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Da endlich sah ich das Pendel.
Die Kugel, frei schwebend am Ende
eines langen metallischen Fadens,
der hoch in der Wölbung des
Chores befestigt war, beschrieb ihre
weiten konstanten Schwingungen
mit majestätischer Isochronie.
Ich wusste – doch jeder hätte es
spüren müssen im Zauber dieses
ruhigen Atems –, daß die Periode
geregelt wurde durch das Verhältnis
der Quadratwurzel aus der Länge
des Fadens zu jener Zahl π, die,
irrational für die irdischen Geister,
in göttlicher Ratio unweigerlich
den Umfang mit dem Durchmesser
eines jeden möglichen Kreises
verbindet, dergestalt, daß die Zeit
dieses Schweifens einer Kugel von
einem Pol zum anderen das Ergeb-
nis einer geheimen Verschwörung
der zeitlosesten aller Maße war –
der Einheit des Aufhängepunktes,
der Zweiheit einer abstrakten Di-
mension, der Dreizahl von π, des
geheimen Vierecks der Wurzel und
der Perfektion des Kreises. [...]
Die Erde rotierte, doch der Ort, wo
das Pendel verankert war, war der
einzige Fixpunkt im Universum.

Umberto Eco,

Das Foucaultsche Pendel
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Summary

Ultracold atomic gases in optical lattices are an unique toolbox to study various phenom-
ena in strongly correlated quantum systems. Furthermore, they are a perfect realisation
of the Hubbard model. We utilise this model to describe the zero temperature behaviour
of single component bosonic gases, as well as fermion-fermion and boson-fermion mix-
tures. Using an exact diagonalisation of the respective Hamilton matrices via Lanczos
algorithms we are able to compute the groundstate and a few lowest eigenvalues for mod-
erate system sizes. After an introduction and a short historical overview, we provide, in
chapter 2, the physical toolbox needed to approach the problem. Chapter 3 discusses
bosonic systems to get a first impression of the underlying physics. We introduce sev-
eral observables, among these are the condensate fraction, the interference pattern and
the fringe visibility, which are directly accessible in experiments, but also the superfluid
fraction which is an order parameter for the superfluid to Mott-insulator transition. It
turns out that superfluidity has to be clearly distinguished from condensation. Inspired
by recent experiments in the group of Immanuel Bloch, we investigate the influence of
an external trapping potential on the fringe visibilities and present an explanation for
the characteristic kinks. In chapter 4 we use the Hubbard model to describe fermion-
fermion mixtures. Our main focus is on several correlation functions – and therefore
density matrices – in order to provide a detailed insight into two-particle properties in
coordinate as well as in momentum space. In the regime of attractive fermion-fermion
interactions we observe a correlation of particles in coordinate space. This long-range
pair-coherence is accompanied by correlations in momentum space such that particles of
different species and opposite momentum form pairs. For repulsive interactions, where
half-filled systems undergo an insulator transition, the anticorrelations in momentum
space reveal that this behaviour is triggered by a mutual blocking of quasimomentum
single-particle states. As an outlook, chapter 5 combines bosonic and fermionic aspects
and presents an example of a system with mixed quantum statistics. We explore the
rich phase diagram and mark several particular regions that are of quite different nature.
With the help of the two-particle correlations we are able to identify a region where par-
ticles of different species exhibit a spatial separation and a second region where they
tend to occupy the lattice sites alternately. We also point out some major differences to
fermion-fermion systems caused by the mixed statistics.
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Chapter 1

Introduction

In 1924 Satyendra Nath Bose published a derivation of Planck’s law by using statisti-
cal mechanics of an ideal photon gas. His achievement was not to follow the standard
way using statistical independent particles, but independent phase-space cells instead.
Unfortunately, he was not well known in the community by then and the work did not
attain the deserved attention. He approached his friend Albert Einstein, who imme-
diately noticed the potential of that idea and generalised the theory to gases. Within
the same year, Albert Einstein predicted a possible condensation of particles into the
energetically lowest single-particle state – the Bose-Einstein condensation. In supercon-
ductivity, discovered by Heike Kamerlingh Onnes in 1911 in ultracold mercury, Albert
Einstein saw a first hint of an experimental realisation of Bose-Einstein condensation.
No more than 33 years later, in 1957, Bardeen, Schrieffer and Cooper were able to give
a theoretical explanation of superconductivity. It turned out that the condensation of
electron-electron (Cooper) pairs is responsible for the superconducting state in ordinary
superconductors.

The first experimental realisation of a pure Bose-Einstein condensate was achieved in
1995 by Eric Cornell and Carl Wieman (National Institute of Standards and Technol-
ogy, NIST [1]) and Wolfgang Ketterle (Massachusetts Institute of Technology, MIT [2])
using dilute gases of neutral atoms. In the experiment at NIST they used a dilute gas
of 87Rb atoms. The laser-cooled atoms were confined in a magnetic trap. By using a
rf-evaporation cooling technique a temperature of 170 nK was reached and the conden-
sate emerged. Cornell, Wieman and Ketterle received the Nobel Price in 2001. Since
that time much manpower has been spent to develop this interesting field of physics.
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Chapter 1 · Introduction

By now laboratories all over the world are able to produce Bose-Einstein condensates.
The current low temperature record, set by the MIT group, is about 500 pK [3]. As the
simple creation of a BEC was no longer the ultimate goal, one started to examine the
condensate in more detail. For example, one used a laser beam to stir the condensate
and observed the onset of superfluid vortices [4].

Recently, the main focus shifted away from the pure condensates towards strongly corre-
lated boson, boson-fermion, and fermion-fermion systems. By using Feshbach resonances
one can tune the interaction between atoms over a wide range, even switching from at-
tractive to repulsive interactions. In such systems it is possible to observe a BEC-BCS
crossover [5] that is of particular interest in connection with high-temperature super-
conductivity. An alternative approach to strongly correlated systems is the application
of an optical lattice. Those tunable lattice structures produced by counterpropagating
laser beams and loaded with an ultracold gas provide an unique quantum mechanical
toolbox. This environment is the perfect experimental realisation of the Hubbard model.
A groundbreaking experiment was the observation of the superfluid to Mott-insulator
quantum phase transition – predicted by Dieter Jaksch et al. in 1998 [6] and experimen-
tally observed by Markus Greiner et al. in 2001 [7]. The superfluid to Mott-insulator
transition was also observed in a one-dimensional lattice by Thilo Stöferle et al. [8].
Various tools for probing the systems in the different quantum phases have been devel-
oped, ranging form the observation of matter-wave interference patterns [7] to excitation
spectra as a response to lattice modulations [9]. Moreover, different lattice geometries
are considered, even disordered random lattices are under investigation [11].

All these experimental achievements were accompanied by an active theoretical develop-
ment. For example, the Gross-Pitaevskii ansatz was successful in describing pure Bose-
Einstein condensates and superfluid vortices [10]. In the strongly correlated regimes,
i.e., in optical lattices, mean-field calculations are widely used due to their small com-
putational effort and easy handling. There are more sophisticated methods like Monte
Carlo, DMRG and exact diagonalisation techniques that all have assets and drawbacks.
We will use the exact diagonalisation of the Hamilton matrix to obtain groundstates
and their corresponding energies. This method is able to provide exact – within the
framework of the model – results across the whole phase diagram, from the superfluid
state to the Mott-insulating state. However, the disadvantage is that we are restricted
in system size and, therefore, have to consider finite-size effects.
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We use the capabilities of the Hubbard model and the exact diagonalisation of the
resulting Hamilton matrix to describe ultracold bosons as well as fermion-fermion and
boson-fermion mixtures in optical lattices. In chapters 2 and 3 we introduce the relevant
physics and present results for bosonic systems. Furthermore, in chapter 4 we apply
the Hubbard model to fermion-fermion mixtures in order to examine similar observ-
ables, but also to obtain a detailed insight into two-particle correlations in coordinate
as well as in momentum space. It turns out that besides the trivial conducting state at
zero fermion-fermion interaction, there are two more characteristic states. For attractive
interactions a state with nonvanishing conductivity and strong two-particle pairing in
momentum space emerges. In the regime of repulsive interactions a mutual blocking
of quasimomentum states leads to a vanishing conductivity. As an outlook we present
in chapter 5 the application of the Hubbard model to a system with mixed quantum
statistics and point out some major differences to the previously discussed cases. De-
tails on the numerical implementation and the computer codes in general can be found
in appendix A.
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Chapter 2

Periodic Lattices & Hubbard Model

2.1 Lattice & Bloch Theory

Because we are dealing with many-particle systems in periodic lattice potentials, it is
useful to give a brief summary of Bloch’s Theory. We will introduce a suitable basis for
our problem and define a quantity called ‘quasimomentum’. For simplicity we restrict
ourselves to a description in 1D.

Assume a potential V0(x) proportional to sin2(π/a x) which we usually call lattice-
potential or simply lattice. For every periodic potential one can find a translation a

such that any vector from one position in the lattice to another with exactly the same
physical properties is given by R ≡ l · a in which l ∈ N. In our 1D potential that simply
could be a shift from one lattice site to another, implying that a is the smallest nonzero
vector, called lattice vector. The absolute value of the lattice vector is called the lattice
constant or the lattice spacing. Now we define a translation operator TR f(x) ≡ f(x+R)
that shifts any function f(x) by the vector R. Note that this is not an operator acting
on the Hilbert space. In the case of periodic boundary conditions and a lattice of length
L = Ia, where I is the number of lattice sites, one finds the identity

(Ta)I f(x) = f(x+ L) = f(x) or (Ta)I = 1 . (2.1)

The complex roots are

T (j)
a = ei

2π
I

j with j = 0, 1, 2, .., I − 1 . (2.2)

5



Chapter 2 · Periodic Lattices & Hubbard Model

Thus, we find for a shift R through the lattice

TR f(x) = eikjR f(x)

= (T (j)
a )l f(x) = ei(

2π
I

j l) f(x) = eikj a l f(x) . (2.3)

In general kj ≡ 2π
Ia j has the dimension 1/length and R has the dimension length. We

see that the function f(x) is characterised by the index kj . Hence, we use kj to label
the function fkj

(x).

The wavefunction ψ(x) used to describe a particle in the lattice has to obey equation
(2.1). In the following form it does:

ψkj
(x) ≡ eikjx · ukj

(x) . (2.4)

If we require ukj (x) to follow the periodicy of the lattice this is easy to show:

TR ψkj
(x) = ψkj

(x+R) = eikj(x+R) ·ukj
(x+R) = eikj(x+R) ·ukj

(x) = eikjRψkj
(x) . (2.5)

Equation (2.4) is known as Bloch’s theorem.

To get an impression of the physical meaning of kj we consider the lattice potential
to be constant (e.g. zero), so ukj

(x) = c is also constant and ψkj
(x) = eikjx · c becomes

the wavefunction of a free particle. Thus, kj is the analogue to the momentum of a free
particle for a lattice system and will be called quasimomentum. We will use the common
notation qj ≡ kj in the following. Notice, however, that (2.4) is not eigenfunction of the
free momentum operator.

Considering the periodicity of the Hamilton operator we can easily show that it com-
mutes with the translation operator:

TR

(
H(x) ψqj

(x)
)

= H(x+R) ψqj
(x+R) = H(x) ψqj

(x+R) = H(x) TR ψqj
(x) . (2.6)

Commuting operators have the same set of eigenfunctions, so we can write down the
Schroedinger equation of a single particle in a periodic lattice. In order to have a basis
independent notation we will use Dirac’s BracKet notation in the following:

Ĥ
∣∣ ψqj

〉
= Eqj

∣∣ ψqj

〉
, (2.7)

ψqj
(x) =

〈
x | ψqj

〉
, (2.8)

H(x) ψqj
(x) =

〈
x

∣∣ Ĥ ∣∣ ψqj

〉
. (2.9)
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2.2 · Energy Bands

Given that the full set of eigenvectors
∣∣ ψqj

〉
should form a complete basis, but that

there are only a finite number of different quasimomenta qj , there have to be further sets
of orthogonal states with similar qj . They can be distinguished by an additional index i:∣∣ ψ(i)

qj

〉
called the energy band index. All of our calculations are performed within the

first energy band, so we will drop this index when discussing the results. Nevertheless,
it is important to understand the emergence of band structures. The next section will
address this question.

2.2 Energy Bands

Numerical solutions of the single-particle problem in a periodic potential show that the
energy spectra are not continuous but show gaps in a way that the energies of a complete
set of quasimomenta are separated by those gaps. For this reason, one talks about ’en-
ergy bands’. The size of gaps that separate different energy bands are of crucial influence
on conducting properties of the system.

It is clear that the existence of these energy bands has to emerge somehow in the dis-
persion relation of the particles. The model of ’quasi-free’ particles is an easy way to
get a first impression about the dispersion relation of particles in a periodic potential.
The idea is to neglect the effect of the potential on the kinetic energy of particles but to
take Bragg reflection of the Bloch waves due to the lattice layers into account [12]. The
Bragg condition is given by

2 a sin(β) = nλ (2.10)

with the lattice spacing a, the angle of incidence β with respect to the normal of the
layers and the particle’s wavelength λ. In the one-dimensional case β = π/2 and thus
the wavevectors q̃n that fulfil the Bragg condition are

q̃n =
2π
λ

=
π

a
n . (2.11)

Comparing this to the allowed quasimomenta we see that the Bragg condition is fulfilled
for j = I/2:

qj =
2π
aI

j =
π

a
= q̃1 for j =

I

2
. (2.12)

The quasimomenta qj within the interval (−π
a ,

π
a ] define the first Brillouin zone. This

interval is simply the shifted one we already obtained from the complex roots (2.2).

In conclusion, those Bloch functions that satisfy the Bragg condition are assumed to

7
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Figure 2.1: (a) Dispersion relation of a free particle E(k) = k2/2m. (b) Dispersion relation of
a particle in a periodic potential. Within the simple model discussed in the text, the energy
gap Eg at q̃1 is given by the amplitude A of the lattice potential and appears every time the
wavevectors satisfy the Bragg condition.

be no longer propagating but standing waves. The resulting standing-wave wavefunc-
tion might be composed of a superposition of a right and a left-travelling Bloch wave
ψq̃1

(x) with q̃1 = ±π
a . There are two possibilities to compose this standing wave:

ψ+(x) ∝ ei
π
a

x + e−i π
a

x = 2 cos
(π
a
x
)

(2.13)

ψ−(x) ∝ ei
π
a

x − e−i π
a

x = 2i sin
(π
a
x
)
. (2.14)

If the lattice potential is of the form V0(x) = A sin2(π
ax), it immediately follows that

ψ−(x) is much higher in energy than ψ+(x). The energy difference Eg is

Eg =
∫ a

0
V0(x)

(
|ψ−(x)|2 − |ψ+(x)|2

)
dx = A , (2.15)

in which we used a normalisation per lattice spacing a for each wavefunction (2.13) and
(2.14). Evidently, the dispersion relation of our particles in a periodic potential is similar
to the free particle case, except in the vicinity of those wavevectors q̃n that are reflected
because they satisfy the Bragg condition (figure 2.1).

2.3 Wannier Functions

We saw that Bloch functions form – within a particular energy band – a complete set of
functions which build up a basis that describes single particles in a periodic potential.
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2.4 · Many-Particle Hilbert Space & Number Representation

However, for a description of a many-particle system with contact interactions it is con-
venient to have a localised basis.

Formally we use an unitary transformation to obtain a basis with spatial quantum num-
bers ξl instead of quasimomentum quantum numbers qj :

w(x− ξl) ≡ 1√
I

I−1∑

j=0

e−iqjξlψqj
(x) . (2.16)

This transformation leads from the plane-wave-like Bloch functions to functions that
are localised at a particular lattice site l. If we consider the lattice wells to be deep,
the lattice potential around a given lattice site can be approximated by a harmonic
oscillator potential centred at ξl: V0(ξl ± x) ∝ sin2(π

a (al ± x)) ≈ (π2/a2)x2, where a
is the lattice spacing. Therefore, the Wannier functions are to a good approximation
harmonic oscillator ground state wavefunctions

w(x− ξl) ≈ (σ2π)−1/4 e
−(x−ξl)

2

2σ2 . (2.17)

The width parameter σ can be obtained by minimising the energy functional for a given
amplitude of the lattice potential. It will turn out that for a description of the Hubbard
model there is no need for an explicit form of the Wannier functions because we are able
to express the physical properties with the ratio of interaction energy and tunnelling
energy alone.

However, for a direct comparison with ’experimental’ lattices, we would require the
depth and geometry of the lattice potential and the scattering length of the contact
interaction in order to calculate the values for the interaction and the tunnelling en-
ergy. How this can be done will be shown in section 2.6. Obviously a time dependend
description with a varying lattice potential V0(x, t) leads to a time dependent width of
the Gaussion σ(t) and thus to time dependent interactions and tunnelling energies. For
more details, we refer to [31] and [32].

2.4 Many-Particle Hilbert Space & Number

Representation

Because we want to describe more than one particle in a periodic potential we need
a quantum mechanical many-particle formulation. The Hilbert space of a N -particle

9



Chapter 2 · Periodic Lattices & Hubbard Model

system HN is given by the direct product of the respective single-particle Hilbert spaces
H1 [16]

HN ≡ H1 ⊗H1 ⊗ . . .⊗H1 . (2.18)

The elements of thatN -particle Hilbert space are called product states. They are a direct
product of N single-particle states, with collective indices νi that contain all quantum
numbers characterising the state of particle i.

∣∣ ν1 ν2 . . . νN

〉 ≡ ∣∣ ν1

〉⊗ ∣∣ ν2

〉⊗ . . .⊗ ∣∣ νN

〉
. (2.19)

This particular N -particle Hilbert space, and its elements, know nothing about symme-
try or indistinguishability. To allow for this we define an operator Ŝ that projects on the
symmetric subspace HN

S of the N -particle Hilbert space for the description of bosonic
particles, and an operator Â that projects on the antisymmetric subspace HN

A for the
description of fermionic particles. For the corresponding symmetrisized and antisym-
metrisized many-body states we use the following notation:

∣∣ ν1 ν2 . . . νN

〉
s
∝ Ŝ ∣∣ ν1 ν2 . . . νN

〉
, (2.20)

∣∣ ν1 ν2 . . . νN

〉
a
∝ Â ∣∣ ν1 ν2 . . . νN

〉
. (2.21)

In order to explain how these operators work, we will present an example and in addition
introduce the number representation of many-body states.

The number representation simply uses the occupation numbers {n1, n2, . . . , nI} of the
individual lattice sites to characterise the single-particle Wannier functions appearing
in a symmetric (or antisymmetric) many-particle product state. Those states are com-
monly called Fock states for short. To give an example of a Fock state, consider three
bosonic particles

∑I
l=1 nl = N = 3 on a lattice with four lattice sites I = 4. Two

particles shall occupy the first site and the third particle the fourth site. The Wannier
functions localised at site l are

∣∣ wl

〉
. The many-body wavefunction in coordinate space

ψ(x1 x2 x3) is a symmetrised product of the single-particle wavefunctions

ψ(x1 x2 x3) =
〈
x1 x2 x3 | {2, 0, 0, 1}

〉

∝ 〈
x1 x2 x3

∣∣ Ŝ ∣∣ w1w1w4

〉

∝ w(x1 − ξ1)w(x2 − ξ1)w(x3 − ξ4)

+w(x1 − ξ1)w(x3 − ξ1)w(x2 − ξ4) + w(x3 − ξ1)w(x2 − ξ1)w(x1 − ξ4) .

The antisymmetrisation operator Â we have to use to describe fermionic many-body
states generates a minus sign each time two particles are exchanged. Hence, the above

10



2.4 · Many-Particle Hilbert Space & Number Representation

Fock state would be zero because of the double occupancy of lattice site 1. We can
modify the states by applying creation and annihilation operators

â†l
∣∣ {n1, n2, ..., nl, ..., nI}

〉 ≡ √
nl + 1

∣∣ {n1, n2, ..., nl + 1, ..., nI}
〉

(2.22)

âl

∣∣ {n1, n2, ..., nl, ..., nI}
〉 ≡ √

nl

∣∣ {n1, n2, ..., nl − 1, ..., nI}
〉
. (2.23)

Their commutation relations are:

[âl, â
†
m] = δlm for bosons and [âl, â

†
m]+ = δlm for fermions . (2.24)

The nl describe the occupation numbers of the l-th lattice site and their sum must be
the total number of particles

∑
nl = N . The occupation number operator of the l-th

lattice site n̂l is defined as:

n̂l ≡ â†l âl . (2.25)

A Fock state is one possible distribution of particles over the different lattice sites.
By successive application of creation operators â†l we can construct any Fock state out
of the vacuum state

∣∣ {n1, n2, ... , nI}
〉 ≡

I∏

l=1

1√
nl!

(â†l )
nl

∣∣ ∅ 〉
. (2.26)

The sequence of the indices l = 1, 2, ... , I has to be in a predefined – usually ascending
– order because the symmetry properties are now hidden in the commutation relations.
In order to point out the influence of anticommutation relations, let us consider a single
Fock state of a fermionic system

∣∣ {0, 1, 1, 1, ...} 〉
and a pair of operators, usually

appearing in the calculation of density matrices, acting on it

â†1 â3

∣∣ {0, 1, 1, 1, ...} 〉
= â†1 â3 â†2 â

†
3 â

†
4 ...

∣∣ ∅ 〉

= −â†1 â3 â†3 â
†
2 â

†
4 ...

∣∣ ∅ 〉

= −â†1 (1− â†3â3) â
†
2 â

†
4 ...

∣∣ ∅ 〉

= −â†1 â†2 â†4 ...
∣∣ ∅ 〉

.

The minus sign would not appear if we did not claim an ordered composition of the Fock
states (2.26). We have to keep this in mind otherwise strange things will happen. They
will be mentioned during the discussion of fermion-fermion systems in section 4.1.
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Chapter 2 · Periodic Lattices & Hubbard Model

2.5 Operators in Second Quantisation

We can use the creation and annihilation operators to reformulate any operator, e.g.,
those that contribute to the Hamiltonian, in the language of Second Quantisation [16].
A single-particle operator acting on a N -particle Hilbert space can be written as

T̂ ≡
N∑

i=1

t̂i , (2.27)

t̂i ≡ 1̂⊗ 1̂⊗ .. t̂︸︷︷︸
i

..⊗ 1̂ .

For example, t̂i could be the one-particle kinetic energy operator and thus T̂ would be
the kinetic energy of the entire system. Using the completeness relation, one finds:

T̂ = 1̂ T̂ 1̂

=
∑

ν1..νN

∑

ν′1..ν′N

∣∣ ν1..νN

〉 〈
ν1..νN

∣∣ T̂ ∣∣ ν ′1..ν′N
〉 〈

ν ′1..ν
′
N

∣∣ (2.28)

Exemplarily we discuss a fermionic system and therefore project onto the antisymmetric
N -particle Hilbert space

Â T̂ Â = N/N !
∑

ν2..νN

∑

νν′

∣∣ ν, ν2..νN

〉
a

〈
ν

∣∣ t̂ ∣∣ ν ′ 〉 a

〈
ν ′, ν2..νN

∣∣ (2.29)

=
∑

ν2<..<νN

∑

νν′

∣∣ ν, ν2..νN

〉
a

〈
ν

∣∣ t̂ ∣∣ ν ′ 〉 a

〈
ν ′, ν2..νN

∣∣ . (2.30)

Using the creation (2.22) and annihilation operators (2.23) with respect to the single
particle basis

∣∣ ν 〉
one can cast (2.28) into the form that is known as Second Quanti-

sation:
T̂ =

∑

νν′

〈
ν

∣∣ t̂ ∣∣ ν ′ 〉 â†ν âν′ . (2.31)

Again the symmetry properties are hidden in the commutation relations (2.24).

For a two-body operator the procedure is essentially the same. V̂ij describes the in-
teraction between particles i and j

V̂ =
1
2

N∑

i,j=1

V̂ij .

And in Second Quantisation

V̂ =
∑

ν1<ν2

∑

ν′1<ν′2

a

〈
ν1ν2

∣∣ v̂ ∣∣ ν ′1ν ′2
〉
a
â†ν1

â†ν2
âν′2

âν′1
. (2.32)
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2.6 · The Hubbard Model

2.6 The Hubbard Model

In 1998, Peter Zoller proposed to apply the Hubbard model to ultracold gases in optical
lattices1 [17]. Despite its simple structure this model is capable to reproduce most of the
features of ultracold gases in optical lattices, e.g., the superfluid to Mott-insulator phase
transition. Before introducing the Hubbard model, we have to make several remarks:
All of our calculations are done for T = 0 K and only the lowest energy band is occupied.
Therefore, the interaction energy V (2.41) has to be small enough not to populate higher
states.

The Hamiltonian of a sinusoidal lattice potential V0(x), a possible external magnetic
trapping potential VT (x) and a two-particle interaction V (x − x′) in Second Quantisa-
tion reads:

Ĥ =
∫
dx Ψ̂†(x)

(
− ~2

2m
∇2 + V0(x) + VT (x)

)
Ψ̂(x) (2.33)

+
∫
dx dx′ Ψ̂†(x) Ψ̂†(x′)V (x− x′) Ψ̂(x′)Ψ̂(x) . (2.34)

The field operators can be expressed in terms of the creation and annihilation operators
with respect to the Wannier functions

Ψ̂†(x) =
I∑

l=1

â†lw
∗(x− ξl) , (2.35)

Ψ̂(x) =
I∑

l=1

âlw(x− ξl) . (2.36)

The Wannier functions can be chosen to be real, and the two-particle interaction can
be written as a contact interaction V (x− x′) = 4πas

2m δ(x− x′) with scattering length as.
Thus, the Hamiltonian with respect to the occupation number representation reads:

Ĥ =
I∑

l,m=1

∫
dx â†lw(x− ξl)

(
− ~

2

2m
∇2 + V0(x) + VT (x)

)
âmw(x− ξm) (2.37)

+
4πas

2m

I∑

l,m,n,o=1

∫
dx â†lw(x− ξl) â†mw(x− ξm) ânw(x− ξn) âow(x− ξo) . (2.38)

The Hubbard Hamiltonian is composed of three major parts. We will see this if we split
the first integral of the Hamiltonian (2.37) – that we call J̃lm for the moment – into two

1He received the Max-Planck-Medal for his work in 2005
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Chapter 2 · Periodic Lattices & Hubbard Model

parts. One that includes terms of the sum with l 6= m and is called J{lm}, the other that
terms those parts with l = m is referred to as εl=m

J̃lm ≡ J{lm} + εl=m .

One can see that J{lm} describes the tunnelling of particles between different lattice
sites. The tunnelling energy J{lm} is sometimes called the Josephson2 energy

J{lm} ≡
∫
dx w(x− ξl)

(
− ~

2

2m
∇2 + V0(x) + VT (x)

)
w(x− ξm) for l 6= m . (2.39)

Although the trapping potential term VT (x) is included, its contribution to the tunnelling
energy can be neglected for small distance tunnelling processes because its variation is
negligible on the scale of the lattice spacing. The physical meaning of J{lm} is not obvi-
ous. If we consider J{lm} to be the dominant term in (2.42), particles are free to tunnel
through the lattice, thus they are highly delocalised and the system has small kinetic
energy. In the case of Vl (2.41) being the dominant term, tunnelling is suppressed and
particles are strongly localised causing large kinetic energy contributions. This is the
reason why J{lm} enters with a minus sign to the Hubbard Hamiltonian. Using the
argument that the overlap of wavefunctions at adjacent sites is small and therefore the
overlap to non-adjacent sites is negligible, we will take into account nearest neighbour
hopping only (|l −m| = 1). Considering our lattice to be translatorial invariant, J{lm}
will no longer have indices.

The εl=m term describes an external trapping potential, e.g., a magnetic dipole trap
needed to confine the system. The kinetic energy and the lattice potential are equal at
each lattice site and constitute a constant energy offset ∆E for l = m. We can set ∆ E
to zero without restrictions3

εl ≡ εl=m =
∫
dx VT (x)|w(x− ξl)|2 (2.40)

+
∫
dx w(x− ξl)

(
− ~

2

2m
∇2 + V0(x)

)
w(x− ξl)

︸ ︷︷ ︸
=∆E

.

Note that the εl term keeps hold of its indices because it depends on the position.

2Josephson junctions describe two superconducting areas, separated by a normal conducting area that

can be overcome by tunnelling. One might consider the Hubbard model as a line-up of such elements.
3We used this ∆E to solve the eigensystem in Mathematica because Mathematica’s eigenproblem

solver cannot compute the smallest algebraic eigenvalues but the smallest absolute eigenvalues. The

Lanczos algorithm used for all calculations shown here does not suffer from this restriction.
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VT

0V

J

Energy

x

V

Figure 2.2: Illustration of the parameters of the Hubbard Model. V0 is the lattice potential, J is
the tunnelling energy, V the two-particle interaction energy, and VT a possible external trapping
potential.

The third contribution comes from is the last part of the Hamiltonian (2.38), a two
particle interaction energy Vlmno. Due to the weak penetration of wavefunctions into
adjacent lattice sites we assume in good approximation an on-site contact interaction
that is proportional to the probability of finding two particles at the same lattice site l
[6]. as is the scattering length of the contact interaction

Vl ≡ 4πas

2m

∫
dx |w(x− ξl)|4 . (2.41)

In case of a translationally invariant lattice Vl is also independent of the site index.

The whole situation is sketched in figure 2.2. The dashed line should denote the ex-
ternal trapping potential but is disproportionate. In reality it would show no significant
gradient on the scale of two lattice sites.

To recapitulate, the keystone of the Hubbard Hamiltonian is that all relevant physi-
cal properties like lattice geometry and scattering length can be parametrised by the
ratio of interaction and tunnelling energy V/J and the trapping potential term εl. We
will illustrate this by two examples. First let us assume a shallow lattice potential. The
tunnelling energy is large because particles are affected little by the potential. The in-
teraction energy is small because the Wannier functions broaden and thus the integral
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Chapter 2 · Periodic Lattices & Hubbard Model

over the 4th power of |w(x − ξl)| becomes small. That means V/J is small. A deep
lattice potential causes a suppression of tunnelling but also Wannier functions of a small
width. So the integral over |w(x − xl)|4 and thus V is larger than in the former case.
Therefore V/J is large.

Plugging all these terms together leads to the Hubbard Hamiltonian in second quan-
tisised form:

Ĥ = −J
I∑

l=1

(â†l+1âl + h.a.) +
I∑

l=1

εln̂l +
1
2
V

I∑

l=1

n̂l(n̂l − 1) . (2.42)

By an exact diagonalisation of the Hamilton matrix we obtain a few lowest normalised
eigenvectors ~C(ν) and eigenvalues Eν

∣∣ ψν

〉
=

D∑

α=1

C(ν)
α

∣∣ {n1, ..., nI}α

〉
, (2.43)

Ĥ
∣∣ ψν

〉
= Eν

∣∣ ψν

〉
. (2.44)

The Hamilton matrix is composed of the on-site energy matrix elements on the diagonal
and the hopping elements off the diagonal. D is the dimension of the matrix, i.e., the
number of all possible Fock states. The eigenproblem to be solved is of the form:

D∑

α=1

〈 {n1, ..., nI}β

∣∣ Ĥ ∣∣ {n1, ..., nI}α

〉
C(ν)

α = Eν C
(ν)
β . (2.45)

Unfortunately, the dimension severely restricts the lattice sizes and particle numbers
that can be handled. Some combinatorics leads to the formulas to calculate the basis
dimension

D =
(N + I − 1)!
N !(I − 1)!

for bosons , (2.46)

D =
I!

N !(I −N)!
for fermions . (2.47)

A system of 12 bosons on 12 lattice sites has D = 1352078 possible Fock states. Fortu-
nately, the Hamilton matrix is very sparse so we can employ powerful Lanczos algorithms
to solve the eigenproblem. Our limitation is not so much CPU power but memory. A
single eingenvector of the 12-12-b system stored in double precision uses about 10MB
of memory. The Lanczos algorithm allocates about 15 times this memory. Already the
dimension of a 14-14-b system is about D ≈ 2 · 107. So we would need more than 2GB
memory for the diagonalisation.
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2.7 · Density Matrices

2.7 Density Matrices

Due to the fact that we will need density matrices in different contexts, we dedicate a
separate section to them. We start with the formal definition and then motivate why
they are important for our studies.

Let
∣∣ ψν

〉
be an eigenstate of our system as defined in (2.44). In the following discussion

we will use a short form for the number basis
∣∣ φα

〉 ≡ ∣∣ {n1, ..., nI}α

〉
. The density

operator ρ̂ of a pure (ground)state is [15]

ρ̂ ≡ ∣∣ ψ0

〉 〈
ψ0

∣∣ . (2.48)

The elements of the onebody-density matrix – which is sometimes called first reduced
density matrix – ρ(1)

ll′ are defined as:

ρ
(1)
ll′ ≡ Tr

(
ρ̂ â†l′ âl

)

=
D∑

α=1

〈
φα | ψ0

〉 〈
ψ0

∣∣ â†l′ âl

∣∣ φα

〉

=
D∑

α=1

〈
ψ0

∣∣ â†l′ âl

∣∣ φα

〉 〈
φα | ψ0

〉

=
〈
ψ0

∣∣ â†l′ âl

∣∣ ψ0

〉
. (2.49)

This means we annihilate a particle at lattice site l, create it at site l′ and look for the
overlap with the original state. The diagonal elements l = l′ are simply the occupation
numbers. The one-body density matrices are not capable of representing more than
single-particle information.

In case we want to probe two-particle features we have to resort to two-body density
matrices. If we are dealing with two different particle species, the matrix consists of four
blocks. Two blocks connect each species with itself and two symmetric ones mutually
connect species with the other. We introduce the latter only. This two-body density
matrix in number representation has operators âl, â

†
l acting on species 1 and operators

b̂l, b̂
†
l acting on species 2. The corresponding state will be introduced in the discussion

of fermion-fermion systems (4.2). So we define the elements of the two-body density
matrix:

ρ
(2)
ll′,mm′ ≡ Tr

(
ρ̂ â†l b̂

†
l′ b̂m âm′

)

=
〈
ψ0

∣∣ â†l b̂†l′ b̂m âm′
∣∣ ψ0

〉
. (2.50)
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Chapter 2 · Periodic Lattices & Hubbard Model

To allow for studies of features in momentum space, we will need the quasimomentum
density matrices. Thus we have to transform the creation and annihilation operators
similar to the unitary transformation from Bloch functions to Wannier functions (2.16).

From Bloch’s theorem we know that the dimensionless quasimomenta in our periodic
potential with cyclic boundary conditions are of the form qj = 2π

I j. So we obtain the
transformed operators [22]:

ĉ†qj
≡ 1√

I

I∑

l=1

e−iqj lâ†l (2.51)

ĉqj ≡ 1√
I

I∑

l=1

eiqj lâl . (2.52)

For simplicity we will drop the index of qj in the following and denote q2 = 2π
I 2 by

q = 2, for example. The quasimomentum one-body density matrix then has the form

ρ̃
(1)
qq′ =

〈
ψ0

∣∣ ĉ†q′ ĉq
∣∣ ψ0

〉
(2.53)

=
1
I

〈
ψ0

∣∣
( I∑

l′=1

e−i q′ l′ â†l′
)( I∑

l=1

ei q lâl

) ∣∣ ψ0

〉
(2.54)

=
1
I

〈
ψ0

∣∣
I∑

l′,l=1

(
e−i q′ l′ â†l′ · ei q lâl

) ∣∣ ψ0

〉
(2.55)

=
1
I

〈
ψ0

∣∣
I∑

l′,l=1

(
ei (ql−q′l′)â†l′ âl

) ∣∣ ψ0

〉
(2.56)

=
1
I

I∑

l′,l=1

ei (ql−q′l′)ρ
(1)
ll′ . (2.57)

This means that we annihilate a particle with quasimomentum q and create one with q′.
Keeping in mind that our Hamiltonian is invariant under translation and thus the total
(quasi)momentum is conserved, we immediately see that the quasimomentum one-body
density matrix cannot have nonvanishing off-diagonal elements. The diagonal elements
are again the occupation numbers nq but in quasimomentum space now

ρ̃
(1)
qq′ = δqq′ nq . (2.58)
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In the same manner we define the two-body quasimomentum density matrix:

ρ̃
(2)
qq′,QQ′ =

1
I2

〈
ψ0

∣∣
( I∑

l=1

e−i q lâ†l
)( I∑

l′=1

e−i q′ l′ b̂†l′
)( I∑

m′=1

eiQ
′m′

âm′
)( I∑

m=1

eiQmb̂m

) ∣∣ ψ0

〉

=
1
I2

〈
ψ0

∣∣
I∑

l,l′,m,m′=1

e
2πi
I

(Q′m′+Qm−ql−q′l′) â†l b̂
†
l′ âm′ b̂m

∣∣ ψ0

〉

=
1
I2

I∑

l,l′,m,m′=1

e
2πi
I

(Q′m′+Qm−ql−q′l′) ρ
(2)
ll′,mm′ . (2.59)

Now let us focus on the physics of these objects. The diagonal elements are easy to
understand. In the number representation, those of the one-body density matrix are the
mean occupation numbers of the corresponding lattice sites. In an periodic potential
without an external trapping potential they all must equal to the filling factor N/I.
For the two-body density matrix this is different. If the interaction strength between
the particles is attractive they will tend to occupy the same lattice site and thus the
inter-species diagonal matrix elements will be larger than in case of repulsive interaction
for which particles avoid the company of others.

The off-diagonal elements do not have such an illustrative characteristic. In a perfect
condenstate for example all entries of the one-body density matrix in number represen-
tation equal 1. This reflects an intrinsic feature of Bose-Einstein condensation because
particles that participate in condensation lose their individuality so the wavefunction
cannot contain spatial information about those particles.

This characteristic of non-vanishing off-diagonal elements is called ’Off-Diagonal Long-
Range Order’ (ODLRO). The concept of ODLRO was introduced in a paper by Yang
[25]. He proposes that the onset of ODLRO in the n-body density matrices ρ(n) such
as the one-body ρ(1) and two-body density matrices ρ(2) leads to a new thermodynamic
phase of the system. The conventional Bose-Einstein condensation is a form of ODLRO
in ρ(1). There is another but equivalent criterion for ODLRO, the existence of a macro-
scopic eigenvalue λn of the n-body density matrix ρ(n). We will try to motivate this
equality. We use the inverse unitary transformation to obtain ρ(1) in number represen-
tation. During the discussion of the quasimomentum one-body density matrix we saw
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Chapter 2 · Periodic Lattices & Hubbard Model

that it only has off-diagonal elements equal zero (2.58). So the sum reduces to

ρ
(1)
ll′ =

1
I

∑
q

nq e
i q (l′−l) . (2.60)

The distribution of the quasimomentum occupation numbers is in general given by either
Bose or Fermi statistics. Because we work at T = 0K we use our knowledge that at
large interaction strengths particles are highly located in coordinate space and therefore
broad distributed in momentum space. Thus all nq contribute with small values. In the
thermodynamic limit this leads to

ρ
(1)
ll′ −→ 0 as |l′ − l| −→ ∞ . (2.61)

In our finite systems we have to soften this criterion a little. As we are restricted in
size it is impossible perform the thermodynamic limit and thus the off-diagonal elements
always remain finite but are orders of magnitude smaller than values near the diagonal
in the regime of repulsive interactions.

If we consider a fraction of particles occupying the lowest single particle state, e.g.,
nq=0 = αN we find

ρ
(1)
ll′ −→

αN

I
as |l′ − l| −→ ∞ . (2.62)

The macroscopically occupation of the lowest single-particle energy state is the defini-
tion of a Bose-Einstein Condensate [14]. Now let us start conversely and show that the
existence of a macroscopic eigenvalue leads to ODLRO.

From Jordan’s law we know that every symmetric matrix can be decomposed in a sum
over terms consisting of eigenvalues, normalised eigenvectors and their hermitian ad-
joins. We use this to decompose ρ(1)

ll′ and sort the terms with respect to the magnitude
of the eigenvalues. λ1 = αN shall be the largest eigenvalue and Φl the corresponding
eigenvector. %ll′ shall contain the residual terms

ρ
(1)
ll′ = αNΦl′Φ

∗
l + %ll′ . (2.63)

Considering the eigenfunctions Φl – called ’natural orbitals’ – have to reflect the peri-
odicy of the lattice, what is also shown in figure 4.1, and are therefore normalised with
a factor proportional 1/

√
I we directly obtain equation (2.62).

The smallest n for which ODLRO appears in the n-body density matrix ρ(n) charac-
terises a ’basic group’ of n particles that exhibit ODLRO. For example, in BCS theory
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of superconductivity the basic group is made up of two electrons [25]. The largest
eigenvalue of the n-body density matrix is usually denoted λn. In chapter 3 we will
use the largest eigenvalue λ1 of the one-body density matrix ρ(1) as the criterion for
Bose-Einstein condensation.
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Chapter 3

Single-Component Bose Gases

As a simple introduction to the applications of the Hubbard model, we will start with
some basic observables and – step by step – learn more about the physics of ultracold
atomic gases in optical lattices. All following calculations were performed for a commen-
surate system with I = 10 lattice sites and N = 10 bosons that has a basis dimension of
D = 92378 and will be called a ‘10-10-b’ system, and an incommensurate 10-9-b system
with a basis dimension D = 48620. We employ periodic boundary conditions and no
external trapping potential.

3.1 Simple Observables

Once we have obtained the groundstate (2.44), we can compute various observables
directly. The simplest one is the mean occupation number [19]

n ≡ nl =
〈
ψ

∣∣ n̂l

∣∣ ψ 〉
. (3.1)

It is obvious that the mean occupation number is constant nl = N/I for lattice sites
due to the translatorial symmetry of the lattice. This would be different if we use boxed
boundary conditions or an external trapping potential.

Depending on the interaction strength, there are different possible compositions of the
eigenstate (2.44) that lead to the same mean occupation number. A quantity that is able
to observe differences in these compositions is the fluctuation σ of the mean occupation
number [19]

σ2 ≡ 〈
ψ

∣∣ n̂2
∣∣ ψ 〉− 〈

ψ
∣∣ n̂ ∣∣ ψ 〉2

. (3.2)
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Figure 3.1: Plot of fluctuation (a) and maximum coefficient (b) as function of the interaction
strength. The solid line shows results for commensurate filling (10-10-b) and the dashed line for
incommensurate filling (10-9-b).

In the occupation number representation the fluctuation is closely related to the largest
coefficient C2

max in the expansion of the ground state (2.44) in terms of Fock states [19]

C2
max ≡ max(C2

α) . (3.3)

Although it is not an experimental observable, we are able to analyse the behaviour of
the largest coefficient under varying interaction strengths. Together the fluctuation and
the largest coefficient give a first impression of the underlying structure of the ground
state.

The numerical results of the fluctuations and the maximum coefficients for varying in-
teraction strength V/J are shown in figure 3.1. For small interaction strengths, the
system consists of a superposition of many Fock states with different occupation num-
bers at the individual lattice sites. Thus, there is no preferred Fock state and so C2

max

is small whereas fluctuations are large. With increasing interaction strength, the Fock
states that have only a few atoms per site become energetically more favourable. Hence
C2

max increases and σ decreases. At large interaction strengths one might expect the
commensurate filled system to be made up of only the Fock state that has one atom
per lattice site. However, one has to consider that the hopping term of the Hubbard
Hamiltonian (2.39) always connects this particular state with those that have one unoc-
cupied and one doubly occupied site. This is why fluctuations are not fully suppressed
at large interaction strength and remain finite even within the Mott-insulating phase.
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The incommensurate filled system has 10 possibilities to place the hole and thus the
value of C2

max at high interaction strength is about 0.1 times the corresponding value of
the commensurate filled system.

The major problems of our approach, i.e., calculating exact solutions of the Hamil-
tonian matrix, are finite size effects due to the consequential limitation in system sizes.
To provide an insight into those effects we would have to perform our calculations for
quantitative different but qualitative equal systems, e.g. 8-8-b, 10-10-b and 12-12-b for
commensurate filling. This was done in [19]. The mean fluctuation barely suffers finite
size effects because it is a local quantity that is evaluated at a single lattice site. Ac-
tually, its qualitative behaviour does not depend crucially on the filling rate as can be
seen in figure 3.1. But for the same reason it does not provide much information about
macroscopic properties of the system.

3.2 Condensate Fraction

A macroscopic observable is the condensate fraction, i.e., the fraction of particles that
undergo Bose-Einstein condensation. In the standard picture, particles that participate
in condensation are those that occupy the lowest single-particle state [14]. However,
starting from the many-body groundstate (2.44), it is a non-trivial task to identify a
possible Bose-Einstein condensate and extract the condensate wavefunction. But there
is a possibility to obtain the single particle states and their occupation numbers.

Following the idea of Penrose, Onsager [24] and Yang [25], a Bose-Einstein conden-
sate is present if one ‘natural orbital’ is macroscopically occupied. The corresponding
eigenvalue gives the number of condensed particles Nc. The natural orbitals are the
eigenvectors of the one-body density matrix ρ(1) (2.49). Thus, we can identify its largest
eigenvalue with the number of condensed particles λ1 = Nc. In terms of ODLRO this
implies that if λ1 is of the order of N , single particles form a basic group (section 2.7).
One can show that in perfect lattices the natural orbitals satisfy Bloch’s theorem and
are therefore single-particle states [13]. Obviously the quasimomentum zero state is the
lowest single-particle state. Figure 4.1 shows the numerical results of the eigenvectors of
the one-body density matrix and reveal that they are indeed Bloch functions. In order
to obtain a size-independent quantity, we define the condensate fraction [19]:

fc ≡ Nc/N = λ1/N . (3.4)
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Figure 3.2: Plot of the condensate fraction as function of the interaction strength. The solid
line corresponds to a commensurate 10-10-b system and the dashed line to an incommensurate
10-9-b system.

We immediately see that in finite systems there is always a finite condensate fraction.
The normalisation of the one-body density matrix Trρ(1)

ll′ = N implies that there have
to be eigenvalues larger or at least equal to N/I and therefore fc ≥ 1/I. This is a first
indication, that dealing with macroscopic observables, we have to take care of finite size
effects.

We saw in section 2.7 that the existence of a macroscopical eigenvalue of the one-body
density matrix is equivalent to an intrinsic feature of a Bose-Einstein condensate, the
existence of ‘off-diagonal long range order’ (2.60). That means

ρ
(1)
ll′ 6= 0 for |l′ − l| → ∞ . (3.5)

In a demonstrative view this fact represents the delocalisation of a single particle within
the condensate. The depletion of the condensate fraction as function of the interaction
strength V/J is plotted in figure 3.2. The stronger the interaction is, the more the
condensate fraction decreases, but as mentioned, remains finite even for large interaction
strengths. The fringe visibility to be introduced next will point out that increasing
interaction strength forces particles to successively occupy larger quasimomentum states.
Hence, in the case of large interaction strengths, the occupation number of the lowest
single particle state is always close to one. This leads to a higher condensate fraction
for incommensurate filled systems.
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3.3 Interference Pattern and Fringe Visibility

The following two observables are of particular interest, because they are directly ex-
perimental accessible. The matter-wave interference pattern is one of the most popular
pictures (figure 3.3) when looking for informations about BEC on lattices. This ‘bor-
rowed’ picture form Immanuel Bloch’s group shows interference peaks of a released atom
cloud. In the superfluid region, there are sharp interference patterns whereas they vanish
in the Mott-insulating state. For detailed information we refer to [7]. In their experiment
as well as in our calculations the depletion of the condensate is driven by particle-particle
interactions and not by temperature so it is rather a quantum phase transition than a
thermal phase transition. This is the definition of a Mott-insulating state.1 Unfortu-
nately, in an all-solid it is not possible to distinguish influences of electron-electron,
electron-ion and other interactions leading to insulating states. But with the artificial
crystals made of optical lattices one succeeded to examine pure Mott-insulator transi-
tions.

After releasing the atoms from the lattice, the intensity of the matter-wave at a point x
can be written as

I(x) ≡ 〈
ψ

∣∣ Â†(x) Â(x)
∣∣ ψ 〉

. (3.6)

Since we are not interested in the spatial shape of the interference pattern the amplitude
operator Â(x) depends on the phase difference φl(x) between site l and the observation
point x only,

Â(x) ≡ 1√
I

I∑

l=1

eiφl(x) âl . (3.7)

Considering microscopic distances between the lattice sites and a macroscopic distance
from the lattice to the observation point, we might neglect the phase shift coming from
the spatial alignment of the lattice sites and assume a constant phase shift between
adjacent sites δ = φl+1(x) − φl(x). Using this far-field limit, we obtain the following
expression for the matter-wave interference pattern [20]:

I(δ) =
1
I

I∑

l,l′=1

ei(l−l′)δ 〈
ψ0

∣∣ â†l′ âl

∣∣ ψ0

〉
=

1
I

I∑

l,l′=1

ei(l−l′)δ ρ
(1)
ll′ . (3.8)

The latter expression is similar to the transformed one-body density matrix, i.e., the
density matrix in quasimomentum representation (2.51). However, we scan continu-

1Sir Nevill Mott received the Nobel Prize (with P.W. Anderson and J.H. van Vleck) for his work on

electron-electron properties in various materials in 1977.
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Figure 3.3: Experimental interference pattern of an atom cloud after release from the lattice, in
the superfluid phase (left) and Mott phase (right). The picture was obtained by Immanuel Bloch’s
group [7]. Source: http://www.physik.uni-mainz.de/quantum/bec/gallery/mottadditional1.jpg

ously through the phase difference δ. For those δ that are integer multiples of 2π/I,
I(δ) corresponds to the quasi-momentum occupation number nq (2.58).

The numerical results presented in figure 3.4 show that an increasing interaction strength
consequently leads to an increasing occupation of nonzero quasimomenta. This can be
understood in terms of uncertainty. In the noninteracting regime we saw that the ground-
state (2.44) is a superposition of many Fock states with different occupation numbers ni

at each site. The occupation number strongly fluctuates, hence particles are delocalised
throughout the lattice. Therefore they are peaked in momentum space. Approaching
larger interactions the fluctuation decreases and the occupation numbers become more
and more fixed close to the mean occupation number n. Thus the wavefunction in
momentum space broadens. In the limit of infinite interaction strength and for com-
mensurate filling all quasimomenta are occupied with one particle and the interference
pattern vanishes.

28



3.4 · Superfluid Fraction

0 0.2 0.4 0.6 0.8 1
δ/2π

0

2

4

6

8

10

.

I
(δ

)

(a)

0 5 10 15 20
V/J

0

0.2

0.4

0.6

0.8

1

.

ν

(b)

Figure 3.4: (a) shows the intensity of the matter wave interference pattern for V/J = 0 (solid),
V/J = 5 (dotted) and V/J = 10 (dashed) as function of the phase difference for the com-
mensurate filling. (b) shows the fringe visibility as function of the interaction strength for the
commensurate filling (10-10-b, solid line) and the incommensurate filling (10-9-b, dashed line).

A directly related quantity is the visibility ν of the interference fringes, defined as [20]

ν ≡ Imax − Imin

Imax + Imin
. (3.9)

Given that in our case Imax = I(0) and Imim = I(π) – corresponding to q = 0 and
q = ±5 respectively – the visibility provides information about the composition of oc-
cupation numbers in momentum space. As depicted in figure 3.4 it is one, if only
the quasimomentum zero state is occupied and decreases with increasing interaction
strength, i.e., successive occupation of higher quasimomentum states.

3.4 Superfluid Fraction

Another interesting quantity is the superfluid fraction fs. It is an order parameter of the
superfluid to Mott-insulator phase transition that was predicted by Fisher et al. in 1989
[26] and has been experimentally observed by Greiner et al. in 2002 [7]. The definition of
superfluidity is directly related to flow properties. A demonstrative approach is the two
fluid picture also used in the description of superfluid Helium (HeI and HeII). Consider
we put a tube around our lattice and pull it in one direction, the normal fluid component
is affected and follows the drag whereas the superfluid part stays at rest. In the frame
of the moving tube, the superfluid part gains kinetic energy and via its velocity we
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can derive an expression for the superfluid fraction. To induce the flow we could apply
– for a given time ∆t – a linear external potential V̂ = F x̂ to our groundstate to
generate a directed momentum p. This can be written as a unitary transformation of
our groundstate

∣∣ ψ 〉
to a Galilei boosted

∣∣ ψ 〉
TW

with the position operator x̂ as the
generator

∣∣ ψ 〉
TW

≡ ei/~ p x̂
∣∣ ψ 〉

(3.10)

= ei/~ϑ(x̂)
∣∣ ψ 〉

. (3.11)

We see that a velocity field v = ~
m∇ϑ(x) might be obtained by a spatial variation of the

phase [14],[27]. Technically we can generate this phase variation by imposing so called
‘twisted boundary conditions’. The wavefunction gains a phase Θ each time a particle
runs once through the lattice

〈
x1, . . . , xk + L, . . . , xN | ψΘ

〉
= eiΘ

〈
x1, . . . , xk, . . . , xN | ψΘ

〉
. (3.12)

Note that the boundary conditions are no longer periodic. A phase variation of the form

ϑ(x) = Θ/Lx (3.13)

fulfils the demand (3.12). The Schroedinger equation of the twisted groundstate reads:

ĤΘ

∣∣ ψΘ

〉
= EΘ

∣∣ ψΘ

〉
. (3.14)

We can write down an expression for the kinetic energy Ts of the superfluid part with
mass Ms in which E0 is the energy of the system without the flow

Ts = EΘ − E0 =
1
2
Msv

2 =
1
2
Ms

(
~
m
∇ϑ(x)

)2

=
1
2
Ms

(
~
m

Θ
L

)2

. (3.15)

There is a restriction to the magnitude of Θ: it has to be sufficiently small so that
the flow is not able to excite higher states. We will come back to this point later.
Introducing the superfluid fraction f̃s as the ratio of the superfluid mass Ms to the total
mass Mtot = N m, we can cast it into the form

f̃s ≡ Ms

Mtot
=

2mL2

~2N

EΘ −E0

Θ2
=

2ma2

~2

I2(EΘ − E0)
NΘ2

. (3.16)

Now we have to translate the prefactor of the latter expression into the language of the
Hubbard model. We will motivate that this prefactor is nearly the tunnelling energy
of the Hubbard Hamiltonian. Comparing the kinetic energy of a free particle with
the kinetic energy of a particle in a periodic lattice, we saw in section 2.2, that the
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dispersion relation is no longer parabolic (figure 2.1). For small momenta, one can
compensate this with an effectice mass term that simply broadens the shape at the
centre of the parabola. Therefore the kinetic energy in the lattice is approximately of
the form Elatt(k) = ~2k2/2m?. The expectation value of this energy can be identified
with the tunnelling energy J = ~2/(2a2m?) (2.39). So we obtain an expression for the
superfluid fraction

f̃s =
m

m?

I2

NJ

EΘ −E0

Θ2
≡ m

m?
fs . (3.17)

The reader that is not satisfied with the latter line of arguments should notice that
the coefficient I2/(NJ) simply serves the purpose of normalising the superfluid fraction.
The factor m/m? reflects the depletion of the superfluid flow by the lattice itself. In
our description we have no access to this effect. Thus, the superfluid fraction fs we are
going to discuss accounts for effects of the two-body interaction only [20]

fs =
I2

NJ

EΘ − E0

Θ2
. (3.18)

We now have to show how to describe the flow in terms of the Hubbard model. We
can map the phase variation (3.13) to the Hamiltonian (2.42) by means of the unitary
many-particle operator

Û ≡
N⊗

n=1

ei
Θ x̂
L ,

∣∣ ψΘ

〉 ≡ Û
∣∣ ψ 〉

. (3.19)

The phase variation only affects the hopping part because it commutes with the occu-
pation number operators [Û , n̂i] = 0. This yields the twisted Hamiltonian,

ĤΘ = Û †Ĥ0Û = −J
I∑

i=1

(e−iΘ
I â†i+1âi + â†i âi+1e

iΘ
I ) +

V

2

I∑

i=1

n̂i(n̂i − 1) (3.20)

where a is the lattice spacing thus L = a I. We used:

Û † â†i+1 1̂ âi Û = Û † â†i+1 Û Û † âi Û

= e−i
Θa(i+1)

L â†i+1 âi e
iΘai

L

= e−iΘa
L â†i+1 âi , (3.21)

so every particle gains a constant phase during each tunnel process. The factor e−iΘa
L is

called Peierls phase factor.

Note that the second equality sign in equation (3.20) is only correct in the case of
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boxed boundary conditions or a lattice of infinite length. If we use periodic boundary
conditions, the Peierls phase factor for hopping over these boundaries has to be

Û † â†I 1̂ â1 Û = Û † â†I Û Û † â1 Û

= e−i
Θa(I)

L â†I â1 e
iΘa

L

= e−i
Θa(I−1)

L â†I â1 (3.22)

in order to preserve the unitarity of U . Without this violation of unitarity, HΘ would
have the same eigenspectrum as H0 because unitary transformations do not change
eigenspectra. Thus, neglecting (3.22) and applying a constant Periels phase factor as
done in (3.20) even at the boundaries leads to the net phase shift iΘ we claimed in (3.12).
This ’twist’ of the phase at the boundary is the reason why one calls this procedure an
imposing of ’twisted boundary conditions’.

As already mentioned we have to assure that the imposed velocity field is small enough
to prevent excitations of the system. Figure 3.5 shows how the energy of the twisted
commensurate system depends on the twist angle Θ. We see that for V/J = 0 the
kinetic energy is exactly parabolic – Ts ∝ Θ2 – but for Θ ≈ π a level crossing between
the groundstate and the first excited state of the twisted system takes place. Interaction
strengths larger than zero lead to a level repulsion that deforms the parabola. This effect
increases with raising interaction strengths. In the incommensurate system there is no
level repulsion, as depicted in figure 3.6. Since we want the superfluid fraction fs to be
independent of Θ and we also want to obtain valid results for strong interactions, we
have to perform our calculations at a small value of Θ. We choose Θ = 0.1, for which
the deviation from the parabola is negligible for all interaction strengths.

The numerical results depicted in figure 3.7 show a rapid decrease of the superfluid
fraction fs at 3 < V/J < 7. This is in good agreement with the extrapolated transition
point V/J ≈ 4.65 based upon Monte Carlo [28] and coupling expansion methods [29].
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Figure 3.5: The solid lines show the difference of groundstate energies of the twisted and the
untwisted Hamiltonian for the commensurate system (10-10-b). The dashed lines show the differ-
ence of the first excited state of the twisted and the groundstate of the untwisted Hamiltonian.
The dotted line is the kinetic energy of a free particle E(Θ) ∝ Θ2. Top left to bottom right
V/J = 0,V/J = 2, V/J = 3, and V/J = 4.
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Figure 3.6: The solid lines show the difference of groundstate energies of the twisted and the
untwisted Hamiltonian for an incommensurate system (10-9-b). The dashed lines show the dif-
ference of the first excited state of the twisted and the groundstate of the untwisted Hamiltonian.
The dotted line is the kinetic energy of a free particle E(Θ) =∝ Θ2. Top left to bottom right
V/J = 0, V/J = 2, V/J = 3, and V/J = 4.
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Figure 3.7: The plot shows the superfluid fraction as function of the interaction strength. Com-
mensurate filling (10-10-b, solid line) and incommensurate filling (10-9-b, dashed line). Extrapo-
lation to the thermodynamic limit based upon Monte Carlo and coupling expansion calculations
predict a Mott-insulator transition at V/J ≈ 4.65 for commensurate systems. In accordance
with band theory, there is no insulating phase in the incommensurate system.

A very important feature coming to light when comparing the superfluid fraction with
the fringe visibility is that although the system is in a Mott-insulating phase for V/J > 7
the interference fringes are still visible. As a conclusion we see that superfluidity has
to be clearly distinguished from condensation. A famous example is Helium II which
is 100% superfluid whereas only 10% participate in the formation of a Bose-Einstein
condensate.

3.5 Fringe Visibility & External Trapping Potential

Inspired by recent experiments in the group of Immanuel Bloch we examined the be-
haviour of the fringe visibility in the presence of an external trapping potential. Their
measured fringe visibility shows small kinks, which are attributed to a rearrangement
of particles due to the harmonic trapping potential [30]. The Hamiltonian (2.42) is
now supplemented by an additional single-particle potential with on-site energies εi as
discussed in section 2.6

Ĥ0 = −J
I∑

l=1

(â†l+1âl + h.a.) +
1
2
V

I∑

l=1

n̂l(n̂l − 1) +
I∑

l=1

εl n̂l . (3.23)
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The trapping potential is harmonic and centred at the middle of the lattice. The on-site
energies are given by

εl =
(
l − 1
I − 1

− 0.5
)2

· 4 ·∆ , (3.24)

where ∆ is the potential energy at the boundary of the lattice.

Our numerical results for a commensurate system consisting of N = 12 bosons on I = 12
lattice sites that has a basis dimension of D = 1352078 Fock states and an incommensu-
rate system (I = 12, N = 11, D = 352716), are calculated at ∆/J = 20 and ∆/J = 30.
The results are shown in figure 3.8. The dashed lines show the fringe visibility without
external trapping potential, i.e., ∆/J = 0. There are several small bumps due to re-
arrangements of the system. The bigger ones at V/J ≈ 12, ∆/J = 20 and V/J ≈ 17,
∆/J = 30, respectively, are caused by a rearrangement at the centre of the trap from a
Mott like state with n = 2 to a state with n < 2. During those ‘transitions’ the fluctua-
tions and therefore the visibility increase as shown in figures 3.10 and 3.12. This effect
might not be accessible by experiments. Because of the much larger number of lattice
sites and particles, this will happen rather continously every time the occupation num-
bers change and all the bumps will overlap resulting in a net upward shift of the entire
curve. This changes at the step seen at V/J ≈ 22, ∆/J = 20 and V/J ≈ 33, ∆/J = 30.
There the interaction energy is sufficiently strong to push particles to the outer rim of
the lattice. From the mean occupation number (figures 3.9 and 3.11) and the fluctuation
(figures 3.10 and 3.12 ) we see that this is the genuine transition to a homogeneous Mott
phase with nl = 1 and σl ≈ 0 ∀ l for the commensurate system. The incommensurate
system shows an occupation number 0.5 at the rims due to the odd number of particles
– for this reason the fluctuation is large there. No further rearrangement is possible for
increasing V/J . This transition is unique and depends neither on the lattice size nor
on the dimension and should be therefore experimentally observable. Incommensurate
systems behave almost in the same manner. They just show a slower decline of the
fringe visibility for large values of V/J . This is due to the fact that the fluctuations do
not vanish as much as in a Mott state. In an overfilled system the residual particles can
slide upon those that form the Mott state, in the underfilled case there is still space left
for particles to move even at large interaction strengths (e.g. the large fluctuations at
the rims depicted in figure 3.12).

In an experimental setup, commensurate and incommensurate filling is not an appropri-
ate characterisation of the system because the atoms will never ’see’ the whole lattice.
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Figure 3.8: Fringe visibility as function of the interaction strength. The solid line depicts results
with an external trapping potential and the dashed line without an external trapping potential.
Panels (a), (b) present results for the system with commensurate filling (10-10-b) and panels (c),
(d) for the incommensurate filled systems (10-9-b).

Their sole confinement is the trapping potential.

Note that during the definition of the tunnelling energy J (2.39) we neglected the in-
fluence of the external trapping potential VT (x) due to its small gradient on a scale of
the distance between the lattice sites. Here we actually used a significant gradient of
the trapping potential and thus it is an approximation to neglect the dependence of the
tunnelling energy on the index of the lattice site Jl ≈ J .
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Figure 3.9: Taking an external trapping potential into account, the mean occupation number
depends on the interaction strength and the number of lattice site l. Left panel: ∆/J = 20, right
panel: ∆/J = 30. Both calculations were done for a commensurate 12-12-b system.
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Figure 3.10: cf. figure 3.9. The plot shows the fluctuations as function of the lattice site and
the interaction strength. Left panel: ∆/J = 20, right panel: ∆/J = 30. Both calculations were
done for a commensurate 12-12-b system.
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Figure 3.11: cf. figure 3.9. The mean occupation numbers as function of the interaction strength
and the lattice site. Left panel: ∆/J = 20, right panel: ∆/J = 30. Both calculations were done
for an incommensurate 12-11-b system.
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Figure 3.12: cf. figure 3.9. The plot shows the fluctuations as function of the lattice site and
the interaction strength. Left panel: ∆/J = 20, right panel: ∆/J = 30. Both calculations were
done for an incommensurate 12-11-b system. The large fluctuation at the rim are due to the odd
number of particles.
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Chapter 4

Two-Component Fermi Gases

4.1 Fermi-Fermi Hubbard Model

Formally, we extend the Bose Hubbard Hamiltonian to the Fermi-Fermi Hubbard Hamil-
tonian by adding another hopping operator for a second species and an interaction oper-
ator between the two species. Furthermore we impose anticommutation relations for the
fermionic creation and annihilation operators. Due to the restriction to the first energy
band, there is no on-site interaction within the species. The different species a and b

may be considered as fermionic atoms of the same type with different spins (up and
down) or as different types of fermionic atoms. Assuming the same tunnelling matrix
element J for both species, the Fermi-Fermi Hubbard Hamiltonian reads:

Ĥ = −J
I∑

l=1

(
â†l+1âl + b̂†l+1b̂l + h.a.

)
+ Vab

I∑

l=1

n̂
(a)
l n̂

(b)
l . (4.1)

The groundstate is a sum over tensor products of the two species’ Fock states

∣∣ ψ 〉 ≡
Da∑

α=1

Db∑

β=1

Cαβ

∣∣ {n(a)
1 , ... , n

(a)
I }α

〉⊗ ∣∣ {n(b)
1 , ... , n

(b)
I }β

〉
. (4.2)

Again the sum runs over all possible Fock states and the coefficients Cαβ are obtained
from the diagonalisation of the Hamilton matrix (2.45).
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The operators âl, â
†
l , n̂

(a)
l and b̂l, b̂

†
l , n̂

(b)
l act on their respective sub space

âl

∣∣ ψ 〉 ≡ âl ⊗ 1̂
∣∣ ψ 〉

b̂l
∣∣ ψ 〉 ≡ 1̂⊗ b̂l

∣∣ ψ 〉

n̂
(a)
l ≡ n̂l ⊗ 1̂

∣∣ ψ 〉

n̂
(b)
l ≡ 1̂⊗ n̂l

∣∣ ψ 〉
.

In the following all operators are supposed to act in the similar manner. First of all we
test the groundstate obtained by the numerical solution of the eigenproblem. To this
end we diagonalise the one-body density matrix. For a translationally invariant lattice
the eigenvectors – the so called ‘natural orbitals’ – correspond to Bloch functions and
the eigenvalues to their occupation numbers nq [13]. To check those properties we fit a
function f(x) = A sin(2π

I qx+ φ) to the eigenvectors. The fit parameters are A,φ and q.
The result is shown in figure 4.1. The dots show the values obtained from the eigenvec-
tors of the one-body density matrix and the lines the fitted function. Note that there
are two one-body density matrices now, one for species a and one for species b. For all
systems discussed here they will be equal and we discuss exemplarily one of them. Only
integer values of q appear and the occupation numbers in momentum space, depicted in
figure 4.2, fulfil Pauli’s principle: 0 ≤ nq ≤ 1. This is in agreement with the expectation
and has been tested for different interaction strengths and for all system types. Hence,
we can be sure our implementation works and yields the results expected.

After we finished the implementation and examined the results for the first time we
were surprised by the fact that the first Bloch band (q = 0) was occupied with more
than one particle, i.e., nq=0 > 1. But fermions should obey Pauli’s principle in coordi-
nate as well as in momentum space. It took us several weeks until we realised that during
the implementation of the Fermi-Fermi Hubbard Hamiltonian (4.1) we forgot about the
crucial fact that fermionic wavefunctions have to be antisymmetric or in other words
the anticommutation relations, have to be imposed. We never thought about sorting the
creation operators that create a particular Fock state out of the vacuum (2.26) when
implementing the Bose Hubbard Hamiltonian. But when dealing with fermions this is
absolutely necessary. One can easily see that for an even number of fermions hopping
over the periodic boundary generates a minus sign. But that would mean applying
antiperiodic boundary conditions. We will come back to that point at the end of the
chapter. However, for any calculation of density matrices the anticommutator relations
are of major importance as we saw in section 2.4.
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Figure 4.1: To test the numerics, the natural orbitals of a 10-5-5-ff system are fitted to Bloch
functions at Vab/J = 5. Top left to bottom right: q = 0, 1,−1, 2,−2, 3,−3, 4,−4, 5. The dots
are the computed values of the eigenvectors, the lines are the fitted functions.

We will examine two different systems in the following: (i) A system labelled ’10-5-
5-ff’ with I = 10 lattice sites and Na = Nb = 5, i.e., half-filling of the lattice. (ii) A
system termed ’12-5-5-ff’ with I = 12 lattice sites and Na = Nb = 5.

The simple observables, like the mean occupation number, number fluctuations and
largest coefficient do not provide useful probes for fermionic systems. Again it is obvi-
ous that the mean occupation number nl has to be constant at all lattice sites due to the
periodic boundary conditions and the absence of an external trapping potential. The
fluctuations σ2

l always have to be independent of l, but furthermore they are constant
for all interaction strengths Vab/J .

σ2 ≡ σl =
〈
ψ

∣∣ n̂2
l

∣∣ ψ 〉− 〈
ψ

∣∣ n̂l

∣∣ ψ 〉2 = const = N/I − (N/I)2 (4.3)

This is obvious because every time the occupation number operator n̂l acts on a par-
ticular Fock state, the l-th lattice site is either occupied and returns one or unoccupied
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Figure 4.2: The plot shows the occupation numbers of quasimomentum eigenstates for Vab/J = 5.
Because of the Pauli principle they have to be 0 ≤ nq ≤ 1. The dots are computed values, the
line should guide the eye.

and returns zero. Hence, for fermions this operator is idempotent n̂2
l = n̂l and leads to

equation (4.3).

The maximum coefficient C2
max is also deprived of his nice features. Again it is small at

small interaction strengths where all possible states contribute but there is no unique
Mott state with one atom per site as in the commensurate bosonic system. So we have
to make a little more effort to disclose some interesting features of fermions on periodic
lattices.

4.2 Pair-Coherence Function

The Pauli principle forbids a multiple occupation of a lattice site with atoms of the
same kind and thus an on-site pairing within the species. Keeping in mind the dis-
cussion about ODLRO and macroscopical eigenvalues in section 2.7, we see that while
dealing with fermionic systems one-body density matrices are no longer an appropriate
tool to obtain nontrivial results. The next deductive step is to consult two-body density
matrices.

As a first measure for two-particle properties we define the pair-coherence function S(δ).
We use those matrix elements that annihilate a pair of different particles at lattice site
1 + δ and create it again at site 1. We subtract the one-body quantities to get rid of the
one-body density information, and to assure that if particles are uncorrelated – i.e., the
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Figure 4.3: Pair-coherence function S(δ) as function of the lattice distance δ. The dots are the
computed values. (a) for the 10-5-5-ff system and (b) for the 12-5-5-ff system. Circles correspond
to Vab/J = 10, diamonds to Vab/J = 5, triangles to Vab/J = −5 and squares to Vab/J = −10.
For attractive interactions, pairs show a long-range pair-coherence.

state is a Slater determinant – the pair-coherence function vanishes. Note that exchange
terms

〈
ψ

∣∣ â†1b̂1+δ

∣∣ ψ 〉 〈
ψ

∣∣ b̂†1â1+δ

∣∣ ψ 〉
are zero due to the fixed particle numbers

within each species. Thus, the pair-coherence function is defined as:

S(δ) ≡ 〈
ψ

∣∣ â†1b̂†1b̂1+δâ1+δ

∣∣ ψ 〉

− 〈
ψ

∣∣ â†1â1+δ

∣∣ ψ 〉 〈
ψ

∣∣ b̂†1b̂1+δ

∣∣ ψ 〉
. (4.4)

The numerical results are shown in figure 4.3. The symbols show the computed values,
the lines are plotted to guide the eye.

For repulsive interactions Vab/J > 0 we observe an anti-correlation at the same lat-
tice site (δ = 0) for both systems. This is not suprising, because if particles repel each
other, it is energetically unfavourable to occupy the same lattice site. There is no corre-
lation for distances δ larger than one. Keeping in mind that the Hamiltonian connects
adjacent lattice sites, we can understand why the correlation extends at least to one site.
In the region of attractive interactions it is again easy to understand, why there is strong
correlation of pairs at the same lattice site, i.e., δ = 0. If particles attract eachother,
they want to occupy the same lattice site. Again one can see the correlation coming from
the hopping term at δ = 1. The non-trivial result for attractive interactions, is the long-
range pair-coherence exhibited by fermion pairs, as indicated by the finite value of S(δ)
for large distances δ. This means that pairs are delocalised in coordinate space similar
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Figure 4.4: The solid line shows the dependence of the largest eigenvalue λ2 of ρ(2) as a function
of interaction strength. The dashed line shows the 2nd largest eigenvalue. (a), results for a
10-5-5-ff system (I = 10 lattice sites, Na = Nb = 5 particles both species fermionic) and (b),
results for a 12-5-5-ff system.

to single particles in bosonic systems at small interaction strength. For Vab/J = 0 the
pair coherence function is zero S(δ) = 0 because the groundstate is a Slater determinant
and the two-body density matrix equals the product of the one-body density matrices.

We already mentioned that in fermionic systems the one-body density matrix cannot
exhibit ODLRO because the eigenvalues (occupation numbers) of the natural orbitals
(Bloch functions) have to be smaller than or equal to one, λ1 = nq ≤ 1. Obviously,
the two-body density matrix shows ODLRO. Therefore there should be a macroscopic
eigenvalue of ρ(2). This is depicted in figure 4.4. The finite value at the tail of the pair
coherence function as well as the plot of λ2 may be a hint that a pair of particles of
species a and species b form the basic group in the regime of attractive interactions.
The existence of an eigenvalue λ2 that is of the order N is hard to verify strictly in our
small-sized systems. But we see that λ2 changes significantly when entering the regime
of attractive interactions and separates clearly from the second largest eigenvalue.
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4.3 Quasimomentum Correlation Function

Keeping in mind the spatial delocalisation of particle pairs, one would expect this feature
to appear as a peak in momentum space. Actually the existence of a macroscopic
eigenvalue λ2 of the two-body density matrix ρ(2) observed in figure 4.4 is a hint that
there is a favoured two-particle state. In order to obtain more insight, we define the
quasimomentum correlation function Cab(q, q′)

Cab(q, q′) ≡ 〈
ψ

∣∣ n̂(a)
q n̂

(b)
q′

∣∣ ψ 〉− 〈
ψ

∣∣ n̂(a)
q

∣∣ ψ 〉 〈
ψ

∣∣ n̂(b)
q′

∣∣ ψ 〉
, (4.5)

with n̂(a)
q ≡ ĉ†q ĉq ⊗ 1̂ ,

and n̂(b)
q ≡ 1̂⊗ ĉ†q ĉq .

This correlation function is composed of the unitarily transformed matrices ρ̃(1)
qq′ and

ρ̃
(2)
qq′,QQ′ we introduced in section 2.7. The indices ′ab′ indicate that the two-body den-

sity matrix is again a mixed one. q describes the quasimomenta of species a and q′

of species b respectively. n̂
(a,b)
q are the quasimomentum occupation number operators

acting on the respective species.

Figure 4.5 depicts all possible combinations for q and q′ at a fixed attractive interaction
strength. The large values at the diagonal show that the system exhibits a (q,−q)-
correlation. If the quasimomentum q is occupied with a particle of species a, the system
tends to occupy the quasimomentum −q with a particle of species b. Thus, besides the
pairing in coordinate space, there is a (q,−q)-pairing in momentum space as well. In a
pictorial view the (q,−q)-pairing leads to a formation of standing waves. The resulting
two-particle wavefunction is similar to ψ+ (2.13) and thus minimises the energy. In BCS
theory, the pairing of electrons in momentum space – known as Cooper-Pair formation –
is responsible for superconductivity. There, attractive interactions between electrons are
generated via the coupling to phonons. Other momenta are almost not correlated. For
repulsive interactions this is quite different. Figure 4.6 shows that the 12-5-5-ff system
exhibits practically no correlation in the regime of repulsive interactions, whereas the
Mott-like 10-5-5-ff system shows anticorrelation for |q − q′| = 5. If a particle of species
a occupies q = 0 it ’blocks’ particles of species b to occupy q = 5, similarly q = 1,−1
block q = −4, 4, and so on. We will come back to this point later during the discussion
of the insulating behaviour of half-filled systems.

In order to obtain a detailed view of how the momentum correlation changes as function
of the interaction strength, we fix the values for the quasimomenta q = −q′ and plot
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Figure 4.5: The quasi-momentum correlation function Cab(q, q′) at fixed interaction strength
for all combinations of q and q′. Top left: 10-5-5-ff system, top right 12-5-5-ff system, both at
Vab/J = −10. Bottom left: 10-5-5-ff system, bottom right 12-5-5-ff system, both at Vab/J = −5.
The bottom bar shows the colour coding.
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Figure 4.6: cf. figure 4.5. Top left: 10-5-5-ff system, top right: 12-5-5-ff system, both at
Vab/J = 10. Bottom left: 10-5-5-ff system, bottom right: 12-5-5-ff system, both at Vab/J = 5.
The bottom bar shows the colour coding.
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Figure 4.7: The quasi-momentum correlation function Cab(q,−q) for fixed quasimomenta q = −q′
as function of the interaction strength. (a) 10-5-5-ff system and (b) 12-5-5-ff system. The colour
coding is: q = 0 (black), q = 1 (green), q = 2 (blue), q = 3 (red), q = 4 (dark green), q = 5
(dark blue), q = 6 (dark red). In the 10-5-5-ff system some correlations are degenerate due to
particle-hole symmetry.

the correlation function Cab(q,−q) as function of the interaction strength. Figure 4.7
reveals that for particles at the Fermi surface (q = 2) the (q,−q)-correlation increases
rapidly once it enters the regime of attractive interactions and reaches a maximum
at Vab/J ≈ −5. For strongly attractive interactions, the (q,−q)-correlations become
roughly equal for all momenta. In the 10-5-5-ff system there are only three lines visible
because of the particle-hole symmetry (there are as many particles as holes). Thus,
annihilating a particle with quasimomentum q is similar to creating a hole with −q. We
could describe such a symmetric system in terms of holes instead of particles without
any differences. In a non-interacting system, q = 2 is the last occupied particle state
and q = 3 is the first occupied hole state. The symmetry remains also at non-zero inter-
action strengths, implying Cab(2,−2) = Cab(3,−3) and Cab(1,−1) = Cab(4,−4) for all
interaction strength. In the 12-5-5-ff system, there are more holes than particles and,
therefore, this symmetry is broken and all possible combinations appear.
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4.4 Transport Properties – Drude Weight

A question that arises immediately when talking about fermions on a periodic lattice is
whether the system is an insulator, a conductor or even a superconductor. First of all
we define, what we are going to talking about. More detailed information can be found
in [18].

In general, one distinguishes four different types of insulators [18]. The first one –
and surely most common – is the Bloch-Wilson or band insulator. As mentioned in sec-
tion 2.1, electrons in a lattice may be described by a set of Bloch functions spanning the
energy bands. Those energy bands are separated by a so called energy gap (2.15). The
size of the gap depends on the potential geometry, i.e., the interaction with the ion-cores
that form the lattice. In a conductor one band is partly filled (conduction band) and it
is possible – e.g. with an electric field – to shift the Fermi sphere away from equilibrium
and provide a net momentum of the electrons occupying that band. The situation is
illustrated in figure 4.8. In a band insulator, the upper band is completely filled (valence
band) and thus the Fermi sphere cannot be shifted, because it would enter the next Bril-
louin zone. Note that the distances between the quasimomenta have to remain constant,
i.e., an integer multiple of 2π/I. Therefore, it is not possible to establish an (electric)
current. If an energy band is completely filled but the energy gap is small such that
thermal excitations are able to push electrons to the next higher band, one talks about a
semi conductor. For completeness we mention two other, but similar types of insulators
that depend on single-electron properties. The Peierls insulators are those that result
from lattice deformations and Anderson insulators result from lattice impurities. The
class of insulators we discuss are Mott insulators that are solely driven by two-body
interactions. In the following we restrict ourselves to zero-temperature systems and in-
vestigate the conductivity, i.e., the response of the system to a moderate (electric) field.
As a direct result of band theory we find that a system of two fermion species, each with
half-filling and repulsive interactions strong enough to suppress tunnelling becomes an
insulator. In a band insulator, the Pauli principle forbids two particles to occupy the
same lattice site, whereas the same effect is obtained by the repulsive interaction here.
Namely, in the regime of repulsive interactions the two species perform a mutual blocking
of quasimomentum states. The unfilled dots in figure 4.8 which are free quasimomentum
states then get blocked by particles of the other species and detains the Fermi sphere to
be shifted.
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Figure 4.8: Shift of the Fermi sphere by an application of a phase twist (red arrows). The picture
shows exemplary one species of a 10-5-5-ff system at interaction strength zero. The filled dots
are particles and the open ones are free quasimomentum states (holes). The holes are allowed
to enter the next Brillouin zone. Repulsive interactions lead to blocking of the quasimomentum
states by the other species and prevent a shift of the Fermi sphere.

In connection with current and conductivity, one might first ask how the energy of
the system changes when an external potential is applied. This energy might be consid-
ered as the kinetic energy of the moving particles. We can think again of the two-fluid
picture discussed in section 3.4. Either there is a response to the external field and
the groundstate energy increases or the system is not affected by the potential and the
groundstate energy remains constant. Again, we use that a potential gradient can be
expressed in terms of twisted boundary conditions with twist angle Θ. With the ground-
state energy E(Θ = 0) = E0 and a sufficiently small twist angle Θ, we write down the
Taylor expansion of the energy as function of Θ up to the second order

E(Θ) ≈ E0 +
∂

∂Θ
E(Θ)

∣∣∣
Θ=0

·Θ +
1
2

∂2

∂Θ2
E(Θ)

∣∣∣
Θ=0

·Θ2 +O(Θ3) . (4.6)
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This is closely related to the standard way of deriving an expression for the real part of
dc conductivity from linear response theory [18]. The first derivative vanishes at Θ = 0
because the groundstate energy should be minimal. The second derivative is a quantity
that is proportional to the ‘movability’ of the particles. For insulators this will be zero
because their energies are not affected by the external potential, whereas the more the
energy increases the more the particles respond to the potential. From equation (4.6)
we can derive an approximation for the second derivative:

∂2

∂Θ2
E(Θ)

∣∣∣
Θ=0

≈ 2
E(Θ)− E0

Θ2
. (4.7)

The right-hand term already appeared during the discussion of the superfluid fraction
(3.18). Using the same prefactors we define the Drude weight [21]

fd ≡ I2

JN

EΘ − E0

Θ2
. (4.8)

First we investigate how the energy of the twisted state depends on Θ. The numerical
results for the 10-5-5-ff system are shown in figure 4.9. At interaction strength zero the
dispersion relation is again the one of a free particle and we observe a level crossing
at Θ = π. In the regime of repulsive interactions level repulsion occurs and leads to a
deformation of the parabola. This is in agreement with the phenomenology observed for
bosonic systems (figure 3.5). With increasing attractive interaction strengths, the level
crossing is shifted to smaller values of Θ. The Drude weight should not depend on the
value of Θ. Thus we use Θ = 0.1 for all calculations of the Drude weight where the
deviation from the parabola is negligible for all interaction strengths.

There are two possibilities to apply the twist. We can push the two species into the
same direction or into opposite directions. This is called twist and countertwist, re-
spectively. Before we try to understand the numerical results we should mention that
particle-hole symmetry plays a significant role. Moving particles in one direction we
may likewise think of moving holes of the same species in the other direction. In the
same manner an attractive interaction between species a and b means a repulsive one
between species a and holes of species b and vice versa. But one must not mix up the
two pictures, either we consider holes or we consider particles within the species.

We first discuss the twist. As shown in figure 4.10 in the regime of attractive inter-
actions the Drude weight decreases, but remains finite, for both systems with increasing
interaction strengths Vab/J . One might be tempted to regard the system as half filled
and consisting of composite particles. In momentum space there should be enough room
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Figure 4.9: The solid lines show the difference of the groundstate energies of the twisted and
the untwisted Hamiltonians for a 10-5-5-ff system. The dashed lines show the difference of the
first excited state of the twisted and the groundstate of the untwisted Hamiltonian. The dotted
line is the kinetic energy of a free particle E(Θ) ∝ Θ2. Top left to bottom right: Vab/J = 0,
Vab/J = 1, Vab/J = −1, Vab/J = 2 and Vab/J = −2.
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Figure 4.10: (a) Drude weight for the 10-5-5-ff system and (b) for the 12-5-5-ff system as function
of the interaction strength. Solid line corresponds to the twist and dashed line to the countertwist.

to shift the Fermi sphere and establish a flow, but then the question arises why the Drude
weight decreases. We can understand this with the help of the quasi-momentum correla-
tion function (4.5). In the regime of attractive interaction strengths the system exhibits
(q,−q)-pairing. Thus, if the external potential tries to shift a particle of species a to
a quasimomentum q, the system wants to occupy the quasimomentum (−q)-state with
a particle of species b. This prevents the system from establishing a net flow and thus
suppresses the Drude weight. For repulsive interactions the half-filled 10-5-5-ff system
and the non-half-filled 12-5-5-ff system differ. In the half-filled case the Drude weight
decreases rapidly and vanishes completely at Vab/J ≈ 5. Although the species also per-
form a mutual blocking of momentum space in case of the non-half-filled system, there is
room left in momentum space for a net flow even at large repulsive interaction strengths.

The countertwist reveals the perfect particle-hole symmetry for the half-filled system.
One simply has to consider particles of species a and holes of species b moving in the
same direction, change the sign of the interaction and ends up at the same result as
for the twist. For the non-half-filled system this symmetry does not exist. Using the
particle-particle picture we can understand the decline at Vab/J ≈ −5 for both systems.
Because the interaction forces the particles to stick to each other, they cannot move into
opposite directions and, therefore, the Drude weight for the countertwist vanishes.

We should mention that this behaviour of the Drude weight has been already calcu-
lated by Kawakami and Yang [23] in 1991 with a finite-size scaling method based upon a
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Bethe-ansatz solution. The numerical values for the non-half-filled 12-5-5-ff system are
in good agreement. However, due to their extrapolation to the thermodynamic limit,
they predict a vanishing Drude weight for half-filled (like 10-5-5-ff) systems for any posi-
tive interaction Vab/J > 0. Hence, once again we are reminded of the inherent finite-size
effects of our approach.

We made an interesting observation for systems with even numbers of particles, e.g.,
a 10-4-4-ff system. In this case, the Drude weight at interaction strength zero becomes
negative. First we thought of a failure of the Lanczos algorithm to compute degenerate
eigenvalues. But looking at figure 4.11 of the shifted Fermi sphere one can understand
what happens: the particles can indeed lower their energy when a flow is present. The
minimum of the groundstate energy should be at a flow that equals half the value of
the distance between the quasimomenta ∆q = 2π/I. Figure 4.12 shows that the energy
minimum of the system is exactly at a twist angle that equals π. From the twisted
Hamiltonian (3.20), we see that applying this twist angle is indeed similar to adding
1
2∆q .

qtwist = Θ/I = π/I = q1/2 (4.9)

The untwisted system is not capable of showing those shifted quasimomenta q̃l ≡
ql + qtwist because they do not fulfil the periodic boundary conditions. Maybe this
effect might be absorbed by neglecting the anticommutation relations during the pro-
cess of basis construction, because they are responsible for the anti-periodic boundary
conditions. However, a definitive statement will need further investigations.

Due to the small system sizes and the resulting finite size effects, our major task for
the future will be to get rid of the size limitation using different numerical as well as
conceptional approaches to tackle the problem of quantum gases on lattices.
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Figure 4.11: Shift of the Fermi sphere by an application of a phase twist (red arrows) for a
10-4-4-ff system.
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Figure 4.12: The plot shows the energy difference (EΘ − E0) as function of the twist angle for
a 10-4-4-ff system with an even number of fermions. The energy minimum is at Θ = π which
corresponds to 1

2∆q = π
I .

57



Chapter 4 · Two-Component Fermi Gases

58



Chapter 5

Outlook – Bose-Fermi-Mixtures

5.1 Bose-Fermi Hubbard Model

Bose-Fermi mixtures in optical lattices provide an interesting environment of mixed
quantum statistics. We will investigate several special regimes in the rich phase-diagram
of those mixtures. In the following, the references to equations have to be handled with
care since they were defined for boson and fermion-fermion systems. Consider them as
an ‘analogous to’ reference.

Similar to the Fermi-Fermi Hubbard Hamiltonian, we introduce the Bose-Fermi Hub-
bard Hamiltonian. Now, the operators â†l , âl and n̂(a)

l act on the bosonic species and the
operators b̂†l , b̂l and n̂

(b)
l on the fermionic species. Again, there is an on-site interaction

between the species Vab but also an on-site interaction within the bosonic species Vaa.
Hence, the Bose-Fermi-Hubbard Hamiltonian reads [21]:

Ĥ = −J
I∑

l=1

(
â†l+1âl + b̂†l+1b̂l + h.a.

)
+ Vab

I∑

l=1

n̂
(a)
l n̂

(b)
l +

1
2
Vaa

I∑

l=1

n̂
(a)
l (n̂(a)

l − 1) .

(5.1)
Due to the second interaction term, there are two parameters Vab/J and Vaa/J now.
The groundstate is a sum over tensor products of all possible combinations of the two
species’ Fock states where the first Ket denotes the bosonic species and the second Ket
the fermionic component

∣∣ ψ 〉 ≡
Da∑

α=1

Db∑

β=1

Cαβ

∣∣ {n(a)
1 , ... , n

(a)
I }α

〉⊗ ∣∣ {n(b)
1 , ... , n

(b)
I }β

〉
. (5.2)
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The coefficients Cαβ are obtained by solving the eigenproblem of the Hamilton matrix
analogue to (2.45).

In the following, we will examine a system with I = 10 lattice sites and Na = Nb = 5
bosonic and fermionic particles. The dimension of the basis is Da ·Db = 504504.

5.2 Simple Observables

Given that there is no external trapping potential and we use periodic boundary con-
ditions, the mean occupation number n(a)

l (3.1) is again constant and equals the filling
rate of the respective species. As a result of the idempotent fermionic occupation num-
ber operator, the fluctuation of the fermionic species is also constant for all interaction
strengths (4.3). The first non-trivial observables is the fluctuation of the bosonic species
(3.2)

σ2 ≡ σ2
l

〈
ψ

∣∣ (n̂(a)
l )2

∣∣ ψ 〉− 〈
ψ

∣∣ n̂(a)
l

∣∣ ψ 〉2 (5.3)

and the maximum coefficient of the groundstate C2
max (3.3)

C2
max ≡ max(C2

αβ) . (5.4)

The numerical results for these quantities are depicted in figure 5.1. The maximum
coefficient reveals that there are several different regions within the Vaa-Vab-plane. Note
that the plot shows C2

max · 20 in order to be richer in contrast. Within two rectangular
areas both parallel to the axes the groundstates are composed of a superposition of
many Fock states. From the fluctuations of the bosonic particles along the Vab axis one
can assume that those with strongly fluctuating bosonic occupation numbers are among
them. The two regions (A) and (B) exhibit a structure of the respective groundstates
where only a few Fock states dominate. We will see in section 5.4 what particular kinds
of Fock states contribute. Finally, there is a transition region at Vab ≈ 2Vaa that is again
made up of many Fock states, but with suppressed bosonic fluctuations.
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Figure 5.1: Panel (a) shows the the maximum coefficient C2
max · 20 and reveals two regions (A)

and (B) where only a few Fock states dominate. Panel (b) shows the fluctuation σ2 of the bosonic
species. Both for a 10-5-5-bf system.
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Figure 5.2: Condensate fraction fc of the bosonic species in a 10-5-5-bf system as function of
Vaa/J and Vab/J .

5.3 Condensate Fraction

The bosonic particles that occupy the lowest single-particle state form a Bose-Einstein
condensate. According to section 3.2 we define the condensate fraction fc as the largest
eigenvalue λ1 of the one-body density matrix ρ(1) divided by the total number of bosonic
particles Na.

fc ≡ Nc/Na = λ1/Na. (5.5)

The numerical results are shown in figure 5.2. Although the fluctuation of the bosonic
species in the regime of small boson-boson and large boson-fermion interaction strengths
is large, the condensate fraction depletes rapidely. This might be a hint that there is
a preferred Fock state structure within the bosonic species, that does not fit for the
quasimomentum zero state. As expected, the depletion of the condensate for increasing
boson-boson interactions is rather slow due to the small filling factor (cf. figure 3.2).
In the following section we will see that there are indeed different preferred structures
depending on the position in the interaction scheme.
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5.4 Density-Density Correlation

For a more detailed investigation of the different phases and the underlying structure we
define the density-density correlation function D(δ). We use those matrix elements that
annihilate and create a fermion at lattice site 1+ δ and annihilate and create a boson at
site 1:

D(δ) ≡ 〈
ψ

∣∣ â†1b̂†1+δ b̂1+δâ1

∣∣ ψ 〉

− 〈
ψ

∣∣ â†1â1

∣∣ ψ 〉 〈
ψ

∣∣ b̂†1+δ b̂1+δ

∣∣ ψ 〉

=
〈
ψ

∣∣ n̂(a)
1 n̂

(b)
1+δ

∣∣ ψ 〉− 〈
ψ

∣∣ n̂(a)
1

∣∣ ψ 〉 〈
ψ

∣∣ n̂(b)
1+δ

∣∣ ψ 〉
︸ ︷︷ ︸

const

. (5.6)

Due to the constant mean occupation numbers at each site, which equal the filling rate
of the lattice, the product of the one-body density matrix elements is constant, too.
The numerical results depicted in figure 5.3 show that the behaviour of the particles
in the two regimes is completely different. In the region of large boson-fermion and
small boson-boson interaction strengths (B) the system exhibits a block separation. As
soon as as the distance δ becomes larger than two lattice sites, the density-coherence
function changes its sign. The boson occupying lattice site 1 is sourrounded by the 4
remaining bosons but at δ ≥ 3 there must be the first fermion. We can understand
this by considering a single hopping process. Hopping of a boson to a lattice site that
is occupied by a fermion is energetically more expensive than hopping to a lattice site
that is occupied by a boson. Thus bosons cluster in order to enable tunnelling with less
effort. In region (A) where the boson-boson interaction dominates, the system shows an
alternating occupation of lattice sites with bosons and fermions. Here tunnelling to a
lattice site that is occupied by the other species is energetically favoured and causes the
alternating occupation. We also probe for density correlations in an interaction regime
similar to the attractive fermion-fermion systems with large boson-boson repulsion –
as an equivalent to the Pauli principle – and an attractive interaction between bosons
and fermions. Besides the on-site correlation caused by the attractive boson-fermion
interaction, there is no significant correlation for larger distances.
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Figure 5.3: The density correlations in the two different phases are plotted as function of the
lattice distance δ. (a) the system exhibits a block separation in region (B) (Vaa/J = 6, Vab/J =
22). (b) at region (A) (Vaa/J = 22, Vab/J = 10) there is an alternating occupation of lattice sites.
(c) an environment similar to attractive fermion-fermion systems (Vaa/J = 10, Vab/J = −10),
but without significant correlations.
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5.5 Pair Correlation

Similar to the pair coherence function we defined in section 4.2 for a fermion-fermion
mixture, we can define a pair correlation function for the boson-fermion mixtures

S̃(δ) ≡ 〈
ψ

∣∣ â†1b̂†1b̂1+δâ1+δ

∣∣ ψ 〉

− 〈
ψ

∣∣ â†1â1+δ

∣∣ ψ 〉 〈
ψ

∣∣ b̂†1b̂1+δ

∣∣ ψ 〉
. (5.7)

This means we annihilate a boson-fermion pair at lattice site 1+δ and create one at site
1. The numerical results shown in figure 5.4 reveal that besides the anticorrelation at the
same lattice site due to the repulsive interaction, the pairs are almost uncorrelated, even
in a situation similar to an attractive fermion-fermion system – with repulsive boson-
boson and attractive boson-fermion interaction, there is no long-range pair-coherence
present as observed in the fermion-fermion system (figure 4.3). The mixed statistics
cause an alternating correlation anticorrelation pattern.
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Figure 5.4: Pair correlation S̃(δ) as function of the distance δ. (a) region (B), (Vaa/J = 6,
Vab/J = 22). (b) region (A), (Vaa/J = 22, Vab/J = 10). Besides the on-site anticorrelation due
to the repulsive interaction, no correlation is present. (c) shows an environment similar to the
attractive fermion-fermion systems (Vab/J = −10, Vaa/J = 10). The mixed statistics system
shows no long-range pair-coherence.
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5.6 Quasimomentum Correlation Function

We define the quasi-momentum correlation function C̃ab(q, q′) (4.5) to get an impression
how the mixed statistics change the correlations in momentum space

C̃ab(q, q′) ≡
〈
ψ

∣∣ n̂(a)
q n̂

(b)
q′

∣∣ ψ 〉− 〈
ψ

∣∣ n̂(a)
q

∣∣ ψ 〉 〈
ψ

∣∣ n̂(b)
q′

∣∣ ψ 〉
. (5.8)

Again, the operators n̂(a)
q act on the bosonic species and the n̂(b)

q′ on the fermionic species.
The numerical results for the two regions (A) and (B) are depicted in figure 5.5. In re-
gion (B) the strong correlation at q = q′ = 0 indicates that the quasimomentum zero
Bloch function fits the block separation best. But notice that there is a small quasimo-
mentum zero contribution in the bosonic part of the wavefunction (see figure 5.2). The
’S’ structure in region (A) is indeed interesting, but its physical interpretation is not
clear yet. In the environment similar to the attractive fermion-fermion system, there is
a correlation between particular quasimomenta. But unlike the fermion-fermion systems
where we observed large (q,−q)-correlations along the diagonal (figure 4.5), the (q, q′)
correlation pattern is not that intuitive in the case of mixed statistics.

In conclusion, we observed a much more difficult interplay in the boson-fermion sys-
tem than in the fermion-fermion systems. We will have to put more effort into the
investigation of boson-fermion mixtures in order to obtain a better understanding about
the physics of systems with mixed quantum statistics.
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Figure 5.5: Quasimomentum correlations in the two different phases. Upper left panel: region (B)
at Vaa/J = 4, Vab/J = 15 and upper right panel: region (A) at Vaa = 15, Vab = 4. The bottom
left panel shows an environment similar to the attractive fermion-fermion systems, Vab/J = −10,
Vaa/J = 10.
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Appendix A

Numerical Implementation & C++ Programs

A.1 Hamilton Matrix

All of our calculations are based upon the ground state
∣∣ ψ 〉

obtained by a diagonalisa-
tion of the Hamilton matrix. Since we are dealing with high-dimensional systems, it is
required, on account of manageable CPU-time, to use sparse matrix algorithms like the
Lanczos-based Arpack-Arnoldi algorithms [33]. Those depend crucially on the shape of
the matrix to be diagonalised. It is desirable to have a band matrix with elements as
close as possible to the diagonal. During our Mini-Research Markus Hild and I developed
a basis creation algorithm that satisfies this demand.

Let us consider an I = 6, N = 6 bosonic system, for instance. We start with a Fock state
that has all bosons at the first lattice site. By successively adding the hopping operators
we compute related Fock states and the corresponding Hamilton matrix elements.

1
∣∣ 6, 0, 0, 0, 0, 0

〉
startvector (first basis vector)

2 calculate â†2â1

∣∣ 6, 0, 0, 0, 0, 0
〉

(a) new
∣∣ 5, 1, 0, 0, 0, 0

〉
add new (first) matrix element H2,1 = H1,2 = −J√1 · 6

(b) search previously computed basis vectors to determine whether the new vector is
already a basis vector
yes: discard, no: add the vector to the basis

3 repeat the steps of 2 for all possible hopping operators

4 start over at step 1 for next (second) basis vector

The advantage of this algorithm is, that vectors are created directly from each other and,
therefore, the elements of the hopping matrix are not far away from one another. One
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avoids sorting the basis in a way where two related vectors are far away and produce a
far off-diagonal matrix element. Unfortunately, the basis generation itself consumes a
lot of CPU time, but it needs to be done only once.

The program that creates the basis and the hopping matrix is called ‘hop’. Running
‘hop’ without any arguments yields the following usage information:

Usage: hop -II [Lattice-Sites] -SP [Number of species] -NN [n1 n2 .. nSP]

-TYPES [ffbb...] -J [Tunnelling Strength] -o [outfile]

-box (leave blank->cyclic)

As the prefix of the outfile we use the short form of the systems’ description, e.g., 10-5-5-ff
for a system with 10 lattice sites, 2 species of 5 fermionic particles each. A corresponding
Bose-Fermi system is called 10-5-5-bf. The program has a simple process display and
returns 2 files with the suffix ‘ bas.dat’ and ‘ hop.dat’ that contain the basis and the
hopping matrix. The basis is stored in standard Mathematica rule format. The top of
the 10-5-5-ff basis file reads

BASIS->{ {{1, 1, 1, 1, 1, 0, 0, 0, 0, 0},{1, 1, 1, 1, 1, 0, 0, 0, 0, 0}},

{{1, 1, 1, 1, 0, 1, 0, 0, 0, 0},{1, 1, 1, 1, 1, 0, 0, 0, 0, 0}},

.

.

.

}

The hopping matrix is stored in a sparse matrix format where each line has three values:
the first and the second denote the position in the matrix (n,m) and the third is the
corresponding floating point value. Using this matrix format it is possible to compute
a matrix vector product in a single loop through the lines of the matrix-file. m marks
the vector component to be multipied with and n the component of the resulting vector
the product must be added to. If one uses the ’-box’ switch, the basis has another
sequence and the hopping matrix naturally has less values. In this case the filenames
get the prefix ‘ noncyclic hop/bas.dat’. There is another program ‘hop twisted’ which
generates a phase-twisted hopping matrix needed for the calculation of the Drude weight.
Without arguments it prints:

Usage: hop_twisted -II [Lattice-Sites]

-SP [Number of species]

-NN [n1 n2 .. nSP]

-TYPES [ffbb...]

-J [Tunnelling Strength] default is 1

-o [outfile]

-TWIST [1|2|3|4] (1: sinusoidal twist-angle,
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2: constant twist-angle,

3: gradient twist-angle,

4: constant counter-twist-angle)

The switches for the twist that were used are 2 and 4. The basis file is similar to the
cyclic non-twisted case but the third entry of the hopping matrix is a complex number
of the form ‘floating point + floating point * I’. The twist angle Θ is fixed to 0.1. For the
calculations of the energy as function of the twist angle there is an independent program
transform hop.

A.2 Eigensystem Solver

After the creation of the basis and the hopping matrix, one has to add the interaction
contributions and diagonalise the resulting matrix to obtain the groundstate. There are
two programs, one for real Hamilton matrices (non-twisted) chdiagREAL and one for
complex (twisted) ones chdiagCOMPLEX. Basically they are similar except that each
of them use the respective Arpack Arnoldi routine – for real symmetric or for complex
hermitian matrices – to solve the eigenproblem. It is sufficient to introduce one of them.
Calling chdiagREAL without arguments prints to the screen:

Usage: chdiagREAL -c <config-file>

-vbf <from:to:step>

-vbb <from:to:step>

-debug <0|...|5>

-o <outfile-prefix> (default is ’../results/arpack/result’)

-which <LA|SA|SM|LM...> (default is SA)

-ose <onsite energy> (default is 0)

-e <num evals> (default is 5)

-evec <num vecs> (default is 1)

The config file contains information of the matrix to be diagonalised and looks like:

basis = ../BASES/10-5-5-ff_bas.dat

matrix = ../BASES/10-5-5-ff_hop.dat

species = 2

lattice = 10

dimension = 63504

types = ff

for a non-twisted 10-5-5-ff system. The ‘vbf’ option specifies the range of the interaction
energy Vab to be calculated. ‘vbb’ is the interspecies interaction for bosonic systems Vaa.
One can tell the algorithm to compute the LargestAlgebraic, the SmallestAlgebraic, the
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SmallstMagnitude and the LargestMagnitude eigenvalues and the corresponding eigen-
vectors. As we are always interested in the smallest algebraic ones, this is the default
setting. The on-site energy option was used to check against our Mathematica results
because its algorithm for solving eigenproblems is not able to compute the smallest alge-
braic values but only those that are smallest in magnitude. With a sufficiently large shift
of the diagonal of the Hamilton matrix we could assure that the eigenvalue smallest in
magnitude equals the smallest algebraic one. The last two switches tell the routine how
many eigenvectors and eigenvalues are to be computed. The latest versions are also able
to generate compressed output files in order to save disk space. An output file usually
called coefficient file looks like this (exemplarily a 10-5-5-bf system):

{

II->{10},

SP->{2},

NN-> {5, 5},

FER-> {0,1},

VBF-> {0.00},

VBB-> {0.00},

OSE-> {0.00},

DD-> {504504},

which-> {SA},

EE-> { -16.4721359549996, -16.0901699437496, -16.0901699437495, ...},

CC-> { -0.0000118033989, -0.0000263932023, -0.0000263932023, ...

.

.

.

}

}

The array EE contains the eigenvalues and CC the coefficients of the Fock states.

A.3 Density Matrices

The programs for computing the density matrices make use of the features of C++ to
define classes. There is a header file ‘basis.h’ in which the classes are defined. The pri-
vate members of the class ’cFock’ are an array with the length of the lattice to store the
occupation numbers of each site, a boolean to distinguish between bosons and fermions,
an integer, needed for the calculations of the anticommutation relations, and overloads
for ‘=’ and ‘==’. There are several prototypes of methods which implement creation and
annihilation operators. The class ‘cBasisVector’ connects several (# of species) cFock
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classes to a basis vector (2.44) and (4.2). Its private members are the number of species,
the number of lattice sites, an array of cFock classes, an integer for its position in the
coefficient file and an unsigned long long for a hash value. We will explain the hash value
later on. Again, there are prototypes of methods to create and annihilate particles and
so on. Finally, the class ‘cBasis’ is an array of cBasisVector and provides a method to
read the basis file. The explicit methods are defined in ‘basis.cpp’ file. The files basis.h
and basis.cpp are used in different programs and provide a mapping of the quantum
mechanical operator formalism to C++.

Using these definitions, the program c2bdm becomes rather simple. It consists of a
loop over the dimension of the basis with creation and annihilation operators acting on
the groundstate. The problem is, that each time the operators act, and change the Fock
state, one has to search the whole basis to find that new Fock state and multiply the
coefficients. Again: For each matrix element, one has to do a loop over the dimension
and in each step of the loop, one has to search the whole basis for the newly created Fock
state. Note that in a system with I = 10 lattice sites one has to calculate I4 = 10000
matrix elements for the two-body density matrix. In our first implementation we simply
searched the basis in two directions from the actual unchanged Fock state. In the worst
case scenario the calculation time of a single matrix element increases with t ∝ D2.
Already in the 12-5-5-ff system with D = 627264 this was no longer feasible. Thus, we
had to improve the search algorithm. The idea is, to provide each Fock state with a
unique hash value and to sort the basis with respect to increasing hash values. For the
hash values we use a number system with the base ‘maximum number of particles per
site (nmax) +1’. For a fermionic system this is the binary number system, for example.
With the number of species S, the number of lattice sites I and the occupation number
of the i-th site and the s-th species ni,s, the hash value h of a Fock state reads:

h =
S∑

s=1

I∑

i=1

ni,s · (nmax + 1)(i+s·I) (A.1)

After calculating a Fock state and its hash value, we are immediately able to decide
wether to jump up or down. The jump target is the middle of the remaining Fock states.
The time required for the search is thus reduced to t ∝ ln(D)/ln(2).

The output file is similar to the coefficient file, but instead of the coefficients, the values
of the matrix elements are stored. Calling c2bdm without arguments prints to the screen:

Usage: c2bdm -c [config-file] -b [1|2|mix] -part [dd|cor|full] -v [<from:to:step>]
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-m [list-name]

-b: Which Block of the Matrix should be computed ?

1 = upper left

2 = lower right

mix = 1st & 3rd Quadrant (default is mix)

-part: dd = density-density part

cor = correlation part

full = full matrix (default is full)

-m: Output in Mathematica-Rule-Format (list->{...}) optional

list-name (default: twobody)

A.4 Transformation of the Hopping Matrix (Varying

Θ)

The transform hop program is used to calculate hopping matrices with varying twist an-
gles Θ (e.g. figure 3.5 or figure 4.12). Calling without arguments transform hop prints
to the screen:

Usage: transform_hop -M [filename of hopping matrix]

-T twist angle [from:to:step] -N sites

For the diagonalisation, there is a modified program called chdiag transform that simply
has an additional switch which specifies the twist angle Θ to be computed.

A.5 Simple Observables

Observables that are directly accessible from the groundstate, like the mean occupation
number, fluctuations and the maximum coefficient are calculated with cobs. Calling
without arguments prints:

Usage: cobs -c [config-file] -vbb -vbf [<from:to:step>]

The results are also stored using Mathematica rule format.

The various C++ programs were accompanied by some helpful Perl scripts (e.g., to
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manipulate the data files or to start multiple calculations) and a handful of Mathemat-
ica notebooks which we consider not being worth to be explained in detail.
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