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Nuclear Interactions from Chiral EFT

NN interaction

e N3LO: Entem and Machleidt,
AnN = 500 MeV

e N2LO optimized: Ekstrom et al.,
Ann = 500 MeV
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NN interaction

e N3LO: Entem and Machleidt,
AnN = 500 MeV
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3N interaction
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Nuclear Interactions from Chiral EFT

NN interaction

e N3LO: Entem and Machleidt,
AnN = 500 MeV

e N2LO optimized: Ekstrom et al.,
Ann = 500 MeV

3N interaction
e N2LO: Navratil
500 MeV, 3H fit
350 MeV, 3H & “He fit 3 _
e Asn = 400 MeV, 3H & “He fit 4t 1| onoen
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Coupled-Cluster Method

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.]J. Dean --- arXiv:1312.7872 [nucl-th] (2013)

G. Hagen, T. Papenbrock, D.]. Dean, M. Hjorth-Jensen --- Phys. Rev. C 82, 034330 (2010)

G. Hagen, T. Papenbrock, D.]. Dean et al. --- Phys. Rev. C 76, 034302 (2007)
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Coupled Cluster Approach

e exponential Ansatz for wave operator

) = Q|(I)0> _ 6T1+Tz+---+TA|(I)O>
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° Tn : npnh excitation (cluster) operators
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e similarity-transformed Schroedinger equation
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Coupled Cluster Approach

e exponential Ansatz for wave operator

) = Q|(I)0> _ 6T1+Tz+---+TA|(I)O>

° Tn : npnh excitation (cluster) operators
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11k..
abc..

e similarity-transformed Schroedinger equation

A

H|Do) = AE|®g) , H=e¢T Hy "

e H : non-Hermitean effective Hamiltonian
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Singles and Doubles Excitations: CCSD

e CCSD: truncate 7 at the 2p2h level, T = Tl + T2
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e CCSD: truncate 7 at the 2p2h level, T = Tl + T2
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° eT- Ansatz: higher excitations from
products of lower excitation operators
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° eT- Ansatz: higher excitations from
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e CCSD equations
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Singles and Doubles Excitations: CCSD

e CCSD: truncate 7 at the 2p2h level, T = Tl + T2

A

° eT- Ansatz: higher excitations from
products of lower excitation operators

e CCSD equations

AECED) = (|| Do)
0= <(I),? (I)0> . \Y CL,’i
0= <(I)ng’7:”q)0> ) Vv a, b7 7’7.]

H
H

e Coupled system of nonlinear equations
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vs. CCSD

NN+3N-full (HO)
Asn = 500 MeV
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Reduced-Cutoff
3N Interaction

R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navratil --- PRL 109, 052501 (2012)

R. Roth, A. Calci, J. Langhammer, S. Binder --- arXiv:1311.3563
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160: Reduced-Cutoff 3N Interaction
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160: Reduced-Cutoff 3N Interaction

NN-+3N-induced NN+3N-full

I Interaction,
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160: Reduced-Cutoff 3N Interaction

NN+43N-induced NN+3N-full

3N interaction
with Asn = 400 MeV, ce
refitted to 4He

I Interaction,
| N3y = 500 MeV
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Reduced-Cutoff 3N Interaction
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Normal-Ordering
Two-Body
Approximation

G. Hagen, T. Papenbrock, D.]. Dean et al. --- Phys. Rev. C 76, 034302 (2007)

R. Roth, S. Binder, K. Vobig et al. --- Phys. Rev. Lett. 109, 052501(R) (2012)

S. Binder, J. Langhammer, A. Calci et al. --- Phys. Rev. C 82, 021303 (2013)
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Normal-Ordered 3N Interaction

\

Avoid technical challenge of
including explicit 3N interactions in
many-body calculation
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Normal-Ordered 3N Interaction

Avoid technical challenge of
including explicit 3N interactions in
many-body calculation

e Idea: write 3N interaction in normal-ordered form with respect to
an A-body reference Slater determinant (0Oh{) state)

3 . E ( 3N
VSN — Voooooo
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Normal-Ordered 3N Interaction

Avoid technical challenge of
including explicit 3N interactions in
many-body calculation

e Idea: write 3N interaction in normal-ordered form with respect to
an A-body reference Slater determinant (0Oh{) state)
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Normal-Ordered 3N Interaction

\

Avoid technical challenge of
including explicit 3N interactions in
many-body calculation

e Idea: write 3N interaction in normal-ordered form with respect to
an A-body reference Slater determinant (0Oh{) state)

Vnozs = WOB + Z Wb ata, + Z

e Normal-Ordered Two-Body Approximation (NO2B):
discard residual normal-ordered 3B part W35
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Benchmark NO2B

NN+3N full

\

e Residual 3N interaction relevant for CCSD,
negligible for additional triples
correction (ACCSD(T))

0.02 0.04 0.08
a [fm*]
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Benchmark NO2B

NN+3N full

\

e Residual 3N interaction relevant for CCSD,
negligible for additional triples
correction (ACCSD(T))

e Errors due to NO2B < 1%
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Benchmark NO2B

NN+3N full

e Residual 3N interaction relevant for CCSD,
negligible for additional triples
correction (ACCSD(T))
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Benchmark NO2B

NN+3N full

e Residual 3N interaction relevant for CCSD,
negligible for additional triples
correction (ACCSD(T))

4OC3.

e Errors due to NO2B < 1%

)

)

)
I

e = NO2B is efficient and accurate way to
include 3N interaction
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a [fm*]
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Normal-Ordering Procedure
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Normal-Ordering Procedure
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Normal-Ordering Procedure

e heavy nuclei require large Ezmax
HF
Ezmax = 14 NN 43N —full NN + 3N — full
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Normal-Ordering Procedure

e heavy nuclei require large Ezmax

NN+3N—full NN+ 3N — full
s 3 3

68Ni ]

\4 14 16 18 10 12 14 16 18

E3max E3max
NO2B o o
a=0.04fm* a=0.08fm*

E/A [MeV]

E3smax = 18

e simple protocol to avoid using full
sets of large-Esmax matrix elements
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Normal-Ordering Procedure

HF
E3max = 14

)
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-

NO2B
\E3max = 18

need only a small
subset of normal-
ordered matrix
elements!
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Normal-Ordering Procedure

e heavy nuclei require large Ezmax

NN+3N—full NN+ 3N — full
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* e simple protocol to avoid using full
[ many-bodyJ sets of large-Esmax matrix elements

method

e large-Esmax information enters via NO2B
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Normal-Ordering Procedure

e Example: normal ordering for Eamax = 14

NN+3N-full

o

1 3
1teration

(19(Fymas = 1))
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Normal-Ordering Procedure

e Example: normal ordering for Eamax = 14
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Coupled-Cluster
Triples Corrections

A.G. Taube, R. J. Bartlett, The Journal of Chemical Physics 128, 044110 (2008)

G. Hagen, T. Papenbrock, D.]. Dean, M. Hjorth-Jensen --- Phys. Rev. C 82, 034330 (2010)
S. Binder, P. Piecuch, A. Calci, J. Langhammer, R. Roth --- Phys. Rev. C 88, 054319 (2013)

P. Piecuch, M. Wloch --- J. Chem. Phys. 123, 224105 (2005)
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Coupled-Cluster Triples Corrections

e CCSDT, T — Tl -+ TQ -+ Tg , t00 expensive
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e Coupled-Cluster energy functional
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Coupled-Cluster Triples Corrections

e CCSDT, T — Tl -+ TQ -+ Tg , t00 expensive

e Coupled-Cluster energy functional

e Non-iterative triples corrections

1
(T) _ 1y k abc
0L 2 Z 2CLbC abe 7JJ'ZC

abc ’L]k
11k
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ACCSD(T) and CR-CC(2,3) in Chemistry

Molecular Physics
Vol. 108, Nos. 21-23, 10 November-10 December 2010, 29512960

Alternative perturbation theories for triple excitations in coupled-cluster theory
Andrew G. Taube*'
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Bond length (n*R,)

Figure 1. Errors (in kcal mol™") from FCI [21] for stretching the hydrogen fluoride bond in a 6-31G** [22,23] basis by various
RHF- and UHF-based approximate triples methods. The equilibrium bond length, R,, is 0.9 A and all electrons were correlated.
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OACCSD(T) : D¢ = fi + f] + fi — fa — fy — fe

®CR-CC(2,3) : DIl = Hi+ -+ HI + -+ HIE 1.

e Two- and three-body matrix elements of H = e‘TﬁNeT
in denominator cannot be treated exactly in spherical
formulation
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Denominators in ACCSD(T), CR-CC(2,3)

OACCSD(T) : D¢ = fi + f] + fi — fa — fy — fe

®CR-CC(2,3) : DI =Hi+ -+ H + -+ Hp + ...

e Two- and three-body matrix elements of H=ec THye"
in denominator cannot be treated exactly in spherical
formulation

e Option 1: Discard them = D%b,j ~HE 4+ HE

e Option 2: Average them

abc _ Tobc 5 1] —ijk
= Diji, @ Dy = Hy + -+ HG + o HGp + -
1

(27, +1)...(25
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Approximate CR-CC(2,3) Denominators

(Option 1: Discard) eD(k): up to k-body terms in denominator
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Approximate CR-CC(2,3) Denominators

(Option 1: Discard) eD(k): up to k-body terms in denominator

NN+3N-full e 3B matrix elements are negligible,
but 2B are not

(Option 2: Average)
NN+3N-full

—
>
O
2,
&
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O
7
o
S
S
o

1

€max — 4

deviation [MeV]

D(2) — D(2) D@3) - D(3)

D() D2) DB

denominator

O ¢ A
a=0.02fm* a=004fm* a=0.08fm*
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Approximate CR-CC(2,3) Denominators

(Option 1: Discard) eD(k): up to k-body terms in denominator
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D) D)
denominator
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a=0.02fm* a=0.04fm*
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D(3)

A
a=0.08fm*

e 3B matrix elements are negligible,

but 2B are not

(Option 2: Average)
NN+3N-full

1

€max — 4

deviation [MeV]

D(2) — D(2) D@3) - D(3)

e Error from averaging = 5 keV




CR-CC(2,3) vs. ACCSD(T) and IT-NCSM
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Cluster Convergence

e Use triples correction to estimate errors due to cluster truncation

63 %
160

NN +3N-full
a = 0.04 fm*

35 Y0

2%

CCSD CR-CC(2,3)
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Cluster Convergence

e Use triples correction to estimate errors due to cluster truncation

63 % 64
160 9OZI.

NN+3N-full NN+3N-full
a = 0.04 fm* a = 0.04 fm*

35 % 34 %

2%

2%
: — 1 1 _ 1
CCSD CR-CC(2,3) CCSD CR-CC(2,3)
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Cluster Convergence

e Use triples correction to estimate errors due to cluster truncation

63 % I 64 %
160 9OZr
NN+3N-full NN+3N-full
a = 0.04 fm* ] I a = 0.04 fm*

35 % 34 %

2%

2%
1 1 — ] 1 [l ] ] _ ]
HF CCSD CR-CC(2,3) HF CCSD CR-CC(2,3)

e typically < 3 % contributions from triples correction for all
nuclear masses
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Heavy Nuclei

S. Binder, J. Langhammer, A. Calci, R. Roth, arXiv:1312.5685
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Coupled-Cluster for Heavy Nuclei
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Coupled-Cluster for Heavy Nuclei

e soft interactions:
reasonably converged triples
calculations possible for
heavy nuclei
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Coupled-Cluster for Heavy Nuclei

e soft interactions:
reasonably converged triples
calculations possible for
heavy nuclei

E/A [MeV]
5 b
[ASW] v/

—_
-

e calculations are rather
inexpensive

I
oo

e CR-CC(2,3) : 7.200 CPU h
fOI‘ 1325n, emax=12

E/A [MeV]
O
[ASIN] V/A

—_
-

o8 0 () —4— CR-CC.3
--O>--- ACCSD(T)
a =0.04fm* «=0.08fm? <«— CCSD (epmax = 12)

¢ A
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Heavy Nuclei from Chiral Interactions

E/A [MeV]

NN+3N-induced

" _ exp
¥y — [] . |
b LA l-l'l-'.' r v

TYY YV ¥y YV ¥V YV ¥V YV ¥V vyvv vv Yy ¥¥Y ¥V ¥V V7Y ¥V vV V¥V VvV ¥V vV ¥V VvV

68Ni 8881‘ IOOSn 108Sn 116Sn IZOSn
9OZI' 106Sn 114Sn IISSn 132811

points towards
smaller «

~—

+«— =008 fm*

«—

CR-CC(2,3)

. HF basis
#=U. 04 i Q) = 24 MeV
ESmaX = 18
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Heavy Nuclei from Chiral Interactions

NN+3N-induced

r _ exp
— N [] . ]
U AL L L

E/A [MeV]

TYY YV ¥y YV ¥V YV ¥V YV ¥V vyvv vv Yy ¥¥Y ¥V ¥V V7Y ¥V vV V¥V VvV ¥V vV ¥V VvV

62Ni 68Ni 88Sr IOOSn 108Sn 116Sn IZOSn
66Ni 78Ni 9OZI' 106Sn 114Sn IISSn 13ZSn
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Heavy Nuclei from Chiral Interactions

NN+3N-induced

" _ exp
¥y — [] . |
b LA l-l'l-'.' r v

E/A [MeV]

TYY YV ¥y YV ¥V YV ¥V YV ¥V vyvv vv Yy ¥¥Y ¥V ¥V V7Y ¥V vV V¥V VvV ¥V vV ¥V VvV

68Ni 88Sr IOOSn 108Sn 116Sn IZOSn
9OZI' 106Sn 114Sn IISSn 13ZSn

e NN+3N-induced: strong SRG-induced 4N, ... interactions
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Heavy Nuclei from Chiral Interactions

YY VYV ¥V YV VY VvV ¥V VvV ¥yv vv vv YV ¥V VvV ¥V VvV ¥vv vv V¥ Vv V¥ Vv Vv VYV
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NN+3N-full

> 05
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= -05
=<
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b -

m A3y =400 MeV/c
m A3y =350MeV/c

TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT

160 36Ca 48Ca 54Ca 56Ni 62Ni 68Ni 8881’ l()()Sn lOSSn 116Sn IZOSn
240 40Ca 52Ca 48Ni 60Ni 66Ni 78Ni 9OZI. 106Sn 114Sn 118Sn 1328n

e NN+3N-induced: strong SRG-induced 4N, ... interactions
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Heavy Nuclei from Chiral Interactions

NN+3N-induced
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I I I I I I I I I I I

NN+3N-full
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=
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m A3y =400 MeV/c
m A3y =350MeV/c

TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT

160 36Ca 48Ca 54Ca 56Ni 62Ni 68Ni SSSI. lOOSn IOSSH 116Sn IZOSn
240 40Ca 52Ca 48Ni 60Ni 66Ni 78Ni 9OZI. 106Sn 114Sn 118Sn 1328n

e NN+3N-induced: strong SRG-induced 4N, ... interactions

e NN+ 3N-full: cancellation of SRG-induced 4N, ... interactions
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Heavy Nuclei from Chiral Interactions

| A3N =400 MeV/c
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Heavy Nuclei from Chiral Interactions

NN+3N-full

| A3N =400 MeV/c
m A3y =350MeV/c
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e Hamiltonians fixed in A<4 systems

e current chiral Hamiltonians capable of describing the
experimental trend of binding energies
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Heavy Nuclei from Chiral Interactions

NN+3N-full

- r
A AV

| A3N =400 MeV/c
m A3y =350MeV/c

TIT TIT TIT TIT TIT TIv TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT TIT

160 36Ca 48Ca 54Ca 56Ni 62Ni 68Ni 88SI. IOOSn IOSSn 116Sn 12()Sn
240 4OCa 52Ca 48Ni 60Ni 66Ni 78Ni 9OZI. 106Sn 114Sn 11881’1 13281’1

e Hamiltonians fixed in A<4 systems

e current chiral Hamiltonians capable of describing the
experimental trend of binding energies

e systematic overbinding = still deficiencies

e consistent 3N interaction at N3LO, and 4N interaction
e SRG-induced 4N, ... interactions
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v A v A v 4

eXp ® NN +3N-induced -
v - | . | . . NN+3IN-fu11 |

160 4OCa 48Ca 60Ni 62Ni 8881’ 114Sn 116Sn IISSn 120811

Hartree-Fock
h{) = 24 MeV
ESmaX — 18
Crmax — 12
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v A v A v 4

eXp ® NN +3N-induced -
v - | . | . . NN+3IN-fu11 |

160 4OCa 48C& 60Ni 62Ni 8881’ 114Sn 116Sn IISSn 120811

e Charge radii about 20% too small
J ° Hartree-Fock

h{) = 24 MeV
ESmaX = 13
€max — 12
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v A v A v A

® NN+3N-induced
Q NN+3IN-fu11 |

160 4OCa 48C& 60Ni 62Ni 8881’ 114Sn

e Charge radii about 20% too small

e beyond-HF correlations and consistent SRG
evolutions are expected to have minor effects
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116Sl,1 IISSn 120811

Hartree-Fock

he) = 24 MeV
ESmaX = 18
Crmax — 12
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v A v A v A

® NN+3N-induced
Q NN+3IN-fu11 |

160 4OCa 48C& 60Ni 62Ni 8881’ 114Sn

e Charge radii about 20% too small

e beyond-HF correlations and consistent SRG
evolutions are expected to have minor effects

= challenge for chiral Hamiltonians, already
for lighter nuclei
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Hartree-Fock
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Conclusions

e Ab initio methods have entered the heavy nuclei regime

SRG can be performed with sufficient accuracy

Large values of Eamax can be reached via NO2B approximation
CC theory efficiently provides accurate ground-state energies
ADb initio methods are able to test chiral Hamiltonians over

a large mass range (= looking forward to more consistent
N3LO interactions, etc.)

e Current issues:

Strong SRG-induced many-body interactions

Observables other than energy, e.g., Radii
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