax = 12, and

the right-hand panel contains the energies of positive-parity states at Nmax = 11. Within

each panel the first two columns depict the results from the IT-NCSM while the two last

columns cover the results from the NCSMC, and we include the experimental energy in

the middle. Furthermore, the first column contains the results from the NN+3N-induced

Hamiltonian and the second the energies for NN+3N-full. This is reversed for the columns

corresponding to NCSMC (see column labels). In the negative-parity spectrum we find

all states, except the first 5
2
−

resonance, sensitive to the inclusion of the initial chiral 3N

interaction with effects of roughly similar size for both, the IT-NCSM and the NCSMC. Ex-

cept for the ground state the inclusion of the initial chiral 3N interaction increases the

energy difference to the threshold. Since the IT-NCSM energy differences for the NN+3N-

induced Hamiltonian are typically close to or above the experimental energies, the agree-
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the middle. Furthermore, the first column contains the results from the NN+3N-induced

Hamiltonian and the second the energies for NN+3N-full. This is reversed for the columns

corresponding to NCSMC (see column labels). In the negative-parity spectrum we find

all states, except the first 5
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‣ Inclusion of 3N forces challenging but completed  
for single- and two-nucleon projectiles 

‣ New computational scheme ⟹ heavier targets accessible 

‣ Promising results for n-8Be (and p-10C and n-16C) 

‣ Proper treatment of continuum vital for validation of chiral 3N 
interactions
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!
Nuclear structure and reactions accessible 

 with full 3N treatment via the 
No-Core Shell Model with Continuum
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Inclusion of more 
excited states13 Nucleon-4He Scattering
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Figure 13.4 – Dependence of the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 n-4He phase shifts on the NCSM/RGM
model space via the successive inclusion of excited states of 4He in corresponding multi-
channel calculations. Remaining parameters are Nmax = 13, α= 0.0625fm4 and E3max = 14. (pub-
lished in [51])

13.1.5 Relevance of Discarded SRG-Induced Multi-Nucleon Forces

Now we study the SRG flow-parameter dependence of the low-energy n-4He phase shifts

to assess the role of discarded SRG-induced multi-nucleon contributions. In Part II we

have emphasized that a reliable assessment the α dependence requires convergence with

respect to the model-space size of the approach, see, e.g., Section 6. In addition, we stress

that even if no SRG-induced multi-nucleon forces would have been neglected, significant

artificial dependencies on the SRG flow parameter can arise from inconsistent truncations

are used as, e.g., the E3max in the NCSM/RGM. Furthermore, the α dependence carried

by the NCSM input vectors for the 4He target is translated into the NCSM/RGM kernels,

too. We investigate this point for SRG flow parameters α = 0.0625 and 0.08fm4 using the

largest accessible model space, i.e., including seven states of 4He at Nmax = 13 and E3max =

14. The results are shown in the left- and right-hand panel of Figure 13.5 for the NN+3N-

induced and NN+3N-full Hamiltonian, respectively. The 2S1/2 and 2D3/2 phase shifts, which

we have found well converged with respect to all truncations discussed throughout the

previous subsections, are on top of each other. That is, the discarded SRG-induced multi-

nucleon interactions are irrelevant for these partial waves. For the 2P1/2 and 2P3/2 phase

shifts the dependence is visible and slightly larger for the NN+3N-full Hamiltonian, but

overall very small. Note that these partial waves have shown the largest sensitivities to

the truncations studied before, such that our statement above applies and the slight α

dependence could be artificial. To confirm the latter point we additionally study the third

SRG flow parameter α = 0.04fm4 with the NN+3N-full Hamiltonian and include only four

excited states of 4He by dropping the 1− states. The resulting phase shifts are depicted in

Figure 13.6. The 2S1/2 and 2D3/2 phase shifts are again practically identical for all three flow
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Figure 13.4 – Dependence of the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 n-4He phase shifts on the NCSM/RGM
model space via the successive inclusion of excited states of 4He in corresponding multi-
channel calculations. Remaining parameters are Nmax = 13, α= 0.0625fm4 and E3max = 14. (pub-
lished in [51])

13.1.5 Relevance of Discarded SRG-Induced Multi-Nucleon Forces

Now we study the SRG flow-parameter dependence of the low-energy n-4He phase shifts

to assess the role of discarded SRG-induced multi-nucleon contributions. In Part II we

have emphasized that a reliable assessment the α dependence requires convergence with

respect to the model-space size of the approach, see, e.g., Section 6. In addition, we stress

that even if no SRG-induced multi-nucleon forces would have been neglected, significant

artificial dependencies on the SRG flow parameter can arise from inconsistent truncations

are used as, e.g., the E3max in the NCSM/RGM. Furthermore, the α dependence carried

by the NCSM input vectors for the 4He target is translated into the NCSM/RGM kernels,

too. We investigate this point for SRG flow parameters α = 0.0625 and 0.08fm4 using the

largest accessible model space, i.e., including seven states of 4He at Nmax = 13 and E3max =

14. The results are shown in the left- and right-hand panel of Figure 13.5 for the NN+3N-

induced and NN+3N-full Hamiltonian, respectively. The 2S1/2 and 2D3/2 phase shifts, which

we have found well converged with respect to all truncations discussed throughout the

previous subsections, are on top of each other. That is, the discarded SRG-induced multi-

nucleon interactions are irrelevant for these partial waves. For the 2P1/2 and 2P3/2 phase

shifts the dependence is visible and slightly larger for the NN+3N-full Hamiltonian, but

overall very small. Note that these partial waves have shown the largest sensitivities to

the truncations studied before, such that our statement above applies and the slight α

dependence could be artificial. To confirm the latter point we additionally study the third

SRG flow parameter α = 0.04fm4 with the NN+3N-full Hamiltonian and include only four

excited states of 4He by dropping the 1− states. The resulting phase shifts are depicted in

Figure 13.6. The 2S1/2 and 2D3/2 phase shifts are again practically identical for all three flow
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