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Abstract. Lately we have been tackling the problem of describing rarctellective exci-
tations starting from correlated realistic nucleon-nanl¢NN) interactions. The latter are
constructed within the Unitary Correlation Operator Metifd COM), which explicitly con-
siders short-range correlations in order to properly softee short-range behaviour of re-
alistic NN potentials. It has been concluded that first-of@BA with a two-body UCOM
interaction (UCOM-RPA) is not capable, in general, of relucing quantitatively the prop-
erties of giant resonances (GRs), due to missing highesramohfigurations and long-range
correlations as well as neglected three-body terms in theilttmian.

In the present paper we report results on GRs obtained byogingla UCOM interac-
tion, based on the Argonne V18 potential, in Second RPA (SRP#e same interaction is
used to describe the Hartree-Fock (HF) ground state andestidual interactions. We find
that the inclusion of second-order configurations — whidbatively dress the underlying
HF single-particle states with self-energy insertions edpices sizable corrections. The ef-
fect appears essential for a realistic description of GRenmising the UCOM. We argue
that effects of higher than second order should be negéigibherefore, the UCOM-SRPA
emerges as a promising tool for consistent calculationsobéative states in closed-shell
nuclei. This is an interesting development, given that SR®Aaccommodate more physics
than RPA (e.g., fragmentation). Remaining discrepanaiesalthe missing three-body terms
and self-consistency issues of the present SRPA model areegmut.

1 Introduction

Many-body approximations like Hartree-Fock (HF) and Rand@hase Approxi-
mation (RPA) (and their counterparts for open-shell nyclamely HF-Bogoliubov
(HFB) and Quasiparticle-RPA (QRPA)) have allowed massafewdations of nu-
clear ground-state and excited-state properties thrautghe nuclear chart. Such
models are used in conjunction with effective nucleon-aaol(NN) interactions.
Indeed, the bare NN interaction induces strong correlatioithe nuclear system —
most notably short-range correlations — which cannot berdesd by simple model
spaces such as those involved in HF, RPA, etc. One can findyeery parameteri-
zations of the effective NN force — and there is now intengkcmordinated activity
towards the development of high-quality energy functisrtialserve such a purpose
— but those have been phenomenological up to now, lackingatdionnection with
the underlying bare interaction.
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The question remains as to whether it is possible to corntstrgtobal effective
NN interaction starting from the bare one. There have beerréeent attempts to-
wards that direction. One is the construction of a low-motuerinteraction, the so-
calledVi,w—_x, by integrating out the high-momentum components of the bae
(thus softening its short-range behavior) using renomatithn group techniques [1].
The other one is the Unitary Correlation Operator Method QMG [2—4], which
deals explicitly with the short-range correlations andésaibed in the next Sec-
tion. Applied to a realistic NN interaction, the UCOM proahsca “correlated” in-
teraction, \(,com. Although constructed following different formalisnig,,, i and
Vucoum have similar low-momentum matrix elementdloreover, they do not de-
pend strongly on the particular bare NN potential on whiaythre based, and to
which they are phase-shift equivalent. The hope is to betatdmploy such realistic
but “softened” potentials in many-body calculations.

In the present work we focus on nuclear giant resonances)(@R#osed-shell
nuclei. First-order RPA with a two-body UCOM interactionshaot been able to
reproduce quantitatively the properties of all GRs [5, 6§rélwe report results on
GRs obtained using Second RPA (SRPA) and employing the latgteArgonne
V18 interaction (UCOM-SRPA).

It is not straightforward to perform SRPA calculations smhsistently — in the
sense that exactly the same interaction is used to desbibground state and the
residual couplings — without conceptual problems. In tgp8RPA applications in
the past, phenomenological single-particle energies baes used and G-matrix
or phenomenological forces have been employed as resigeghctions. (The real
part of the SRPA self energy would then be discarded, sina@utd shift the al-
ready realistic single-particle energies.) Phenomerncébglensity functionals, on
the other hand, are typically fitted by using HF(B) and (Q)RBSults. Part of the
long-range correlations affecting ground-state propsréire then effectively taken
into account by the parameterization and higher-orderctffare usually ignored.
Employing such interactions in SRPA might result in overtting of such effects.
Our correlated interaction, however, takes into accouty short-range correla-
tions; long-range correlations have to be described bynelitg the configuration
space and one way to do that is SRPA.

Let us note at this point that the RPA reaches its limits whemfronted with
problems such as the width and fine structure of GRs, theggtrerfisome low-lying
states, etc. The SRPA is a more appropriate theory to ddakwith issues.

In the next section we outline the basic principles of the WC&cheme. In
Sec. 3 we review what we have learned so far by usingliheon in HF, per-
turbation theory, and first-order RPA calculations. In Skeeve present the SRPA
formalism and our new results. In Sec. 5 we give a summary arsppctives.

! There remain important differences, however, as demdesira.g., by the fact that the
Vucow is able to produce stable (saturated) nuclear matter, While_\ is not.

2 One could, in principle, consider to fit their parametersigsSRPA, but that would be a
formidable task from a computational point of view. Notettbamputationally friendly
zero-range interactions are not appropriate for largéeRBPA.
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2 The UCOM Hamiltonian

The basic idea of the UCOM is the explicit treatment of theriattion-induced
short-range central and tensor correlations. These ardritag into an uncorre-
lated many-body stat@) (e.g., a Slater determinant) through a state-independent
unitary transformation defined by the unitary correlatige@torC, resulting in a
correlated staté?) = C|¥). The correlation operataf' is written as a product of
unitary operator§’y, andC,. describing tensor and central correlations, respectively
Both are formulated as exponentials of a Hermitian generato

C = CnC, = expl-i Zgﬂ,ij] exp|[—i Zgr,ij]- (1)
i<j 1<j

The construction of the two-body generatgrsandg,, follows the physical mech-
anisms by which the interaction induces central and terswelations. The short-
range central correlations, caused by the repulsive cadteedhteraction, are intro-
duced by a radial distance-dependent shift pushing nuslapart from each other
if they are within the range of the core. Tensor correlatioesveen two nucleons
are generated by a spatial shift perpendicular to the raliliattion. For a given
bare potential, the corresponding correlation functioesdgtermined by an energy
minimization in the two-body system for ea¢h, 7') channel.

Matrix elements of an operat@ with correlated many-body staté®) can
be equivalently written as matrix elements of a “correlat@g@nsformed) operator
O = CTOC and uncorrelated many-body stat@s. Thus, one can work in simple
Hilbert spaces (simple states) using correlated operatdter than with bare oper-
ators and explicitly correlated states. By applying thedfarmation to a bare NN
interaction, a phase-shift equivalent correlated int@&wads obtained, is suitable for
use in tractable model spaces [4, 7, 8]. The same transfnmzn then be applied
to any other operator under study, as is needed for a consi$@OM treatment.

In an A-body system a correlated operator contains irreducibié¢ritbutions to
all particle numbers. The cluster expansion of a correlapetator reads

O=cfoc=0"+0B +...4+ 01, @

whereOl" denotes the irreducible-body contribution. In actual applications of
the UCOM a two-body approximation is usually employed,, iteree-body and
higher-order terms of the expansion are neglected. Sgafitinm the uncorrelated
HamiltonianH for the A-body system, consisting of the kinetic energy operator
and a two-body potentidl’, the formalism of the UCOM is used to construct the
correlated Hamiltonian in two-body approximation

H? =7 4+ 7R 4 VI = T 4+ Vicom, (3)

where the one-body contribution comes only from the undated kinetic energy
T = 7. Two-body contributions arise from the correlated kinetiergyZ'? and

the correlated potentidl' 2!, which together constitute the phase-shift equivalent
correlated interactioMycom.
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It has been verified that higher-order contributions dudétmtsrange central cor-
relations can be neglected in the description of nucleactire properties [4]. The
tensor interaction, on the other hand, is long-ranged amsl generates long-range
correlations in an isolated two-nucleon system. Howeher|ang-range tensor cor-
relations between two nucleons embedded in a many-nugjstars are suppressed
by the presence of other nucleons, leading to a screenimgdéhsor correlations at
large interparticle distances. In order to effectivelyatése the screening effect and
at the same time justify the two-body approximation, theyeof the tensor correla-
tion function — more precisely, the “correlation vqum%’S’T) [7] —is restricted
during the parameterization procedure. Restricting thgeaf the tensor correla-
tor has another important function, namely to ensure thit state-independent,
short-range correlations are described by the UCOM. Byingrihe correlation
volumes — the only parameters entering the formalism — alfaaficorrelators
and respective correlated interactions are obtained.

The question is then how to optimize these parameters inr dodbest de-
scribe the screening effect and the separation of the twestypb correlations. As
demonstrated in Ref. [7], this can be done with the help otefew-body calcu-
lations. In particular, the values can be chosen so as todesstribe the binding
energies ofH and*He within the no-core shell model 0 = 0.09 fm3 for the
Argonne V18 potential). For such a choice of tensor coroeleange the missing
genuine three-nucleon interaction and the omitted higieéer terms of the cluster
expansion of the correlated Hamiltonian effectively cameeh other. As was sub-
sequently shown within many-body perturbation theory f8jd verified by RPA
calculations [9], this cancelation remains at work thromgitthe nuclear chart, as
far as the binding energy is concerned (see also next Sgétion

In this work we will use the correlated Argonne V18 potentidth If9
0.09 fm3. No tensor correlator is employed in the triplet-odd chénwéere the
tensor interaction is much weaker. We start from a Hami#onivhich consists of
the intrinsic kinetic energ¥i,; and thelycowm interaction derived from the Argonne
V18 potential including the Coulomb potential,

L,0) _

Hipt =T — Tem + Vucom = Tint + Vucom » (4)

in two-body approximation. It is the two-body Hamiltoniaf, that has been used
in Hartree-Fock (HF), perturbation-theory, and RPA caltiohs in Refs. [5, 6, 8]

and that will be employed in this work too. In practice, twoedly matrix elements

in a harmonic-oscillator basis are the input to such catmria.

3 The Viycom has a strong momentum dependence, even when it is based cal pdten-
tial like Argonne V18. That is why it can perform reasonablglhwithout an additional
three-body term.
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3 Applicationsin spherical nuclei: recent lessons

Using theVycom in HF calculations we obtained bound nuclei throughout the
nuclear chart [8]. The tensor correlations play an impdrtate in this. Note,
though, that using the UCOM we aim to treat explicitly onlg tftate-independent
short-range correlations; long-range correlations shbeldescribed by the model
space. This tells us already that the UCOM-based HF is natginsince a Slater-
determinant wavefunction is unable to describe corratatitt is found indeed that
the binding energies are underestimated by about 4 MeV peeown. The charge
radii are underestimated too. While the Fermi energy isemtly reproduced, the
level spacing of the single-particle states is too small.

Second-order perturbation theory constitutes a tracelitension to the “zero-
order” description provided by HF and was employed in Ref. T®e very good
description of nuclear binding energies achieved withiriypbation theory for nu-
clei from *He to2°8Pb shows that the cancellation between the omitted threg-bo
terms of the cluster expansion and genuine three-bodylatiomes and terms of the
interaction works throughout the nuclear chart as far abithging energies are con-
cerned. Charge radii are still underestimated within péegtion theory, suggesting
that the above-mentioned cancellation does not work fooladlervables and that
supplementing our two-body Hamiltonian with a three-baaiyrt to take account of
missing effects may be necessary for realistic nucleacsire calculations. Higher
than second-order corrections are found to be small.

TheVycom has also been employed in standard, self-consistent RBAlatibns
to study nuclear giant resonances [5]. The ground state esgitied by the uncor-
related HF state, as usual. The isoscalar (IS) giant moeomsionance (GMR),
the isovector (V) giant dipole resonance (GDR), and theit®igquadrupole res-
onance (GQR) were examined. Highly collective states wétaioed for various
closed-shell nuclei ranging frohO t02°2Pb. A reasonable agreement with the ex-
perimental centroid energies of the IS GMR was achieved dyrast, the energies
of the IV GDR and the IS GQR were overestimated by several MeV.

Obviously, theVycowm is not a traditional effective interaction. Partly because
no long-range correlations are (effectively) includechie UCOM, the correspond-
ing nucleon effective mass in nuclear matter obtained in acklEulation is very
low (around half the bare nucleon mass). This is confirmedhleyHF results in
finite nuclei, in particular the small level density. It isalmanifested by the above-
mentioned RPA results on the GQR and GDR centroids. It fdlthen that, besides
the possible important role of missing three-body term&@Hamiltonian, another
source of our failure to describe nuclear collective stqtemtitatively with UCOM-
RPA can be residual long-range correlations.

The standard RPA is based on the assumption that the true Riehd)state
can be approximated by the HF ground state. It is not obvioaisthis assumption
holds when thé/ycowm is used, given the large correction to the HF binding energie
due to second-order [8] and RPA [9] correlations. TherefiorRef. [6] the effect of
explicit RPA ground-state correlations on the results fRs@®@vas examined. To this
end, a renormalized RPA version was used [10-12]. The effec¢he properties
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of GRs was found to be rather small. It is concluded that érdier RPA with a
two-body UCOM Hamiltonian cannot describe quantitativig properties of GRs.

Up to now we have assumed that residual three-body forcebeaeglected,
based upon the fact that they contribute only marginaliheoground-state energy
as calculated within many-body perturbation theory [7]9lis is not necessarily a
valid assumption. A simple phenomenological zero-rangeetibody force can be
constructed in order to be used along with the correlatednuaeon interaction in
future calculations. Preliminary results show that by gsinch a three-body force
it is possible to improve on the description of observableshsas nuclear radii
and resonance energies while retaining the good reprasgtucfithe experimental
binding energies.

Another important issue with RPA is that only one-partiolee-hole excitations
are taken into account and the coupling to higher-order gardtions 2p2h and
beyond) is neglected. One can include higher-order cordtguns, starting with
two-particle-two-hole within SRPA. Given that an extendealdel space is of great
importance when using tHé;cow, it is imperative to examine the effect.

4 Second RPA

4.1 Formalism

We will use the SRPA as it was formulated in Ref. [13] in angltmRPA. Excited
stateqr) of energyFE, = hw, with respect to the ground stat®

lv) = Q10), (5)

are considered as combinationsigfih and2p2h configurations. (We omit angu-
lar momentum coupling to keep the notation simple.) Theesgonding creation
operators are then written as

T vt v v T
Ql/ - thXphOph thyphoph + Zp1hlp2h2 Xplhlpzh20p1hlp2h2
1%
_Zplhlpghgyp1h1p2h20p'l hipahas (6)

whereoz;h creates gh state andﬁghp,h, creates &p2h state. The SRPA ground
state, which is the vacuum of the annihilation operat@ysis approximated by the
HF ground state. The forwardX(, X) and backward, )) amplitudes are then
given by the SRPA equations ith & 2p2h—space

A A B 0 XV XV

Az Ass| 0 0 XY B XY

—_B* 0 A — 1:2 YV - h/wl/ W ) (7)
0 0 |—A5 —A5 0% yv

where A and B are the usual RPA matricesgl;» describes the coupling between
ph and2p2h states andd,, contains the2p2h states and their interactions. If we
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neglect the coupling amongst those statés, is diagonal and its elements are equal
to the unperturbe@p2h energies,

A22 = Op,p, Onyht Opypy Ony g (€py + €py — €hy — €hs) (8)

(e; are the HF single-particle energies).

The dimensionV of the SRPA matrix, Eq. (7), can be very large. Fortunately,
the SRPA matrix is also sparse. When the approximation (8jniployed, most of
its elements are zero. Thus it is possible to store all itsefimiatrix elements and
then use a Lanczos procedure to obtain only the eigenvegitorterest.

The SRPA problem, Eq. (7), can be reduced to an energy-depeeigenvalue
problem of the dimension of the RPA matrix (see, e.g., Ref])[ITTherefore, it can
be viewed as an RPA problem with an energy-dependent irti@nad¢n general,
the reduction procedure involves the inversion of a comphatrix in the large
2p2h space, but whenl,, is diagonal, that is reduced to a trivial complex-number
inversion. There are ways to solve an energy-dependem&ityes problem [15,16].
An efficient alternative is to employ the response-funcf@malism. Then, instead
of explicitly solving the eigenvalue problem, one can abtdirectly the strength
distribution of interest [14, 16]. We have used this techieigs well.

It has been shown formally that the total strenght and the first moment of
the strength distributiom; are the same in the present SRPA as in RPA [17]. How-
ever, when based on the HF ground state, the SRPA is not flficensistent and
symmetry-conserving, contrary to the RPA based on the Hergtstate. It has been
pointed out [18] that it misses a class of second-order &sffeelated to ground state
correlations. The missing effects may be important, esfigdor the less collective
low-lying states. In principle, it is possible to combine t8RPA with a correlated
ground state [18-20] for a most complete theoretical treatnof nuclear excita-
tions, but that is beyond the purposes of the present work.

4.2 Results

We have used the correlated Argonne V18 interaction andggesjrarticle basis of
11 oscillator shells and we have examined the ISM, IVD andi&ponse of the nu-
clei '°0 and*’Ca. The convergence of the GR sum rukesandm; and centroids
is rather good for the present basis (within about 1 MeV ferdéntroids). The total
number of eigenvalues iB)*~° for the cases presented here (it can be larger e.g.
for heavier nuclei), but less than 300 eigenstates are murffito describe the region
of the GRs. We use standard single-particle transitionaipes [5]. We present our
results in comparison with experimental data. The expertaleentroidsn, /mg
of the IS GMR and the IS GQR were taken from Refs. [2[)) and [22] (°Ca).
Photoabsorption cross sections were found in Refs. [23!9@) and [25] (°Ca)
and strength distributions and centroids of the IV GDR wewdeated from those.
We have verified that in SRPA the totaly is almost the same as in RPA. The
totalm, is smaller by more than 20%. This is probably because we doaiotlate

4 Data are available from the CDFE database, http://cdfesisu.ru/services/gdrsearch.htm|
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the full spectrum. A non-negligible part of the total may be distributed among
the large number of weak excitations lying at high energies.

It has been shown [26] that the spurious state related to Mer©tion will
generally not be exactly seperated from the physical spectvhen SRPA is based
on the HF ground state. In order to quantify this problem, \@eehexamined the
behaviour of the IS dipole response. We found that the sparitate appears at
about 5 MeV. We used a transition operator of the usual réafiad (oc 73 — §<r2>r)
and its uncorrected formx( r3) and found that the spectrum beyond the spurious
state is practically the same and can be considered uncunattad.

In Fig. 1 we show the ISM, IVD and I1SQ strength distributions the two
nuclei. Note that, for presentation purposes, the caledldistributions (RPA and
SRPA) have been folded with a Lorenzian with a width of 2 Mekus, all peaks
have acquired an artificial width (which for some low-lyinigadle states may be too
large) and the SRPA fragmentation is not visible. In all sasee SRPA centroid
energies are much lower than the RPA ones. The reason fardgedifference be-
tween the RPA and SRPA results — even for such collegiivexcitations like the
GRs considered here —is to a large extent that, within SRRAGoupling of single-
particle states with virtual phonons is implicitly takeridraccount. The inclusion
of second-order configurations within SRPA effectivelysdes the underlying HF
single-particle states with self-energy insertions amagsthem closer to each other
energetically, thereby lowering the underlyiplgenergies. It is an important physi-
cal effect which cannot be ignored when using completelyltessed” (with respect
to long-range correlations) HF states like the ones prodlbgghelycowm. In this
scheme the undressed HF energies are viewed as auxiliargl mpoantities which
should not be directly compared with experiment.

Let us look at the results in more detail. In the middle panéBig. 1 the RPA
and SRPA strength distributions are shown for the IV GDRpglwith those ex-
tracted from experimental data (there has been no ad hoomatization imposed).
We observe that the IV GDR is more realistically reproducéithiv SRPA than
within RPA. Its centroid energy is somewhat underestimaliedhe lower panels
we show the I1SQ strength distributions. The RPA and SRPAltseate shown and
the experimental centroids of the IS GQR are indicated. Gneeanent of the SRPA
results with experiment is very good. It appears as thougte aoupling to higher-
order configurations is taken into account, a realisticatiife mass is restored.

In the upper panels of Fig. 1 we show the ISM strength distiding. The ener-
gies of the IS GMR are underestimated within SRPA. This idtaerdndication that
there are missing three-body effects and our two-bodyastamn should be supple-
mented with a three-body term to describe them. Normalbidreal three-body cor-
rections should affect the IS GMR most of all, since it is a poassion mode. They
should affect less strongly the IV GDR, where the nucleagriot plays a lesser
role, and less the IS GQR, which is a surface mode. Theseqaigsguments could
serve as a guide for the construction of an appropriateteféethree-body term.

In the above, the approximation (8) has been used. It hasvmrdied that in-
clusion of the couplings amongst tBg2h states produces negligible corrections.
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Figure 1. The IS monopole (top), IV dipole (middle) and IS dugole (bottom) strength
distributions for the nuclei®O (left) and*°Ca (right) within RPA and SRPA, compared with
experiment (for references see text). The single-partiakis consists of 11 oscillator shells.
The calculated distributions (RPA and SRPA) have been tbidéh a Lorenzian with a width
of 2 MeV and thus the SRPA fragmentation is not visible.

Note that those couplings constitute higher-order effébte indications that we
had from our perturbation-theory results, that correctibayond second order are
small, are thus confirmed.

5 Summary and per spectives

We have employed a correlated interactiditom based on the Argonne V18 po-
tential in SRPA calculations of nuclear GRs. Short-rangestations are explicitly
taken into account. The same interaction is used to desttrébEartree-Fock (HF)
ground state and the residual interactions. We found ttresétond-order config-
urations produce sizable corrections with respect to éirder RPA. They do so
by effectively dressing the underlying HF single-partisiates with self-energy in-
sertions. The effect appears essential for a realisticrigiti®n of GRs when using
the Vucom. Effects of higher than second order should be negligibkeré&fore,
the UCOM-SRPA model emerges as a promising tool for congistalculations
of collective states in closed-shell nuclei. This develepinis interesting, given
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that SRPA can accommodate more physics than RPA (e.g., é&aigition width
and fine structure of GRs). Remaining discrepancies, ragamd particular the 1S
GMR, can be attributed to missing three-body effects. Seifsistency issues of the
present SRPA formulation were also pointed out.

Up to now we have considered mostly the centroids of GRs, hmit tlecay
properties can also be studied within UCOM-SRPA. Heavialeiand low-lying
states will be a topic for future work as well.
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