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Abstract. We discuss three elements of modern ab initio nuclear structure theory
with an emphasis on the role of correlations in the nuclear many-body problem.
Starting from the QCD-motivated construction of a realistic nuclear interaction
we review two methods to derive phase-shift equivalent tamed interactions, the
Unitary Correlation Operator Method and the Similarity Renormalization Group.
Eventually we use these interactions for ab initio calculations within the impor-
tance truncated no-core shell model.

1 Introduction

The rich physics of exotic nuclei poses an enormous challenge to modern nuclear structure
theory. Motivated by a wealth of open questions, novel experimental possibilities, and new
theoretical developments, the interest in predictive ab initio nuclear structure calculations for
stable and exotic nuclei has intensified over the past years. The general goal for this line of
research is to solve the nuclear many-body problem in a fully controlled way starting from
realistic nuclear interactions. Of course, this problem has two components which pose enor-
mous challenges in themselves: (a) the construction of realistic nuclear interactions and (b) the
solution of the quantum many-body problem for a strongly correlated system of nucleons.

2 Modern Nuclear Interactions

The crucial ingredient for the description of the nucleus as a quantum many-body system
of interacting nucleons is the interaction between these constituents. In this effective theory,
the interaction encapsulates the unresolved dynamics of the underlying degrees of freedom —
the quarks and gluons of Quantum Chromodynamics (QCD). It constitutes the link between
the more fundamental theory of QCD and the effective description of the nucleus as a many-
nucleon system. In principle, the interaction can be extracted from the explicit solution of the
underlying theory. In practice, this route is widely used outside of nuclear physics, e.g. for the
description of Helium liquids as an interacting system of inert Helium-atoms: The atom-atom
interaction between neutral Helium atoms can be obtained from an ab initio solution of the
electronic structure problem of the Helium dimer [1]. In nuclear physics, the underlying theory
of low-energy QCD is so complicated, that this stringent approach was not feasible so far—only
very recently first qualitative attempts have been made to extract a nucleon-nucleon interaction
from lattice QCD calculations [2].

In the past, most ab initio nuclear structure calculations were based on realistic NN in-
teractions constructed within a phenomenological framework, which typically uses a meson-
exchange model supplemented by phenomenological short-range terms or cutoff functions. The
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parameters of these models are fitted such that the exact solutions of the two-body problem
reproduce the experimental bound state (deuteron binding energy) and scattering data (scatter-
ing phase-shifts). All modern realistic interactions reproduce those two-body observables with
high-precision.

Recently, chiral effective field theories have been used to establish and utilize the link be-
tween low-energy QCD and the nuclear interaction [3,4]. The long-range pion dynamics is
included explicitly and the short-range physics is absorbed in contact terms. The chiral power
expansion naturally leads to a consistent set of two-body, three-body, and higher-order interac-
tions. In addition to the interactions, other operators, e.g. meson exchange current operators,
can be derived in the same effective framework. Again the parameters, such as the low-energy
constants associated with the contact terms, are chosen such that scattering phase-shifts and
deuteron properties are reproduced. First applications of these chiral interactions in ab initio

no-core shell model calculations of p-shell nuclei [5] demonstrate the potential of this concept.

3 Unitarily Transformed Realistic Interactions

Realistic interactions resulting from meson-exchange models or chiral effective field theory typi-
cally show rather slow convergence when used, e.g., in a no-core shell model (NCSM) calculation
(cf. section 4). Model spaces of enormous size are required to obtain converged energies. This
indicates that there are strong short-range correlations induced by the interaction, which play
an important role for the structure and properties of the many-nucleon state. In the shell-model
context, these correlations can only be described by a superposition of a large number of Slater
determinants. This is illustrated in Fig. 1(a), where the dependence of the ground-state en-
ergy for 4He on the size if the model space is depicted for the Argonne V18 (AV18) potential.
With increasing Nmaxh̄Ω, the maximum harmonic-oscillator excitation energy allowed in the
many-body basis, the number of Slater determinants in the basis grows factorially. For 16h̄Ω
the space already consists of a few million Slater determinants and the ground-state energy is
still not converged, i.e., a superposition of millions of Slater determinants is still not sufficient
to describe the correlated ground state of 4He for the AV18 potential.

The dominant correlations responsible for the slow convergence can be traced back to certain
components of the nucleon-nucleon interaction itself. Most important are short-range central
correlations induced by the repulsive short-range part of the interaction and correlations in-
duced by the strong tensor interaction. Already the ground state of the deuteron reveals these
correlations: the short-range repulsion of the potential suppresses the two-body density at small
interparticle distances and the tensor force generates the D-wave admixture.

Unitary transformations can be used to tackle the problem of short-range correlations. The
transformation has to suppress the components of the initial interaction that induce short-range
correlations. In terms of many-body matrix elements of the Hamiltonian, this can be viewed
as a pre-diagonalization leading to a substantial improvement of the convergence behavior in
a no-core shell model picture. Only the system- and state-independent short-range part of the
interaction-induced correlations needs to be considered—residual long-range correlations can be
described quite efficiently within small model spaces. These transformations can be constructed
such that the experimentally constrained on-shell properties of the initial potential, i.e. the
asymptotic phase shifts, are exactly preserved. The resulting tamed potential thus is phase-
shift equivalent by construction and can be viewed as a realistic interaction in its own right.
We will discuss two of these phase-shift conserving unitary transformations in the following
sections.

3.1 Unitary Correlation Operator Method (UCOM)

The idea of the Unitary Correlation Operator Method (UCOM) [10,11] is to explicitly con-
struct a unitary operator C, which imprints the dominant short-range correlations onto an
uncorrelated many-body state |Ψ〉 via the transformation

|Ψ̃〉 = C |Ψ〉 . (1)
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Fig. 1. Convergence of the 4He ground-state energy within the no-core shell model (without Lee-Suzuki
transformation) as function of the oscillator frequency h̄Ω. The curves correspond to different model
space sizes from 0h̄Ω (topmost curves) to 16h̄Ω (bottom curves). The interactions used here are (a) the
AV18 potential, (b) the UCOM-transformed interaction VUCOM, and (c) the SRG-evolved interaction
VSRG (see text).

Already the deuteron allows us to identify the two dominant types of short-range correlations
that C has to account for: (i) central correlations induced by the short-range repulsion of the
NN interaction which suppress the two-body density at short interparticle distances; (ii) tensor
correlations induced by the strong tensor force which generates the D-wave admixture or, in
other terms, a correlation between the relative spatial orientation of the two nucleons and their
spins.

Guided by this physical picture of the origin and the structure of central and tensor corre-
lations we can construct unitary operators for describing them. The central correlations can be
generated by a radial shift in the relative coordinate of a nucleon pair. Pictorially speaking, if
two nucleons are within the region of the short-range repulsion, then the transformation has to
push them apart. This kind of distance-dependent shift is described by the unitary operator

Cr = exp
[
− i

∑

i<j

gr,ij

]
with gr =

1

2
[s(r)qr + qrs(r)] , (2)

where qr = 1
2 [q·(r/r)+(r/r)·q] is the radial component of the relative momentum q of a particle

pair. The function s(r) determines the distance-dependence of the shift and is determined for
each spin-isospin channel from a variational calculation in the two-body system.

The unitary operator inducing tensor correlations has to reflect the non-central nature of the
tensor force in order to generate admixtures of states with relative orbital angular momentum
L ± 2. This is achieved with the operator

CΩ = exp
[
− i

∑

i<j

gΩ,ij

]
with gΩ =

3

2
ϑ(r)

[
(σ1 · qΩ)(σ2 · r) + (r ↔ qΩ)

]
, (3)

where qΩ = q− r

r
qr is the component of the relative momentum q perpendicular to r. Similar

to the central correlator, ϑ(r) describes the magnitude of the transformation as a function of
distance.

Using the explicit form of the correlation operator C, we can directly formulate the unitarily
transformed Hamiltonian in two-body space (2B)

H̃ = C† H C = C†(T + V )C
2B
= T + VUCOM , (4)

which defines the tamed or correlated two-body interaction VUCOM. We will come back to
the induced three-body contributions lateron. The fact that C is given in an explicit operator
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Fig. 2. Momentum-space matrix elements v(q, q′) in the 3S1 partial wave for different interactions:
(a) the AV18 potential, (b) the UCOM-transformed interaction VUCOM, and (c) the SRG-evolved
interaction VSRG (see text).

representation is very convenient: It allows us to derive a closed operator form of the correlated
interaction VUCOM, which is necessary for many-body methods not based on simple orthogonal
bases, like the Fermionic Molecular Dynamics approach [12]. Furthermore, operators of other
observables, e.g. densities, form factors, transition amplitudes, and exchange currents, can be
correlated consistently without additional effort.

For a first quantitative picture of the effect of the UCOM transformation we consider the
matrix elements of VUCOM. The VUCOM used here and in the following is derived from the AV18
potential using central and tensor correlation functions discussed in detail in Ref. [20]. In Fig.
2 the momentum-space matrix elements of VUCOM in the 3S1 partial wave are compared to the
matrix elements of the original AV18 interaction. The short-range central and tensor parts of the
AV18 potential are responsible for the strong off-diagonal contributions in the matrix elements—
the interaction connects states with low momentum q with states of high momentum q′. The
coupling to high-lying states is another way of explaining the slow convergence of the NCSM.
The UCOM transformation changes the matrix elements dramatically: The off-diagonal matrix
elements are suppressed and the low-momentum, near-diagonal contributions are enhanced.
Effectively the UCOM transformation acts like a pre-diagonalization.

This pre-diagonalization has a strong impact on the convergence properties of the trans-
formed interaction. Figure 1(b) shows the ground-state energy of 4He obtained with VUCOM

in the no-core shell model for different Nmaxh̄Ω. In comparison to the initial AV18 interac-
tion, the substantial improvement regarding the convergence behavior is evident. Based on the
transformed interaction converged ab initio calculations become possible within tractable model
spaces also for heavier systems.

3.2 Similarity Renormalization Group (SRG)

The Similarity Renormalization Group (SRG) as a second method using unitary transforma-
tions to tame the interaction starts from a completely different background. Unlike UCOM,
where the physical mechanism responsible for correlations in the many-body state is used as
a guiding principle, the SRG is based on the behavior of matrix elements and the idea of pre-
diagonalization. In the formulation proposed by Wegner [13,14] in the context of solid-state
systems, it aims at the pre-diagonalization of the Hamiltonian with respect to a given basis
using renormalization group flow equations. As function of a flow parameter α, the evolution
of the Hamiltonian is described by the flow equation [15]

dH̄(α)

dα
= [η(α), H̄(α)] , H̄(0) = H . (5)
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Formally we can express the evolved Hamiltonian H̄(α) via a unitary transformation of the
initial Hamiltonian H̄(0) = H

H̄(α) = U(α)HU†(α)
2B
= T + VSRG(α) , (6)

where all α-dependent contributions have been absorbed in the renormalized interaction VSRG(α).
The choice of the generator η(α) is essential. Whereas the UCOM transformation is based

on a static generator, the generator of the SRG transformation changes dynamically during the
flow evolution. A simple choice for the generator was suggested by Szpigel and Perry [16] and
used by Bogner et al. [17]

η(α) = [Tint, H̄(α)] =
1

2µ
[q2, H̄(α)] , (7)

which aims to diagonalize the two-body Hamiltonian H̄(α) in a basis of eigenstates of both
p2

r and L2. Hence, in a partial-wave momentum-space basis |q (LS)J T 〉 this generator drives
the matrix elements towards a band-diagonal structure with respect to (q, q′) and (L,L′). The
flow equation (5) can be easily solved in this partial-wave momentum representation yielding
matrix elements of the evolved Hamiltonian.

An example for momentum-space matrix elements resulting from the flow evolution starting
with the AV18 potential is shown in Fig. 2(c). The flow parameter has been chosen such that the
resulting two-body interaction reproduces the 4He binding energy in an exact NCSM calculation
(cf. Sec. 3.3). As in the case of the UCOM transformation, the SRG evolution suppresses the off-
diagonal matrix elements and leads to a tamed interaction with matrix elements concentrated
along the diagonal and in the low-momentum region. The convergence properties of the SRG
evolved interaction, e.g. for the ground state of 4He as depicted in Fig. 1(c), are very similar to
those observed for the UCOM transformed interaction.

The relation between the SRG scheme to the UCOM transformation can also be illustrated
on a formal level. Let us assume a realistic NN interaction given in an operator representation
similar to the Argonne V18 potential. The most relevant components for this consideration are
the central and the tensor part of the interaction. If we formulate the initial Hamiltonian with
this type of interaction and evaluate the initial generator η(0) via the commutator relation (7)
we easily obtain [15]

−iη(0) =
1

2

[
qrS(r) + S(r)qr

]
+

3

2
Θ(r)

[
(σ1 · qΩ)(σ2 · r) + (r ↔ qΩ)

]
. (8)

This corresponds exactly to the structure of the central and tensor generators that were con-
structed in the UCOM approach based on physical considerations on the structure of short-range
correlations. Both approaches address the same physics of short-range correlations. We utilize
this connection to derive correlations functions in the UCOM framework, which correspond to
the full SRG evolution up to a given flow parameter α.

3.3 Three-body interactions

So far, we have evaluated both unitary transformations, UCOM and SRG, in two-body space dis-
carding induced interactions beyond the two-body level. When formulating the transformations
in a general A-body space, one inevitably generates three-body, four-body, and higher-order
interactions even if the initial Hamiltonian only contains a two-body force. Formally, we may
write the transformed Hamiltonian in A-body space in terms of a cluster expansion

H̃ = C†(T + VNN + V3N)C

= T̃ [1] + (T̃ [2] + Ṽ
[2]
NN) + (T̃ [3] + Ṽ

[3]
NN + Ṽ

[3]
3N ) + · · ·

= T + VUCOM + V
[3]

UCOM + · · · ,

(9)
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Fig. 3. Binding energies of 3H and 4He obtained in the NCSM [18] for different VUCOM (full circles)
and VSRG (open circles) two-body interactions derived from the Argonne V18 potential. The labelled
symbols in the upper part correspond to calculations with standard interactions, the crosses around
the experimental point indicate results for different two- plus three-body interactions [19].

where we have used the UCOM notation. In addition to the two-body interaction VUCOM a

three-body contribution V
[3]
UCOM is generated. It contains induced three-body terms originating

from the transformed kinetic energy, from the transformed two-body interaction, and from the
transformed three-body interaction. Ideally the full three-body interaction—and possibly even
higher-order contributions—would be taken into account when solving the many-body problem.
Although the induced three-body contributions are formally well defined, their inclusion in an
actual many-body calculation is a challenging task. The solution of the many-body problem
would simplify tremendously if the effect of the three-body contributions could be reduced, i.e.,
if one could choose the unitary transformation such that the transformed three-body interaction

Ṽ
[3]
3N which is generally attractive and the induce three-body terms T̃ [3]+Ṽ

[3]
NN which are repulsive

cancel each other.
Evidence that this is possible is provided by NCSM calculations [18] using the two-body

part of the unitarily transformed interactions only. If all contributions were included, then the
energy spectrum of the transformed and the initial Hamiltonian would be identical because
of unitarity. If we can find a transformation that reproduces the energy eigenvalues of the
initial Hamiltonian using only the two-body part of the transformed Hamiltonian, then the
omitted higher-order terms must have vanishing contributions to the energy (not necessarily
to the states). This is illustrated in Fig. 3, where the ground state energies of 3H and 4He
are shown for different initial and transformed potentials obtained in the UCOM and the SRG
framework. As function of the range of the tensor correlation functions and of value α of the
final flow parameter, resp., the calculations with the transformed potentials span the Tjon line.
For specific values of the parameter, the two-body potentials yield binding energies comparable
to the experimental values and to results with conventional two- plus three-body interactions.
Thus it is possible to choose a transformation which effectively minimizes the impact of higher-
order interactions [20]—the corresponding interactions VUCOM and VSRG were used in Figs. 1
and 2.

4 Advanced Many-Body Methods

The UCOM or SRG-transformed interactions are the ideal starting point for different many-
body approaches, ranging from the NCSM to Hartree-Fock based methods. Previously, we have
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Fig. 4. Importance truncated no-core shell model calculations for 4He, 16O, and 40Ca for an oscillator
frequency h̄Ω = 20 MeV using the VUCOM interaction fixed in the three- and four-body system. Shown
are exact no-core shell model results (+) and results for an importance truncated model-space with up
to 2p2h (disk), 3p3h (diamond), and 4p4h (square) excitations [22].

shown that self-bound nuclei are obtained already on the level of Hartree-Fock [21], although
long-range correlations cannot be described. Their inclusion via low-order many-body pertur-
bation theory [21] leads to binding energies which are in agreement with experiment throughout
the whole nuclear chart. This shows that the minimization of three-body contributions to the
energy in the case of UCOM still works for heavier nuclei.

Here we discuss a scheme to extend the range of the NCSM to nuclei well beyond the
p-shell [22]. The limiting factor for full NCSM calculations is the dimension of the model
space, which grows factorially with particle number and maximum excitation level Nmaxh̄Ω.
Therefore, converged NCSM calculations are presently limited to the p-shell. Most of the basis
states included in these model spaces are irrelevant for the expansion of any selected eigenstate,
i.e. their amplitudes are zero or extremely small. If one could exclude those irrelevant basis
states from the outset, then the dimension of the eigenvalue problem would be reduced to a
tractable size. A quantitative a priori measure for the importance of individual basis states
can be constructed within many-body perturbation theory. Starting from a reference state
|Ψref〉 which provides a zeroth-order approximation of the eigenstate we are interested in, we
can estimate the contribution of other basis states |Φν〉 via first order perturbation theory.
This defines the importance measure κν = −〈Φν |H

′ |Ψref〉/(ǫν − ǫref), where H ′ describes the
Hamiltonian associated with the perturbation and ǫν and ǫref the unperturbed energies of the
configurations. These quantities depend on the partitioning of the Hamiltonian and the nature
of the reference state which can be a superposition of many shell-model basis states itself.

When starting from the single shell-model Slater determinant as reference state the impor-
tance measure provides nonzero importance weights only for configurations containing up to
2p2h excitations. In order to access higher npnh-states, we embed the construction of the im-
portance truncated space into an iterative scheme. In a first iteration all important basis states
up to the 2p2h-level are constructed and the eigenvalue problem in this space is solved. Using
the dominant components of the resulting eigenvector as a new reference state, we construct
a new importance truncated space which then contains up 4p4h configurations. This iterative
procedure can be repeated until the reference state does not change anymore. In the limit
κmin = 0 this procedure generates the full no-core model space. In practice we will perform
calculations for several values of κmin ≥ 5 × 10−5 and extrapolate the eigenvalues to κmin = 0.

Results for the ground-state energies of 4He, 16O, and 40Ca as function of the model space
size Nmax obtained with VUCOM are summarized in Fig. 4. For these calculations we have
restricted ourselves to one iteration of the aforementioned cycle such that the model space is
limited to 4p4h configurations. In comparison to full no-core shell model calculations performed
with the shell-model code Antoine [23] (black crosses) the dramatic reduction of the model
space dimension allows us to work in much larger Nmaxh̄Ω spaces.
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This simple scheme has several advantages: Since we solve an eigenvalue problem in a re-
stricted basis, we have direct access to the ground state as well as to excited states. The scheme
can be viewed as a variational calculation using an adaptive trial state, the variational principle
guarantees that we obtain an upper bound for the exact energy eigenvalues. Since we start from
a complete Nmaxh̄Ω-space, intrinsic and center-of-mass motion are decoupled, spurious center-
of-mass excitations are absent, and we have verified that the importance truncation does not
generate them artificially. We directly obtain a shell model representation of the wavefunction
which can easily be used to compute further observables. The conceptual simplicity of the im-
portance truncation scheme also allows for a variety of systematic extensions and improvements,
e.g., through perturbative corrections for the excluded configurations.

5 Conclusions

Nuclear theory presently experiences several exciting developments affecting all building blocks
of our theoretical description of nuclei. The connection of nuclear interactions to the underlying
theory of QCD is employed to derive consistent realistic interactions. These interactions can
be used as basis for the construction of phase-shift equivalent tamed interactions, e.g. in the
framework of the Unitary Correlation Operator Method or the Similarity Renormalization
Group. They, in turn are a universal starting point for various approaches for treating the
many-body problem. Also in this sector new approaches, like the importance truncated NCSM,
will help to provide a consistent picture of nuclear structure for stable and exotic nuclei.

Work supported by the DFG through SFB 634.
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