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One of the prime goals of modern nuclear theory is thenent. This result is remarkable given that we use a pure
description of low-energy nuclear structure on the basis afvo-nucleon interaction/ycowm, for these calculations. For
QCD-motivated realistic nucleon-nucleon interactions. F all bare realistic NN interactions it is known that neither
p-shell nuclei this can be achieved, e.g., within the ab inithe ground-state energy nor the structure of the spectrum
tio no-core shell model (NCSM), which provides an esserare reproduced without including a three-nucleon interac-
tially exact solution of the quantum many-body problention. One example is the ground state spin@® which
[1]. However, to cover the nuclear chart beyond the p-shel wrongly predicted to bd™ when omitting the three-
one has to resort to approximate many-body schemes. Iody interaction [5]. The correlated interactibpcom re-
contrast to the NCSM, those approaches cannot descripeduces these subtle phenomena already on the two-body
the strong short-range correlations induced by realistic i level through its momentum dependence. This demon-
teractions and, therefore, rely on effective interactions strates that the UCOM transformation provides a powerful

One scheme to derive a universal phase-shift equivand practical way to reduce the impact of the three-body
lent effective interaction is the unitary correlation operpotential by transforming it into a momentum dependence.
ator method (UCOM) [2]. The short-range central and
tensor correlations are described explicitly by a system- References
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gence with increasing model-space size. (ii) The size of
the net three-body interaction, which is the sum of the bare
three-body interaction and the repulsive three-body terms 10r
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induced by the unitary transformation, can be controlled - —— 6L

via the range of the tensor correlation operator. In partic- | _ —_— ’
ular one can choose the correlation operator such that thes 6 = ——— - |
net contribution of the total three-body interaction to the é I —_—— =¥
energy is minimal. This was done in NCSM calculations " P L N I I — :éi—
for three- and four-body systems [2]. Heavier nuclei have (B — .
been studied using thigycom in Hartree-Fock-based ap- 2r - — 34
proaches employing perturbation theory or RPA ring sum- I o = 18MeV T
mations to include long-range correlations [3]. O =S T e 0 we e es ws e T

Here we employ the ab initio NCSM to obtain de- o e e 0w s oo
tailed spectroscopic information for p-shell nuclei based 6f 10g —_— i

Vucowm. In order to enhance convergence further, the Lee- I
Suzuki transformation has been used. All calculations have | * =

been performed using theNMOINE code [4]. =

Figure 1 depicts the spectratifi and '°B obtained with = - S
Vucow for different model-space sizes ranging from.to wo| 2 — —_—
14hw and8hw, respectively. The right-hand column repre- s _——
sents the experimental spectrum. For both cases, the spec- | ‘ =l
tra are very stable w.r.t. model-space size and oscillator hw = 18MeV

frequency and in good agreement with experiment. Also 2T T
the absolute ground state energy agrees well with exper-

Figure 1: Spectrum diLi (top) and'°B (bottom) obtained
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