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Abstract

Recent developments in modern nuclear structure theogrdag the construction of phase-shift equiva-
lent effective interactions and their useaininitio calculations are discussed. Two methods for the construc-
tion of tamed interactions via unitary transformationsrasgéewed and compared: the Unitary Correlation
Operator Method and the Similarity Renormalization Grdeyrthermore, we present a simple importance
truncation scheme within the no-core shell model, whiclegigccess to nuclei well beyond the p-shell.
Using the interactions discussed before, we show resultgémnd-state energies of closed-shell nuclei up
to “°Ca.
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1. Introduction

One of the prime goals of modern nuclear theory is to gairghtsinto the multitude of nu-
clear structure phenomena throughout the nuclear chang astonsistent theoretical framework
with a direct link to the fundamental theory of strong intti@ns. Though low-energy quantum
chromodynamics (QCD) will not be solved directly for a naelenany-body problem for the
forseeable future, important steps towards a truly QCethasiclear structure theory are being
made. From the point of view of conventional nuclear streetheory the low-energy dynamics
of quarks and gluons determines the interaction betweeleons. There are recent attempts to
directly extract a nucleon-nucleon interaction from EtQCD calculations of the two-nucleon
system [1]. A more established strategy for constructingC®enotivated nuclear interaction is
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provided by chiral effective field theory. Based on a chiragtangian, which includes the long-
range pion dynamics explicitly and absorbs short-rangsigbyn contact terms, consistent two-
and three-nucleon interaction have been derived [2,3].

The challenge now is to employ these interaction in nucleactire calculations throughout
the nuclear chart. Apart from the lightest nuclei, the ald@g approaches for the treatment of
the many-body problem are generally not able to provide eqyed results based on traditional
realistic interactions like the Argonne V18 potential [4]tbe recent chiral interactions. For this
reason, ‘effective’ interactions which are derived frone thare’ interactions using similarity
transformations are an important intermediate step. Antleoge transformation methods are the
Lee-Suzuki transformation used extensively in the coméxihe no-core shell model [5,6] and
renormalization group methods leading to thg, low-momentum interaction [7]. We are going
to discuss two alternative methods, the Unitary Correta@perator Method and the Similarity
Renormalization Group in the following section.

2. Unitarily Transformed Realistic I nteractions

The description of short-range correlations poses a pdatiproblem when solving the nu-
clear many-body problem based on conventional realisteréctions. As the wavefunction of
the deuteron indicates, the short-range repulsion of thenpial suppresses the two-body density
at small interparticle distances and the tensor force geéegthe D-wave admixture. These fea-
tures are also present in exact solution of the many-nugdeoinlem. In terms of an expansion
of the exact eigenstates in a basis of Slater determinagtspethe context of the no-core shell
model in a finite Vmaxh$) space, a huge number of basis states involving high-lyiagestare
required for an adequate representation of these cordedtdées. Apart from the lightest nuclei
this is computationally not feasible. For heavier nuclerelg on simplified model spaces, which
cannot account for short-range correlations and thus pitathie direct used of ‘bare’ realistic
interactions.

One strategy to tackle this problem is to ‘tame’ the initiatleiraction using a unitary trans-
formation. The transformation has to suppress the compsiéthe interaction which generate
short-range correlations. In terms of many-body matrixmeets of the Hamiltonian, this can be
viewed as a pre-diagonalization leading to a substantiptérement of the convergence behav-
ior in a no-core shell model picture. For this purpose, ohly $ystem- and state-independent
short-range part of the interaction-induced correlatioesds to be considered—residual long-
range correlations can be described quite efficiently wiiinple model spaces.

These transformations can be constructed such that theimegueally constrained on-shell
properties of the initial potential, i.e. the asymptoticaph shifts, are exactly preserved. The
resulting tamed potential thus is phase-shift equivalgntdnstruction and can be viewed as a
realistic interaction in its own right.

2.1. Unitary Correlation Operator Method

The idea of the Unitary Correlation Operator Method (UCOBLY] is to explicitly construct
a unitary operato€, which imprints the dominant short-range correlation®ant uncorrelated
many-body staté¥) via the transformation

W) = C|). 1)
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Already the deuteron allows us to identified the two domirtgpés of short-range correlations
that C has to account for: (i) central correlations induced by thersrange repulsion of the
NN interaction which suppress the two-body density at simberparticle distances; (ii) tensor
correlations induced by the strong tensor force which geesrthe D-wave admixture or, in
other terms, a correlation between the relative spatiaintation of the two nucleons and their
spins.

Guided by this physical picture of the origin and the struetf central and tensor correlations,
we can construct unitary operators for describing them.CEmgral correlations can be generated
by a radial shift in the relative coordinate of a nucleonrRictorially speaking, if two nucleon
are within the region of the short-range repulsion, thenridwesformation has to push then apart.
This kind of distance-dependent shift is described by th&gnoperator

Cr = eXp[ - lz gr,ij} with gr = %[S(Y)QT + qrs(r)] ’ (2)
i<j

whereq, = i[q - (r/r) + (r/r) - q] is the radial component of the relative momentgrof a
particle pair. The functios(r) determines the distance-dependence of the shift and iswietd
for each spin-isospin channel from a variational calcatatn the two-body system.

The unitary operator inducing tensor correlations has fleaethe non-central nature of the
tensor force in order to generate admixtures of state withtive orbital angular momentum
L + 2. This is achieved with the following operator

Cq = eXp[ - iZgQ,m} with  go = gﬁ(r) [(e1-do)(2 1)+ (r = ag)] . (3)
i<j
whereqq = q — T q, is the component of the relative momentgrperpendicular ta. Similar
to the central correlatoi}(r) describes the magnitude of the transformation as a funcfon
distance.

The combined effect of the two transformatidns= C,C,. on a simplistic relative wavefunc-
tion in the deuteron channel is illustrated in Fig. 1. Wetdtam a smoothl. = 0 wavefunction,
which represents an uncorrelated state of a limited modaesprhe unitary transformation with
the central correlation operat@y,. creates the correlation hole at short interparticle distayy
shifting the probability amplitude to larger distanceseTiknsor correlation operatof, cre-
ates theL. = 2 admixture out of the initialL. = 0 state with an radial shape determined by
the functiond(r). In order to reconstruct the full deuteron wavefunctiontévesor correlation
functiond(r) has to be long-ranged (dashed curves). These long-rangerteorrelations are
an artifact of the two-body system—embedded into a manylsgdtem the long-range tensor
correlations will be destroyed by tensor interactions wither nucleons. We therefore constrain
the range of the tensor correlation function (solid curve) ase the value of the volume integral
Iy = [ drr?9(r) as a parameter, which will be fixed in subsequent few-bodyutations.

Using the explicit form of the correlation operai@r we can directly formulate the unitarily
transformed Hamiltonian in two-body space (2B)

ﬁ:CTHCzCT(T—i-V)Cz:BT-i-VUCOM, (4)

which defines the tamed or correlated two-body interactipaom. We will come back to the
induced three-body contributions lateron. The fact €hat given in an explicit operator represen-
tation is very convenient: It allows us to derive a closedrafme form of the correlated interac-
tion Vycowm. Furthermore, operators of other observables, e.g. dendiorm factors, transition
amplitudes, and exchange currents, can be correlatedstemty without additional effort.
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Fig. 1. Construction of the deuteron wavefunction in the WCfLamework. Starting from a smooth uncorrelated wave-
function (a) the subsequent application of the central flo) tansor correlation operator (c) leads to a realistic eteat
wavefunction. The functions(r) and¥(r) determining the distance dependence of the transfornsatiom shown in
panels (d) and (e), respectively.

As mentioned earlier, the tamed interacti@pcom is phase-shift equivalent to the original
potential but has a different off-shell behavior. In an @per representation, higher-order mo-
mentum operators and momentum-dependent tensor opeapieear, which are not present in
the usual parameterizations of realistic potentials.

2.2. Similarity Renormalization Group

The Similarity Renormalization Group (SRG) as a second otktlsing unitary transforma-
tions to tame the interaction starts from a completely dififie background. Originally proposed
by Wegner [10,11] in the context of solid-state systemsnitsaat the pre-diagonalization of the
Hamiltonian with respect to a given basis using renormtbmegroup flow equations. Denoting
the flow parameted, the evolution of the Hamiltonian is described by the flowattpn [12]

dH(a)

o [n(c), H(e)], H(0) =H. )

Formally we can express the evolved Hamiltorlia) via a unitary transformation of the initial
HamiltonianH(0) = H
H(a) = U(a)HUT(0) Z T + Vsra(a) (6)

where alle-dependent contributions have been absorbed in the refipethnteractiorVsge(«).

Again, the choice of the generatgi) is crucial. Whereas the UCOM transformation is based
on a static generator, the generator of the SRG transfasmatianges dynamically during the
flow evolution. A simple choice for the generator was sugepkbty Szpigel and Perry [13] and
used by Bogneet al.[14]

(@) = [T, Fi(@)] = 5-{a?, Fi(a) ™
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which aims to diagonalize the two-body HamiltoniBifc) in a basis of eigenstates of both
p2 andL?. Hence, in a partial-wave momentum-space bégid.S).J T') this generator drives
the matrix elements towards a band-diagonal structure mepect to(q, ¢’') and (L, L’). The
flow equation (5) can be easily solved in this partial-wavenmantum-representation yielding
momentum space matrix elements of the evolved Hamiltonian.

Already on the formal level, we can relate the SRG schemegt®tbOM transformation. Let
us assume a realistic NN interaction given in an operataesgmtation similar to the Argonne
V18 potential. The most relevant components for this carsition are the central and the tensor
part of the interaction. If we formulate the initial Hamitian with this type of interaction and
evaluate the initial generatg(0) via the commutator relation (7) we easily obtain [12]

“in(0) = 3 [aS0) + S)a] + 500 (1 ag)ex ) + o ag)] . @

This corresponds exactly to the structure of the centraltandor generators that were con-
structed in the UCOM approach based on physical considesatin the structure of short-range
correlations. Both approaches address the same physit@ifrange correlations. We utilize
this connection to derive correlations funcitons in the WC®amework, which correspond to
the full SRG evolution up to a given flow parameter

2.3. Three-body interactions

So far, we have evaluated both unitary transformations, MG0d SRG, in two-body space
discarding induced interactions beyond the two-body lewien formulating the transforma-
tions in a general-body space, one inevitably generates three-body, fodyband higher-
order interactions even if the initial Hamiltonian only ¢aims a two-body force. Formally, we
may write the transformed Hamiltonian #xbody space in terms of a cluster expansion

H = CT(T + Vn + Van)C
= T 4 (TP 4+ V) + (TP + V& + VR + - ©)
:T+Vucoy\/|+VL[féOM+"' ,

where we have used the UCOM notation and assumed an initralltdaian containing a two-
and three-nucleon force. In addition to the tamed two-batractionVycom a three-body con-
tribution VE”(]:OM is generated. It contains induced three-body terms otligigdrom the trans-
formed kinetic energy, from the transformed two-body iattion, and from the transformed
three-body interaction. Ideally the full three-body imtetion—and possibly even higher-order
contributions—would be taken into account when solvingttay-body problem. Although the
induced three-body contributions are formally well defingebir inclusion in an actual many-
body calculation is a challenging task. The solution of trengrbody problem would simplify
tremendously if the effect of the three-body contributicosild be reduced, i.e., if one could
choose the unitary transformation such that the diffedergd-body contributions, most notably
the genuine three-body interacti(y’ri:’;\], which is generally attractive and the induce three-body

termsTE) + V,[\f’,]\‘ which are repulsive, cancel eachother.

Evidence that this is possible is provided by no-core sheltieh calculations in few-body
systems [15] using the two-body part of the unitarily tramsfed interactions only. If all contri-
butions were included, then the energy spectrum of thefwemgd and the initial Hamiltonian
would be identical because of unitarity. If we can find a tfarmeation that reproduces the energy
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Fig. 2. Binding energies otH and*He obtained in the no-core shell model [15] for differdRtcom (full circles) and
Vsre (open circles) two-body interactions derived from the Ange V18 potential. The labelled symbols in the upper
part correspond to calculations with ‘bare’ interactiotie crosses around the experimental point indicate refrlts
different two- plus three-body interactions [16].

eigenvalues of the initial Hamiltonian using only the twodly part of the transformed Hamilto-
nian, then the omitted higher-order terms must have vamjstontributions to the energy (not
necessarily to the states).

This is illustrated in Fig. 2, where the ground state energie®H and*He are shown for
different ‘bare’ potentials and the ‘tamed’ potentialsaibed in the UCOM and the SRG frame-
work. As function of the rangé, of the tensor correlation functions and of valu®f the final
flow parameter, respectively, the calculations with thagfarmed potentials span the Tjon line.
For specific values of the parameter, the two-body potenyigld binding energies comparable
to the experimental values and to results with conventibme} plus three-body interactions.
Thus it is possible to choose a transformation for the whitdcgvely minimizes the impact of
higher-order interactions [17].

3. Importance Truncated No-Core Shell M odel

These tamed interactions are the ideal input for differeartyrbody approaches, ranging from
the no-core shell model to Hartree-Fock based methodsideidy, we have shown that self-
bound nuclei are obtained already on the level of HartreekF8], although long-range corre-
lations cannot be described. Their inclusion via low-onak@ny-body perturbation theory [18]
or RPA ring-summations [19] leads to binding energies whi@hin agreement with experiment
throughout the whole nuclear chart. This shows that themization of three-body contributions
to the energy in the case of UCOM still works for heavier nucle

Here we discuss a scheme to extend the range of the no-cdmnsidel to nuclei well beyond
the p-shell [20]. The limiting factor for full no-core sheflodel calculations is the dimension of
the model space, which grows dramatically with particle bemand maximum excitation level
Nuaxh€). Therefore, converged no-core shell model calculatioagpagsently limited to the p-
shell. Most of the basis states included in these model spaeerrelevant for the expansion of
any particular eigenstate, i.e. their amplitudes are zeextwemely small. If one would exclude
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Fig. 3. Importance truncated no-core shell model calautatifor *He, 160, and“°Ca for an oscillator frequency
hQ = 20 MeV using theVycowm interaction fixed in the three- and four-body system. Shorenexact no-core shell
model results (+) and results for an importance truncatedeirgpace with up to 2p2h), 3p3h @), and 4p4h i)
excitations [20].

those irrelevant basis states from the outset, then therdiioe of the eigenvalue problem could
be reduced to a tractable size. A quantitaiariori measure for the imporantance of individual
basis states can be constructed within many-body pertarbteory. Starting from a reference
state | Uef) which provides a zeroth-order approximation of the eigatesive are interested in,
we can estimate the contribution of other basis stades via first order perturbation theory.
This defines the importance measuge= —(®,| H' |Vrer) /(e — €ret), whereH’ describes the
Hamiltonian associated with the perturbation apdand . the unperturbed energies of the
configurations. These quantities depend on the partitgpofrthe Hamiltonian and the nature of
the reference state which can be a superposition of manlyrsloellel basis states itself.

When starting from the single shell-model Slater determiiaa reference state then the im-
portance measure provides nonzero importance weightfantpnfigurations containing up to
2p2h excitations. In order to access highenh-states, we embed the construction of the im-
portance truncated space into an iterative scheme. In dtdration all important basis states up
to the 2p2h-level are constructed and the eigenvalue prolsighis space is solved. Using the
dominant components of the resulting eigenvector as a nfarerece state, we construct a new
importance truncated space which then contains up 4p4hemafions. This iterative procedure
can be repeated until the reference state does not changeemyin the limits,,;, = 0 this
procedure generates the full no-core model space. In peast# will perform calculations for
several values of ,;;;, > 0.00005 and extrapolate the eigenvaluesitg;,, = 0.

Results for the ground-state energiedldé, 10, and*’Ca as function of the model space size
Npax Obtained withVycom are summarized in Fig. 3. For these calculations we haveatest
ourselves to one iteration of the aforementioned cycle thattthe model space is limited to 4p4h
configurations. In comparison to full no-core shell moddtatations performed with Antoine
[21] (black crosses) the dramatic reduction of the modetsmhmension allows us to work in
much largerV,,...h$2 spaces.

This simple scheme has several advantages: Since we sokigemvalue problem in a re-
stricted basis, we have direct access to the ground statelhasato excited states. The scheme
can be viewed as a variational calculation using an adapi®estate, the variational princi-
ple guarantees that we obtain an upper bound for the examyee@genvalues. Since we start
from a completeV,,..h€2-space, spurious center-of-mass excitations are absdntvarhave
verified that the importance truncation does not genera thrtificially. We directly obtain a
shell model representation of the wavefunction which casilyebe used to compute further ob-
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servables. Apart from simple expectation values we areeptisstudying densities and form
factors. The conceptual simplicity of the importance tratran scheme also allows for a variety
of systematic extensions and improvements, e.g., throegtugbative corrections for the ex-
cluded configurations. We have implemented corrections tipet 6p6h level using second-order
perturbation theory. Similar importance selection teghes are being used in quantum chem-
istry in connection with configuration interaction methdgag]. In this context several simple
correction methods, like multi-reference Davidson caroes which approximately restore size
extensivity, have been developed and can be adopted fomgh@riance truncated no-core shell
model as well.

4. Conclusions

Nuclear theory presently experiences several excitingeldpments affecting all building
blocks of our theoretical description of nuclei. The cortimtof nuclear interactions to the
underlying theory of QCD is employed to derive consisteatiséic interaction. These interac-
tions can be used as basis for the construction of phaseesfuiivalent tamed interactions, e.g.
in the framework of the Unitary Correlation Operator Mettowdhe Similarity Renormalization
Group. They, in turn are a universal starting point for vasi@approaches for treating the many-
body problem. Also in this sector new approaches, like thegoirtance truncated NCSM, will
help to provide a consistent picture of nuclear structuresfable and exotic nuclei.
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