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Abstract. We investigate the dynamic structure factor of atomic Bose and Fermi gases in
one-dimensional optical lattices at zero temperature. The focus is on the generic behaviour
of S (k, ω) as function of filling and interaction strength with the aim of identifying possible
experimental signatures for the different quantum phase transitions. We employ the Hubbard
or Bose-Hubbard model and solve the eigenvalue problem of the Hamiltonian exactly for
moderate lattice sizes. This allows us to determine the dynamic structure factor and
other observables directly in the phase transition regime, where approximation schemes are
generally not applicable. We discuss the characteristic signatures of the various quantum
phases appearing in the dynamic structure factor and illustrate that the centroid of the strength
distribution can be used to estimate the relevant excitation gaps. Employing sum rules,
these quantities can be evaluated using ground state expectation values only. Important
differences between bosonic and fermionic systems are observed, e.g., regarding the origin
of the excitation gap in the Mott-insulator phase.

PACS numbers: 03.75.Lm, 03.75.Ss
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1. Introduction

Ultracold atomic gases in optical lattices have proven to be an unique experimental tool to
explore the rich physics of quantum phase transitions. Since the first experimental observation
of the superfluid to Mott-insulator transition in an ultracold Bose gas contained in a three-
dimensional optical lattice [1], the theoretical and experimental activity in this field has
increased dramatically. Recently, the superfluid to Mott-insulator phase transition was also
confirmed in one-dimensional lattices [2]. From the experimental point of view these systems
offer a remarkable degree of experimental control: lattice depth and topology, interaction
strengths, and filling factors can be adjusted in a wide range. Furthermore one has the choice
between purely bosonic or fermionic single- or multi-component systems as well as systems
of mixed statistics. At the same time the diagnostic tools are outstanding. The matter wave
interference pattern after release from the lattice already provides a wealth of information.
The dynamic response of the system can be probed, e.g., by tilting or modulating the lattice
potential [3, 2]. Bragg spectroscopy [4, 5] provides another powerful tool to access dynamic
properties.

Also from the theoretical point of view these systems are appealing. They open a window
to correlation dominated phenomena far beyond the mean-field regime. The most striking
ramification of the influence of correlations are the different quantum phases appearing in
Bose and Fermi gases in lattices. For sufficiently deep lattice potentials the single-band
Hubbard or Bose-Hubbard model is well suited to study all these phenomena. Besides the
superfluid to Mott-insulator transition for bosonic atoms in an optical lattice [6] many other
phenomena have been successfully described within the Bose-Hubbard model. Presently a lot
of attention is devoted to fermionic systems and Bose-Fermi mixtures in lattices [7, 8, 9, 10]
with the intention to investigate pairing and fermionic superfluidity in lattice systems.

The aim of this paper is to systematically investigate the dynamic structure factor of
bosonic and fermionic lattice systems within the (Bose-) Hubbard model. The dynamic
structure factor, which is directly accessible in experiment, e.g., through two-photon Bragg
spectroscopy [4, 5, 11], fully characterises the density-density response. It provides detailed
insight into the spectrum of elementary excitations and into the role correlations for the
dynamics of the system. A significant amount of work has been done for weakly interacting
atomic gases in optical lattices using the Bogoliubov approach [12, 13]. In contrast to these
studies we are aiming at the regime of strong interactions and correlations which is not
accessible within mean-field or Bogoliubov-type models [14]. In order to be able to describe
the system throughout the whole phase diagram, we perform an exact numerical solution of
the eigenvalue problem of the Hubbard Hamiltonian [15, 16, 10]. This enables us to track the
change of the dynamic structure factor through the phase transition and identify signatures of
the different quantum phases.

After setting the formal stage in section 2 we discuss our results for the dynamic structure
factor of the single-component zero-temperature Bose gas in a one-dimensional optical lattice
in section 3. In section 4 we transfer this to a two-component Fermi gas and investigate the
behaviour of the dynamic density and spin structure factor in the presence of repulsive and
attractive interactions. Section 5 summarises our findings.
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2. Hubbard models and the dynamic structure factor

2.1. Bose-Hubbard and Fermi-Fermi-Hubbard model

A single-component Bose gas in a translationally invariant one-dimensional lattice of
sufficient depth is described by the single-band Bose-Hubbard Hamiltonian [6, 16]

ĤB
= −J

I
∑

i=1

(â†i+1âi + H.a.) +
V
2

I
∑

i=1

n̂i(n̂i − 1) , (1)

where â†i creates a boson in the lowest Wannier state localised at site i and n̂i = â†i âi is the
associated occupation number operator. The first term describes the hopping between adjacent
sites with a tunnelling matrix element J. Throughout this paper periodic boundary conditions
are assumed, i.e., the hopping term connects the first and the last site of the lattice. The second
term in (1) introduces an on-site two-body interaction of strength V .

We exactly solve the matrix eigenvalue problem of the Hamiltonian in a basis of
Fock states |{n1, ..., nI}Bα〉 with ni = 0, 1, 2, .... The index α = 1, ...,D labels the different
compositions of occupation numbers {n1, ..., nI}Bα for fixed total particle number N =

∑I
i=1 ni.

The resulting basis dimension is D = (N + I − 1)!/[N!(I − 1)!]. Through a powerful Lanczos-
type algorithm we compute up to 2500 energy eigenvalues Eν at the lower end of the spectrum.
The corresponding eigenvectors C(ν)

α determine the eigenstates

|ΨB
ν 〉 =

D
∑

α=1

C(ν)
α |{n1, ..., nI}Bα〉 , (2)

which are the starting point for the calculation of all relevant observables, like mean
occupation numbers, occupation number fluctuations, density matrices, and the dynamic
structure factor.

The analogous model for a two-component system of fermionic atoms in a one-
dimensional lattice is defined by the (Fermi-Fermi-) Hubbard Hamiltonian

ĤFF
= −J

I
∑

i=1

(â†↑i+1â↑i + H.a.) − J
I
∑

i=1

(â†↓i+1â↓i + H.a.) + V
I
∑

i=1

n̂↑in̂↓i , (3)

where â†↑i and â†↓i are creation operators for a fermionic atom of component ↑ and ↓,
respectively, localised at site i. n̂↑i and n̂↓i are the associated occupation number operators.
The first two terms describe the nearest neighbour hopping with a tunnelling matrix element
J assumed to be equal for the two components. The last term gives the on-site interaction
between two atoms of different components with strength V . A on-site interaction between
atoms of the same component is excluded from the outset by restricting the model space to a
single band.

Again we use a complete basis of Fock states and perform an exact matrix diagonalisation
of the Hamiltonian. For a single fermionic component with N particles, a basis of Fock states
|{n1, ..., nI}Fα〉 is given by all possible arrangements of N sites with ni = 1 and (I − N) sites
with ni = 0. The dimension D = I!/[N!(I − N)!] of this basis is much smaller than for
a corresponding bosonic system, since the Pauli principle forbids multiply occupied sites.
The Fock basis of a two-component system is given by the direct product of all possible
combinations of the single-component basis states |{n1, ..., nI}F↑α 〉⊗ |{n1, ..., nI}F↓β 〉. The solution
of the matrix eigenvalue problem of the Hamiltonian in this basis yields eigenstates of two-
component fermion system of the form

|ΨFF
ν 〉 =

D↑
∑

α=1

D↓
∑

β=1

C(ν)
αβ
|{n1, ..., nI}F↑α 〉 ⊗ |{n1, ..., nI}F↓β 〉 . (4)
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2.2. Dynamic structure factor

In order to characterise and investigate the dynamic density-density response of bosonic or
fermionic lattice systems to an external probe, which delivers a momentum k and an energy
ω, we employ the dynamic structure factor S (k, ω). It is assumed that the coupling between
probe and system is sufficiently weak to render a linear response treatment applicable. At zero
temperature the dynamic structure factor is defined as [17]

S (k, ω) =
∑

ν

|〈Ψν| ρ̂†k |Ψ0〉|2 δ(ω − Eν0) , (5)

where |Ψν〉 are the eigenstates of the many-body Hamiltonian and Eν0 = Eν − E0 are the
excitation energies relative to the ground state. In this section we omit any reference to the
bosonic or fermionic system, since the formal steps are identical for both.

The operator ρ̂†k describes the way the external probe couples to the system. In the case of
the dynamic structure factor it creates an excitation with momentum k by promoting particles
from a state with quasimomentum q to a state with quasimomentum q + k. In the language of
second quantisation this reads [17]

ρ̂
†
k =

I−1
∑

q=0

ĉ†q+kĉq , (6)

where the ĉ†q are creation operators associated with quasimomentum eigenstates, i.e., Bloch
states. Within the Hubbard model the ĉ†q can be rephrased in terms of the creation operators
â†i with respect to the localised Wannier states through

ĉq =
1
√

I

I
∑

i=1

ei(2π/I) q i âi . (7)

We employ reduced units for the quasimomenta such that only integer values of q appear.
The first Brillouin zone contains I different quasimomentum states which are labelled q =
0, ..., I − 1 for convenience. The quasimomenta in standard units are given by 2π q/(aI),
where a is the lattice spacing. Inserting (7) into equation (6) leads to the simple expression

ρ̂
†
k =

I
∑

i=1

e−i(2π/I) k i n̂i . (8)

This form clearly shows that the operator ρ̂†k is related to a periodic density modulation with
quasimomentum k. In order to isolate the fluctuating part, one might subtract the mean
occupation numbers n̄i for the ground state from the occupation number operator n̂i in (8).
However, this affects only the trivial k = 0 behaviour of the dynamic structure factor.

The matrix elements 〈Ψν| ρ̂†k |Ψ0〉 entering into the dynamic structure factor can be
calculated explicitly for each excited state |Ψν〉 obtained by the diagonalisation of the Hubbard
Hamiltonian. Using the expansion (2) of the eigenstates in terms of Fock states we obtain

〈Ψν| ρ̂†k |Ψ0〉 =
I
∑

i=1

e−i(2π/I) k i
D
∑

α,β=1

C(ν)?
α C(0)

β
〈{n1...nI}α| n̂i |{n1...nI}β〉 (9)

=

I
∑

i=1

e−i(2π/I) k i
D
∑

α=1

C(ν)?
α C(0)

α n(α)
i . (10)

Since we only compute the lowest νmax eigenstates by the Lanczos procedure, the excitation
energy Eνmax0 of the highest eigenstate limits the ω up to which the structure factor is
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determined. By checking the sum rules (cf. section 2.3) we make sure that all relevant
contributions are contained in this range.

So far, we have discussed a single component system. In a two-component system, the
probe can couple to the two components in different ways. If the probe does not distinguish
the two components, then the operator of the total on-site occupation number n̂↑i + n̂↓i is the
relevant quantity and enters into the definition of the total density fluctuation operator [11]

ρ̂
†
Dk =

I
∑

i=1

e−i(2π/I) k i (n̂↑i + n̂↓i) . (11)

With equation (5) this defines the dynamic density structure factor S D(k, ω). If the probe, on
the other hand, couples to the total on-site spin, then the difference between the two occupation
number operators n̂↑i − n̂↓i is decisive and leads to the spin fluctuation operator

ρ̂
†
Sk =

I
∑

i=1

e−i(2π/I) k i (n̂↑i − n̂↓i) (12)

and the associated dynamic spin structure factor S S(k, ω). Possible ways of measuring these
quantities in ultracold atomic gases are discussed in ref. [11].

2.3. Sum Rules

Sum rules provide an outstanding tool in connection with the dynamic structure factor [12].
They relate the moments of the dynamic structure factor to ground state expectation values
of different operators. The simplest sum rule relates the dynamic structure factor S (k, ω) to
the static structure factor S (k). The integral of S (k, ω) over ω, i.e., the zeroth moment of the
dynamic structure factor, is proportional to the static structure factor

∫

dω S (k, ω) =
∑

ν

|〈Ψν| ρ̂†k |Ψ0〉|2
!
= 〈Ψ0| ρ̂†k ρ̂k |Ψ0〉 ≡ NS (k) . (13)

The first equality follows immediately from the definition of the dynamic structure factor (5).
The equivalence of the second and the third expression can be easily shown by making use
of the completeness of the eigenstates |Ψν〉 of the Hamiltonian. Inserting a unit operator 1̂ =
∑

ν |Ψν〉〈Ψν| between the two fluctuation operators in the third expression immediately leads to
the second expression. In view of this relation it is convenient to define a normalised dynamic
structure factor S̄ (k, ω) = S (k, ω)/(NS (k)), whose zeroth moment equals 1 independent of k.

The first moment of the dynamic structure factor obeys the energy-weighted or f sum-
rule. For Hubbard-type Hamiltonians with next neighbour hopping one finds

∫

dω ω S (k, ω) =
∑

ν

Eν0 |〈Ψν| ρ̂†k |Ψ0〉|2
!
= [cos(2πk/I) − 1] 〈Ψ0| T̂ |Ψ0〉 ≡ f (k) , (14)

where T̂ = −J
∑I

i=1(â†i+1âi + â†i âi+1) is the kinetic energy part of the Hamiltonian. Again,
the second term follows directly from the definition of the dynamic structure factor. The
equivalence of the second and third expression can be proven by considering the ground state
expectation value of the double-commutator [[ρ̂k, Ĥ], ρ̂†k]. Notice, the explicit evaluation of
the double-commutator for the Hubbard Hamiltonian leads to a term 2 [cos(2πk/I) − 1] T̂ in
contrast to the usual expression for homogeneous Bose or Fermi gases [17].

We will make use of these sum rules in two different ways. First, we will check the
numerical results for the dynamic structure factor by computing the moments of the structure
factor and the corresponding ground state expectation values independently. Thus we make
sure that the truncated set of excited states that was obtained numerically, includes all states
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Figure 1. (a) Superfluid fraction fs as function of the interaction strength V/J [16, 15]
for a commensurate system with I = N = 10 ( ) and for non-commensurate filling
I = 10,N = 8 ( ). (b) Energy gap between ground state and first excited state for the
same two cases.

which contribute to the dynamic structure factor, i.e., which have non-vanishing matrix
elements 〈Ψν| ρ̂†k |Ψ0〉. Secondly, we can utilise sum rules to determine integral properties of
the dynamic structure factor without computing excited states explicitly. We can, for example,
determine the energy of the centroid of the strength distribution, given by the ratio of the first
and the zeroth moment of S (k, ω), using ground state expectation values alone. We will come
back to this point at the end of section 3.

3. Single-component Bose gas

The properties of the single-component Bose gas in the presence of repulsive interactions have
been studied in detail experimentally as well as theoretically. For commensurate filling factors
a quantum phase transition from a superfluid at low values of V/J to a Mott-insulator phase at
large V/J appears. For an infinite one-dimensional lattice, Monte Carlo calculations [18] and
strong -coupling expansion methods [19] predict a critical interaction strength (V/J)crit ≈ 4.65
for the superfluid to Mott-insulator transition at N/I = 1. This is consistent with the recent
experimental observation of the Mott-insulator transition in one-dimensional systems [2]. We
have performed explicit calculations of the superfluid fraction in finite systems via the phase
stiffness [16, 15]. The behaviour of the superfluid weight fs and of the energy gap between
ground state and first excited state for a lattice with I = 10 sites are summarised in figure
1. For commensurate filling (N = 10) the superfluid fraction decreases rapidly and a linearly
growing energy gap emerges. For incommensurate filling (N = 8) the superfluid fraction stays
finite and the energy gap between ground and first excited state remains small. A detailed
analysis of these properties as well as other observables was presented in [16].

Our aim is to investigate the change of the dynamic structure factor S (k, ω) throughout
the whole phase diagram, i.e., for different interaction strengths V/J and fillings N/I. Different
characteristic behaviours might serve as an easily accessible experimental signature to identify
the various quantum phases.

Figure 2 summarises our results for the normalised dynamic structure factor S̄ (k, ω) =
S (k, ω)/(NS (k)) of a single-component Bose gas with different interaction strengths V/J in a
lattice with I = 10 sites. For the sake of clarity the δ-function appearing in the definition (5)
of the structure factor is smoothed out, i.e., it is replaced by a narrow Gauss function

δ(ω − Eν0)→ 1
√

2π∆
exp
[

− (ω − Eν0)2

2∆2

]

(15)

with a width parameter ∆/J = 0.2 (for the fermionic systems discussed in section 4 we use
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Figure 2. Normalised dynamic structure factor S̄ (k, ω) for a single-component Bose gas in
a one-dimensional lattice with I = 10 sites. The plots in the left hand column correspond to
a commensurate filling with N = 10, the one on the right hand side are for incommensurate
filling with N = 8. The interaction parameters for the different rows are V/J = 0, 5, 10, and
15 (from top to bottom). The bars at the forward edge of each plot represent the excitation
spectrum, i.e. the possible values of Eν0.
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Figure 3. Position of the centroid (16) of the dynamic structure factor as function of k for a
single-component Bose gas with (a) N = 10 particles and (b) N = 8 particles, resp., in a I = 10
lattice. The interaction strengths are V/J = 0 (•), 5 (�), 10 (N), and 15 (�). The points are
connected by straight lines to guide the eye.

∆/J = 0.12). Each of the curves shown in the individual plots corresponds to a different value
of the quasimomentum transfer k. Only the non-trivial values q = 1, 2, ..., I/2 are shown. For
q = 0 the structure factor vanishes for ω > 0 as can be seen from equation (5). Furthermore,
due to time-reversal invariance the structure factors for −q and q are identical. In addition to
the dynamic structure factor each of the plots shows the excitation spectrum as a sequence of
levels along the ω-axis.

The plots in the left hand column of figure 2 show the dynamic structure factor for
commensurate filling N = I = 10. In the absence of interactions (upper plot) the excitation
strength for each quasimomentum is concentrated in a single peak at low ω. The peak shifts
slightly towards larger excitation energies when the quasimomentum transfer k is increased. In
the presence of interactions the excitation strength fragments and spreads over a considerable
range of excitation energies ω [20]. This is caused by the change of the structure of the
eigenstates which leads to non-vanishing matrix elements 〈ΨB

ν | ρ̂
†
k |Ψ

B
0 〉 for several excited

states.
A more significant change of S (k, ω) results from the emergence of a gap in the energy

spectrum as soon as one enters the Mott-insulator phase. Starting from V/J & 5 there is a
gap between ground state and first excited state which grows linearly with V/J (cf. figure 1).
Hence, there are no low-lying excited states and therefore no low-lying contributions to the
dynamic structure factor within the Mott-insulator phase. The excitation strength, which is
carried by states just above the energy gap, is pushed towards large ω as the gap expands. The
plots for V/J = 10 and 15 in figure 2 demonstrate this mechanism.

This can be compared to the behaviour of the dynamic structure factor for a system with
non-commensurate filling (I = 10, N = 8) as depicted in the right hand column of figure
2. As before, the strength is concentrated in a single low-energy peak for the noninteracting
system. However, with increasing V/J the dominant part of the strength remains at small ω
since there is no gap between ground and first excited state. Nevertheless, a small contribution
results from higher lying states which moves to larger ω with increasing V/J. Interestingly,
for strongly repulsive interactions, e.g. V/J = 15, the spectrum shows a gap at relatively large
excitation energies Eν0/J ≈ 10 and the high-lying strength is carried by states just above this
gap.

The gross structural changes of S (k, ω) discussed above are well represented by the
position of the centroid of the strength distribution as function of k

Ω(k) =

∫

dω ω S (k, ω)
∫

dω S (k, ω)
=

∫

dω ω S̄ (k, ω) =
f (k)

NS (k)
, (16)
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which is the ratio of the energy-weighted sum rule f (k) defined in equation (14) and the
static structure factor NS (k) given by (13). By using the sum-rule identities given in section
2.3, the position of the centroid can be expressed in terms of ground state expectation values
only. Hence the sum rules enable us to draw conclusions about the structure of the excitation
spectrum once we know the ground state. Obviously this is of great practical importance, we
do not have to compute the full excitation spectrum if we are interested in gross properties
like Ω(k).

Figure 3 depicts the position of the centroid as function of k for different interaction
parameters V/J and commensurate as well as non-commensurate filling. In general Ω(k)
decreases with decreasing k, however, its minimum value and its behaviour in the limit of
small k is crucial. As long as the system is in the superfluid phase, Ω(k) tends towards
zero for in the limit of small k. Only within the Mott-insulator phase, i.e., for V/J & 5
and commensurate filling, the position of the centroid tends to a finite value for k → 0. The
minimum value of Ω(k) can be used as an estimate for the excitation gap, which, for the
bosonic system, coincides with the gap in the excitation spectrum.

4. Two-component Fermi gas

The qualitative behaviour of the dynamic structure factor for a Bose gas in the lattice can be
largely understood from the structure of the excitation spectrum alone. This is not the case
for two-component Fermi gases, where the transition matrix elements 〈ΨFF

ν | ρ̂
†
k |Ψ

FF
0 〉 play a

decisive role.

4.1. Repulsive interactions

We first consider the case of repulsive inter-component interactions. For N↑ = N↓ = I/2,
i.e., half-filling of the band, there exists a (Hubbard-) Mott-insulator phase similar to the
bosonic system. The one-dimensional Hubbard model at exactly half-filling is special in many
respects. It is well known [21] that there exists a mapping between the charge or density and
the spin sector of the model. By performing a gauge transformation â†↑i → (−1)i â↑i on one
of the components the density observables (e.g. the density structure factor) of the Hubbard
model with repulsive interactions V > 0 are mapped onto the corresponding spin observables
(e.g. the spin structure factor) of a system with attractive interaction −V and vice versa.
However, this symmetry does not hold away from half-filling.

In the following we investigate the two-component Fermi gas with repulsive interactions
at half-filling of the band (I = 10, N↑ = N↓ = 5) and for particle numbers away from
half-filling (I = 10, N↑ = N↓ = 4) and compare with the bosonic systems of section
3. The energy spectra and the normalised dynamic density structure factors S̄ D(k, ω) =
S D(k, ω)/[(N↑ + N↓)S D(k)] for the two-component Fermi gas are summarised in figure 4.

The energy spectrum at half-filling develops a gap with increasing strength of the
repulsive interaction (cf. left hand column of figure 4). In contrast to the bosonic system
at commensurate filling, the gap does not emerge between ground and first excited state but
at relatively large excitation energies of Eν0/J ≈ 5. Therefore a significant number of states
remains below the gap, and it is a priori not clear whether these contribute to the dynamic
structure factor or not. The explicit calculation of S D(k, ω) reveals a behaviour similar to
the bosonic system at commensurate filling: The strength is shifted towards larger ω with
increasing interaction strength V/J. As the gap appears, only those states above the gap
contribute to the structure factor. All states below the gap possess vanishing transition matrix
elements 〈ΨFF

ν | ρ̂
†
Dk |Ψ

FF
0 〉 and, therefore, do not contribute. Hence, the mechanism which
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Figure 4. Normalised dynamic density structure factor S̄ D(k, ω) for a two-component Fermi
gas with repulsive interactions in a I = 10 lattice. The plots in the left hand column show the
half-filling case N↑ = N↓ = 5, the ones in the right hand column are for N↑ = N↓ = 4. The
interaction parameters for the different rows are V/J = 0, 3, 6, and 9 (from top to bottom). The
bars at the forward edge of each plot represent the excitation spectrum, i.e. the possible values
of Eν0.
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Figure 5. Position of the centroid ΩD(k) of the dynamic density structure factor as function of
k for a two-component Fermi gas with N↑ = N↓ = 5 (a) and N↑ = N↓ = 4 (b), resp., in a I = 10
lattice. Results are shown for repulsive interactions with V/J = 0 (•), 3 (�), 6 (N), and 9 (�).
The points are connected by straight lines to guide the eye.

generates the density excitation gap is more complicated than for the bosonic system, where
it was a simple consequence of the gap in the eigenspectrum.

For systems away from half-filling (right hand column in figure 4), no corresponding
gap develops in the energy spectrum. Similar to the non-commensurate bosonic system, the
dominant strengths remains at low excitation energies independent of the interaction strength
V/J and only a few marginal peaks are shifted to higher ω.

As for the bosonic system, these observations can be quantified in terms of centroid
ΩD(k) of the dynamic density structure factor S D(k, ω). The plots in figure 5 display the
position of the centroid as function of k for repulsive interactions of different strengths. At
half-filling the centroid shifts towards larger energy transfers with increasing V/J. As for
the bosonic system, the k-dependence of ΩD(k) can serve as an indicator for the insulating
state. If k is decreased towards zero, then the centroid tends to zero in the conducting phase.
In the Mott-insulator phase, however, it remains at a finite value which grows linearly with
increasing V/J. Again we point out that this behaviour is non-trivial in the fermionic case, it is
not simply a consequence of the structure of the energy spectrum. Many states exist below the
gap, however, they do not contribute to the dynamic density structure factor. This entails that
the excitation gap, i.e., the minimum energy transfer ω required to excite a density fluctuation,
is significantly larger than the gap in the spectrum of the Hamiltonian.

Away from half-filling (right panel in figure 5) the position of the centroid always tends
towardsΩD(k)/J ≈ 0 for k → 0. This is consistent with our findings for the single-component
Bose gas. Hence, the Mott-insulator leaves a clear and general signature in the dynamic
density structure factor, which is directly accessible to experiment and allows a distinction
from conducting or superfluid phases.

4.2. Attractive interactions

Finally, we address the case of attractive interactions in the two-component Fermi system.
This case is of particular interest in view of pairing and superconductivity in these lattice
systems.

For half-filling the properties of the gas with attractive interactions can be deduced from
the repulsive case on the basis of the spin-density mapping discussed in section 4.1. Its
simplest ramification is that the excitation spectrum of a two-component Fermi system with
attractive interactions V < 0 is identical to a system with a repulsive interaction of strength



Dynamic structure factor of ultracold Bose and Fermi gases 12

Figure 6. Normalised dynamic density structure factor S̄ D(k, ω) (solid lines) and dynamic
spin structure factor S̄ S(k, ω) (dotted lines) for a two-component Fermi gas with attractive
interactions in a I = 10 lattice. The plots in the left hand column show the half-filling case
N↑ = N↓ = 5, the ones in the right hand column are for N↑ = N↓ = 4. The interaction
parameters for the different rows are V/J = 0, −3, −6, and −9 (from top to bottom). The bars
at the forward edge of each plot represent the excitation spectrum.
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Figure 7. Centroid ΩS(k) of the dynamic spin structure factor for a two-component Fermi gas
with N↑ = N↓ = 5 (a) and N↑ = N↓ = 4 (b), resp., and attractive interactions V/J = 0 (•), −3
(�), −6 (N), and −9 (�).

|V |. The dynamic structure factor is also governed by this symmetry: The dynamic density
structure factor S D(k, ω) of a system with attractive interaction is identical to the dynamic spin
structure factor S S(k, ω) for a gas with a repulsive interaction of same magnitude.

The numerical results for the normalised dynamic density structure factor S̄ D(k, ω) of
the two-component fermionic system with attractive interactions are displayed in figure 6
(solid lines). The behaviour of the excitation strength is in stark contrast to the case of
repulsive interactions. With growing attraction the strength is increasingly concentrated
in one or two peaks at very low excitation energies. This effect does not depend on the
filling as the comparison of the half-filling case (left hand column of figure 6) with a system
away from half filling (right hand column) illustrates. The energy spectra are also largely
independent of filling, for both fillings an energy gap appears for sufficiently strong attractive
interactions. Remember, away from half-filling no mapping between density and spin sector
exists anymore. The spectrum exhibits a gap for strong attractive interactions but no gap for
repulsive interactions (cf. lower right hand panels in figures 4 and 6).

The appearance and the physical interpretation of the energy gap is related to pairing of
the fermionic atoms due to the attractive interaction. This relation is revealed by the dynamic
spin structure factor S S(k, ω). As discussed in Ref. [11] for a homogeneous two-component
Fermi gas, contributions to the spin structure factor arise from processes which break the
pairs. Hence, the spin structure factor provides direct information on the pairing gap in the
superconducting state. The dotted lines in figure 6 depict the spin structure factor. It is clearly
seen that with increasing attraction the contributions to S S(k, ω) are shifted towards larger
energy transfers and that no low-lying strength remains. Eventually, as a gap in the energy
spectrum appears, only those states above the gap contribute to the spin structure factor. As
for the fermionic Mott-insulator the absence of low-lying strength implies the vanishing of
the transition matrix elements 〈ΨFF

ν | ρ̂
†
Sk |Ψ

FF
0 〉 for all states below the gap. Notice, the spin-

excitation gap is significantly larger than gap in the energy spectrum and it already appears
for interaction strengths where the spectrum does not yet exhibit a gap.

We can use the centroid ΩS(k) of the dynamic spin structure factor to characterise the
gross features of spin excitations on the basis of sum rules. As for the Mott-insulator phase
we can assess the existence and size of a spin-excitation gap already from the k-dependence
of ΩS(k) without ever calculating excited states. Figure 7 depicts the k-dependence of ΩS(k)
for the two fillings considered previously. Independent of the filling the centroid of the spin
structure factor clearly shows the appearance of the spin-excitation gap already for weakly
attractive interactions. As for the Mott-insulator we can use its behaviour for k → 0 to
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estimate the size of the excitation gap.
At half-filling the centroid of the spin structure factor depicted in panel (a) is identical to

the centroid of the density structure factor for repulsive interactions of same magnitude (cf.
figure 5) by virtue of the spin-density mapping. Away from half-filling this mapping does not
apply and the behaviour of the centroids is completely different.

5. Summary

We have used the dynamic structure factor, a direct experimental observables, to pin-
down signatures of the different zero-temperature quantum phases of single-component Bose
and two-component Fermi gases in optical lattices. The systems are described within
the single-band (Bose-) Hubbard model and we perform an exact diagonalisation of the
Hamiltonian using Lanczos methods. Since we are interested mainly in generic signatures
the computational restriction of this approach to moderate lattice sizes is of minor relevance.
The important benefit of this exact approach is that all regions of the phase diagram can be
addressed on the same footing.

The comparison of the full dynamic structure factor S (k, ω) for different interaction
strengths and fillings exhibits clear signatures of the different quantum phases. The Mott-
insulator phases in the bosonic and fermionic systems are associated with a finite excitation
gap which grows linearly with V/J. That is, excitations in form of density fluctuations are
possible only for energies ω larger than the excitation gap. Whereas the excitation gap in
the bosonic system is directly determined by the gap between ground state and first excited
state of the Hamiltonian, its origin in the two-component Fermi system is more involved.
Many eigenstates of the Hamiltonian are available in the low-ω regime, however, they do not
contribute to the excitation strength since their transition matrix elements for the fluctuation
operator vanish. Hence, a clear distinction between excitation gap (for a particular type of
excitation) and the gap in the eigenspectrum of the Hamiltonian is indispensable.

For the two-component Fermi gas with attractive interactions the dynamic spin structure
factor indicates the onset of pairing between atoms of the different components. Similar to
the density structure factor for the Mott-insulator phase, the spin structure factor exhibits an
excitation gap. No spin fluctuations, which would require the breaking of a pair, are possible
below an energy ω corresponding to the spin excitation gap. This phenomenon is independent
of the total filling — unlike the Mott insulator — but requires equal population of the two
components. The detailed nature of the pairing in the presence of attractive interactions will
be discussed elsewhere.

Most of the physics revealed by the dynamic structure factors is already contained in
integral quantities like the centroid of the strength distribution, which can be evaluated using
sum rules. The knowledge of the ground state alone is sufficient to assess the appearance
and size of excitation gaps. The explicit calculation of the excitation spectrum is required
only if details of the dynamic structure factors are of interest. This paves the way towards
predictions for larger system, e.g., within a Monte Carlo or Density Matrix Renormalisation
Group approach, where the computation of the full excitation spectrum is not feasible.
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