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Abstract

The Unitary Correlation Operator Method (UCOM) provides a novel route towards ab
initio nuclear structure calculations starting from realistic NN-potentials. The dominant
short-range central and tensor correlations are described explicitly by a unitary transfor-
mation. The application of UCOM in the context of the no-core shell model provides
insight into the interplay between dominant short-range and residual long-range corre-
lations in the nuclear many-body problem. The use of the correlated interaction within
Hartree-Fock and Fermionic Molecular Dynamics proves its applicability for nuclear
structure calculations across the whole nuclear chart.
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1 Introduction
In recent years several realistic nucleon-nucleon interactions like the Argonne V18 and the
CD Bonn potentials have been constructed on the basis of high-precision nucleon-nucleon
scattering data. These potentials are used in ab initio nuclear structure calculations, e.g., in
the framework of the Green’s function Monte Carlo method which are presently feasible for
nuclei up to mass numbers A . 12 [1]. The use of these realistic potentials for nuclear struc-
ture studies in heavier nuclei poses an enormous challenge. Traditional many-body methods,
like Hartree-Fock or the multi-configuration shell-model, cannot be used in connection with
the bare NN-interaction. The reason is the inability of the restricted model spaces to describe
the dominant correlations, which are present in the exact many-body eigenstates.

The two most important types of correlations manifest themselves in the deuteron al-
ready. Figure 1 depicts the diagonal elements of the spin-projected two-body density matrix
ρ

(2)
1,MS

(r) for the deuteron calculated with the AV18 potential. Two prominent features of
the two-body density distribution are evident: (i) a complete suppression at small relative
distances r and (ii) a pronounced angular structure relative to and depending on the spin
orientation.

The suppression of the two-body density at small interparticle distances is a direct sig-
nature of the central correlations induced by the repulsive core in the central part of the
realistic potential. For energetic reasons the nucleons avoid the repulsive core which results
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Figure 1: Spin-projected two-body density ρ
(2)
1,MS

(r) of the deuteron, calculated with the
AV18 potential. Shown is an iso-density surface for 0.005 fm−3 (taken from [2]).

in a suppression of the probability density for finding two nucleons at small distances. The
pronounced angular structure is a manifestation of tensor correlations. Depending on the
relative alignment of the spins of proton and neutron (parallel for MS = ±1 or antiparallel
for MS = 0) the spatial two-body density distribution changes dramatically. For MS = 0, the
probability density is concentrated in the plane perpendicular to the spin direction (dough-
nut), whereas the probability density for MS = ±1 is largest along the spin axis (dumb-bell).
The situation is analogous to the classical dipole-dipole interaction: for parallel dipoles the
interaction energy is minimal if the distance vector is parallel to the dipole orientation. For
anti-parallel dipoles the distance vectors perpendicular to the dipole moments are energeti-
cally favoured. Neither of these correlations can be modelled by a single or a superposition
of few Slater determinants. Therefore, a naive inclusion of the bare realistic NN-potential
into a Hartree-Fock or multi-configuration shell-model calculation has to fail.

2 Unitary Correlation Operator Method
The basic idea of the Unitary Correlation Operator Method (UCOM) is to include the domi-
nant correlations into the many-body state by means of a unitary transformation [3, 4, 2, 5].
Starting from an uncorrelated many-body state |Ψ〉, in the simplest case just a Slater deter-
minant, a correlated state |Ψ̃〉 is defined through the application of the unitary correlation
operator C:

|Ψ̃〉 = C |Ψ〉 . (1)

Alternatively, one can perform a similarity transformation of the operators of all relevant
observables (e.g. the Hamiltonian, coordinate and momentum space densities, transition
operators, etc.):

Õ = C†OC . (2)
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Due to unitarity both approaches are equivalent. For most many-body calculations the for-
mulation through correlated operators is, however, more convenient.

We decompose the correlation operator C into a central correlator Cr and a tensor corre-
lator CΩ, reflecting the two dominant types of correlations in the many-body problem:

C = CΩCr = exp
[
− i

∑

i<j

gΩ(ij)
]
exp

[
− i

∑

i<j

gr(ij)
]

. (3)

Both operators are defined as exponentials of Hermitian two-body generators gΩ and gr,
respectively. They are given in a closed analytic form which reflects the mechanism by
which correlations are induced by the interaction.

Central Correlations. The task of the central correlator Cr is to generate the hole in the
two-body density distribution at small particle distances caused by the strong repulsive core
in the central part of the interaction. Pictorially speaking, Cr has to shift those pairs of
particles, which are closer than the core radius, apart from one another. The two-body gen-
erator for this distance-dependent shift can be written as gr = 1

2
[s(r)qr + qrs(r)], where

qr = 1
2
[q · (r/r)+ (r/r) ·q] is the radial component of the relative momentum q of a particle

pair. The function s(r) determines the distance-dependence of the shift. It is large for small
r and vanishes for large distances.

Tensor Correlations. The tensor correlation operator CΩ has to generate the complex
angular structure of the two-body density distribution with respect to the spin orientation.
Two nucleons with parallel spin are preferentially oriented with their relative position vec-
tor aligned with the spin. Nucleons with antiparallel spins prefer relative position vectors
perpendicular to the spin direction. The tensor correlator has to generate this angular shift
towards or away from the spin direction. An essential ingredient is the component of the
relative momentum q perpendicular to r, the so-called orbital momentum qΩ = q − r

r
qr.

The generator has the form gΩ = 3
2
ϑ(r)

[
(σ1 · qΩ)(σ2 · r) + (r ↔ qΩ)

]
which is similar to

the tensor operator. The function ϑ(r) describes the magnitude of the shift as a function of
distance.

Correlated Operators and Cluster Expansion. For the following many-body calcula-
tions, the notion of correlated operators is advantageous. The operators of all observables
under consideration have to be transformed consistently. Since the correlation operators are
defined as exponentials of two-body operators, the correlated operators contain irreducible
contributions for all particle numbers. We organise the different irreducible terms according
to their rank in a cluster expansion

H̃ = C†HC = H̃[1] + H̃[2] + H̃[3] + · · · . (4)

Here we used the Hamiltonian H = T + V as an example, but the same holds true for any
other operator. If the range of the correlators is sufficiently small compared to the average
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particle distance in the many-body system, three-body and higher order terms in the cluster
expansion are small and we can restrict ourselves to the two-body approximation

H̃C2 = T̃[1] + T̃[2] + Ṽ[2] = T + VUCOM , (5)

where T̃[1] = T and T̃[2] are the one- and two-body contributions of the correlated kinetic
energy, resp., and Ṽ[2] is the two-body part of the correlated NN-potential. All two-body
contributions are subsumed in the correlated interaction VUCOM. It is by construction phase-
shift equivalent to the original, uncorrelated NN-potential as long as the correlators have
finite range.

Optimal Correlation Functions. The remaining task is the determinantion of the correla-
tion functions s(r) and ϑ(r) entering into the generators of the unitary transformations. For
each spin-isospin channel they can be obtained from an energy minimisation in the two-body
system. This procedure and the optimal correlators for the Argonne V18 (AV18) potential
are discussed in Ref. [5]. The tensor correlation functions require a special treatment. Be-
cause of its relation to the one-pion exchange, the tensor force is long-ranged, and so are
the tensor correlations induced in the two-body system. In a many-body system, the long-
range component of the tensor correlations between two nucleons will be screened due to
the presence of other nucleons. In anticipation of this effect, we restrict the range of the
tensor correlator by a constraint on the integral of the correlation function, Iϑ =

∫
dr r2ϑ(r).

Hence, only short-range correlations are described explicitly by the unitary transformation.
Long-range correlations have to be covered by the many-body states—this will be illustrated
in the following sections.

3 No Core Shell-Model Calculations
As a first application of the correlated realistic interaction VUCOM we consider a straight-
forward no core shell-model diagonalisation within a harmonic oscillator basis. The shell
model itself is able to describe part of the many-body correlations, depending on the size of
the model space. Hence the dependence of the energy on the model-space size provides in-
formation on the role of short-range correlations and on the contribution from residual long-
range correlations. For the calculations we employ the translationally invariant no-core shell
model code developed by Petr Navrátil [6], but without using the Lee-Suzuki transforma-
tion. The computation of the relevant two-body matrix elements of VUCOM in the harmonic
oscillator basis and further results are discussed in Ref. [5].

Figure 2 shows the ground state energy of 4He as a function of the oscillator parameter
~Ω for different sizes of the model space, characterised by the maximum relative oscillator
quantum number Nmax. The upper panel correspond to a calculation with the bare AV18 po-
tential. Evidently, even for the largest feasible model spaces, the energy does not converge.
The reason is that a full description of short-range central and tensor correlations requires
even larger model spaces, which are computationally not tractable anymore. The picture
changes if we use VUCOM, i.e., include the unitary transformation of the Hamiltonian. The
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Figure 2: Results of no-core shell model calculations using the correlated AV18 potential.
Left panel: convergence of the ground state energy of 4He for bare (upper plot) and correlated
AV18 potential (lower plot). Right panel: Tjon-line and dependence of the energy on the
correlator range as described in the text (taken from [5]).

convergence is dramatically improved since now the short-range central and tensor correla-
tions are treated explicitly by the unitary correlation operator. Note, that a bound nucleus
is already obtained with a single Slater determinant (i.e. Nmax = 0). With increasing size
of the model-space, the ground state energy is lowered further. This is the result of the im-
proved description of long-range correlations—not accounted for explicitly by the unitary
transformation—by the model space.

A second interesting aspect is illustrated on the right-hand side of Fig. 2, where the
converged ground state energies of 3H and 4He are plotted. Each data point corresponds to
a different interaction. The exact energies for the different bare NN-interactions, like the
AV18, the CD Bonn and the Nijmegen interactions (circles), fall onto the so-called Tjon-line
[7] but are far away from the experimental point. Three-nucleon interactions (diamonds)
are needed to obtain binding energies in the experimental region. The exact energies for
the correlated interaction VUCOM based on AV18 (triangles) depend on the range Iϑ of the
triplet-even tensor correlation function. With increasing range the energy is lowered and the
full Tjon-line is mapped out. This is related to the omission of three-body (and higher-order)
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Figure 3: Ground state energy of various closed shell nuclei obtained with the correlated
AV18 potential within a HF calculation (circles) and in HF + MBPT (squares and diamonds)
in comparison to experimental binding energies (bars) (taken from [8]).

terms in the cluster expansion of the correlated Hamiltonian. If these terms were included,
the energies would be exactly the same, independent of the correlator range, because of the
unitarity of the transformation. The fact that the range of the tensor correlator can be chosen
such that the energies are close to experiment (e.g. for Iϑ = 0.09 fm3) can be explained by a
cancellation between genuine three-body forces and the induced three-body contributions of
the cluster expansion. In other words, the impact of the net three-body force on the binding
energies can be minimised by a proper choice of the correlator range.

4 Hartree-Fock & Many-Body Perturbation Theory
Using the correlated AV18 interaction we can also perform Hartree-Fock (HF) calculations
of nuclear ground states throughout the whole nuclear chart. Since the HF many-body state
(Slater determinant) alone is not able to describe any many-body correlations, the use of bare
realistic interactions does not lead to bound nuclei. The explicit inclusion of the short-range
correlations via the unitary correlation operators is inevitable.

We have implemented the HF scheme in the harmonic-oscillator representation, using
the translationally invariant Hamiltonian Hint = T − Tcm + VUCOM, where VUCOM contains
charge-dependent and Coulomb terms [8]. The results for ground state energies of closed-
shell nuclei ranging from 4He to 208Pb are depicted in Fig. 3. The optimal correlator for Iϑ =
0.09 fm3 is used, and the single-particle basis includes 12 major oscillator shells. Evidently
the HF binding energies are significantly smaller than the experimental ones. This is not
surprising, since residual long-range correlations as they appeared in the no-core shell model
calculations, have not been accounted for.

An estimate for the impact of residual long-range correlations on the binding energies can
be obtained within many-body perturbation theory. The evaluation of the second and third
order perturbative contribution on top of the HF result is straightforward [8]. Figure 3 sum-
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marises the results for the ground state energies including second order correlations (for light
nuclei also third order). Again, 12 major oscillator shells are included to obtain a satisfactory
degree of convergence for the perturbative correction. The agreement with the experimental
binding energies is remarkably good throughout the whole mass range. The absence of any
systematic deviation for larger mass numbers proves that the cancellation between genuine
three-body force and induced three-body contribution, which we observed in the no-core
shell model for light isotopes, works throughout the whole nuclear chart. Furthermore, the
calculations establish the perturbative character of the long-range correlations. Note that a
perturbative treatment of the short-range correlations is not possible—in our approach they
are covered by the unitary correlation operators from the outset.

This opens promising perspectives for the application of other, more refined many-body
schemes. The HF solution serves as a starting point for various, more refined methods for
the description of nuclear structure and nuclear excitations. We have performed RPA cal-
culations using the same correlated interaction employed here. Large-scale shell-model and
Configuration Interaction type calculations are in preparation.

However, the good agreement with experimental data does not hold for all observables.
The charge radii obtained in HF for heavier nuclei are too small in comparison to experiment
[8]. The inclusion of perturbative corrections improves the result but still leaves a deviation
of up to 1 fm for the heaviest nuclei. This is an indication that a net three-body force is
needed to reproduce all observables, although its impact on the energy might be small. This
issue is the topic of future investigations.

5 Fermionic Molecular Dynamics
In addition to nuclear structure methods working with standard orthonormal single-particle
bases, approaches using nonorthogonal Gaussian single-particle states offer a powerful tool
for the investigation of strong intrinsic deformations and clustering phenomena. These can
be viewed as special types of long-range many-particle correlations, that are very difficult to
describe, e.g., in a standard oscillator basis.

To demonstrate this, we perform nuclear structure calculations in the A . 60 region
using the Fermionic Molecular Dynamics (FMD) approach [9]. The many-body trial state is
given by a simple Slater determinant as in a standard HF scheme

|Q〉 = A( |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qA〉) . (6)

The coordinate space part of the single-particle states,

|q〉 =
n∑

ν=1

cν |aν , bν〉 ⊗ |χν〉 ⊗ |mt〉 , (7)

however, is given by localised Gaussian wave packets 〈x|aν , bν〉 = exp[−(x − bν)
2/(2 aν)]

with a complex vector bν encoding the mean position and mean momentum of the wave
packet and a complex width parameter aν . Several wave packets with different spin orien-
tations |χν〉 can be superposed to enhance the flexibility of the single-particle trial states.
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Figure 4: Deviation from the experimental binding energy per nucleon (upper panel) and
charge radius (lower panel) for various stable isotopes. Shown are the results with one Gaus-
sian per nucleon (upper circles) and with two Gaussians per nucleon (lower circles) (taken
from [2]).

These trial states prove to be extremely versatile: spherical shell-model type states as well as
intrinsically deformed and α-cluster configurations can be described.

We perform the large-scale variational calculation (all parameters of all single-particle
states are varied independently) using the correlated AV18 interaction. As the standard HF
calculations in Sec. 4 show, we cannot expect agreement with experimental data without the
inclusion of long-range correlations. Owing to the non-orthogonal character of the single-
particle basis, this is not easily possible within FMD. Therefore, as a pragmatic approach,
we supplement the correlated interaction by a phenomenological correction adjusted to the
binding energies and radii of a few magic nuclei. The details are discussed in [2].

The variational energies and charge radii for nuclei up to A ∼ 60 are summarised in Fig.
4. Over all, the binding energies and the charge radii show a nice agreement with experimen-
tal data. Sizable deviations from the experimental binding energies appear for p-shell and,
to a lesser extent, for sd-shell nuclei. This deviation has two origins: (i) A single Gaussian
wave packet for the wave function of each nucleon is not optimally suited to describe the
exponential tails of the wave functions common for light isotopes. A generalisation of the
single particle trial-states by considering a superposition of two Gaussians leads to a signifi-
cant improvement as illustrated in Fig. 4. (ii) Away from the magic numbers the variational
ground states exhibit strong intrinsic deformations.

The intrinsic one-body density distributions for selected nuclei are depicted in Fig. 5.
Apart from the spherical symmetric distributions for the doubly magic nuclei, pronounced
intrinsic deformations and α-clustering appear. A projection of these intrinsic states onto
angular momentum eigenstates becomes necessary and leads to a further reduction of the
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Figure 5: Intrinsic one-body density distributions for various isotopes obtained in variational
ground state calculations in the FMD framework (taken from [2]).
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ground state energy. At the same time one obtains information on collective rotational states.
A detailed discussion of angular momentum projection and multi-configuration calculations
within the UCOM/FMD framework is presented in Refs. [2, 10, 11].

6 Conclusions
The Unitary Correlation Operator Method is a promising tool to facilitate nuclear structure
calculations on the basis of realistic NN-potentials. The dominant short-range central and
tensor correlations are described explicitly by a unitary transformation, which can be used
to derive a correlated interaction VUCOM. Residual long-range correlations have to be ac-
counted for by the model space, which due to their perturbative character can be achieved
in a variety of many-body approaches. The application of VUCOM in different many-body
approaches—ranging from the no-core shell model via Hartree-Fock and perturbation the-
ory to Fermionic Molecular Dynamics—opens new perspectives for a unified understanding
of nuclear structure.
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