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We discuss relations and differences between two methods for the construction of unitarily transformed ef-
fective interactions, the Similarity Renormalization Group (SRG) and UnitaryCorrelation Operator Method
(UCOM). The aim of both methods is to construct a soft phase-shift equivalent effective interaction which is
well suited for many-body calculations in limited model spaces. After contrasting the two conceptual frame-
works, we establish a formal connection between the initial SRG-generator and the static generators of the
UCOM transformation. Furthermore we propose a mapping procedureto extract UCOM correlation functions
from the SRG evolution. We compare the effective interactions resulting from the UCOM-transformation and
the SRG-evolution on the level of matrix elements, in no-core shell model calculations of light nuclei, and in
Hartree-Fock calculations up to208Pb. Both interactions exhibit very similar convergence properties in light
nuclei but show a different systematic behavior as function of particle number.

PACS numbers: 21.30.Fe,21.60.-n,21.45.-v,13.75.Cs

I. INTRODUCTION

In the past few years several methods for the construction
of phase-shift equivalent soft interactions starting frommod-
ern realistic potential have been proposed and applied. The
common goal of these methods is to adapt realistic QCD-
motivated interactions like the ones extracted from chiralef-
fective field theory [1, 2] or more phenomenological high-
precision potentials like the Argonne V18 [3] to the limited
model spaces typically available in many-body calculations.
Apart from approaches providing effective interactions tai-
lored for a specific model space, e.g. the Lee-Suzuki trans-
formation [4] widely used in the ab initio no-core shell model
[5, 6], there are several schemes to derive model-space inde-
pendent effective interactions, e.g. theVlowk approach provid-
ing a universal low-momentum interaction [7].

We focus on two alternative schemes, the Unitary Cor-
relation Operator Method (UCOM) [8–10] and the Similar-
ity Renormalization Group (SRG) [11, 12], which both use
phase-shift conserving unitary transformations. The physi-
cal picture behind these two formulations is different: The
UCOM starts out from a coordinate-space representation of
the short-range correlations induced by the central and tensor
components of the realistic nuclear interaction. On this ba-
sis ansatzes for the generators of unitary transformationsde-
scribing central and tensor correlations are formulated which
allow for the explicit inclusion of these correlations in sim-
ple model spaces. The SRG, on the other hand, aims at the
pre-diagonalization of a matrix representation of the Hamil-
tonian in a chosen basis by means of a renormalization group
flow evolution. The resulting band-diagonal interaction isalso
well-suited for small model spaces.

We discuss the formal relations and the practical differences
between these two approaches in detail. After reviewing the
formalism of the SRG and discussing examples for the evolu-
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tion of matrix elements and two-body wavefunctions in Sec.
II, we put the UCOM approach in perspective. In Sec. III we
discuss the formal connections between SRG and the genera-
tors of the UCOM transformation. Based on these structural
relations, we propose a mapping scheme to extract UCOM
correlation functions from the SRG evolution in Sec. IV.
Following a comparison of matrix elements of the SRG and
UCOM-transformed interactions, we compare their behavior
in different many-body calculations. In Sec. V we present
no-core shell model calculations for3H and4He and Hartree-
Fock calculations for closed shell nuclei up to208Pb for the
different transformed interactions.

II. SIMILARITY RENORMALIZATION GROUP

A. Concept & Formalism

The basic idea of the Similarity Renormalization Group
(SRG) approach in the formulation of Wegner [11, 12] is to
transform the initial HamiltonianH of a many-body system
into a diagonal form with respect to a given basis. The renor-
malization group flow equation governing the evolution of the
Hamiltonian is of the form

dHα

dα
= [ηα,Hα] , (1)

whereα is the flow parameter andHα the evolved Hamilto-
nian withH0 = H. Analogous equations can be formulated
for the operators of all observables one is interested in. In
general terms the anti-hermitian generatorηα of the flow can
be written as

ηα = [diag(Hα),Hα] , (2)

where diag(Hα) refers to the diagonal part of the Hamilto-
nian in a given basis. This choice can be understood in in-
tuitive terms: if the Hamiltonian commutes with its diagonal
part w.r.t. a given basis, then the generator vanishes and the
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evolution has reached a fix point. Apart from trivial cases this
does only happen if the Hamiltonian is actually diagonal in
the given basis.

Formally one can integrate this flow equation defining a
unitary operatorUα of the transformation

Hα = UαHU†
α . (3)

Due to the nontrivialα-dependence of the generator, the uni-
tary operator is not simply given by an exponential of the gen-
erator. Nevertheless, from (3) and (1) we can construct a dif-
ferential equation for the operatorUα,

dUα

dα
= ηαUα , (4)

with the initial conditionU0 = 1, whose formal solution can
be written as a Dyson series. Hence, for a given generatorηα

one either has to solve the flow equation (1) for all operators
of interest or one determines the unitary operator via (4) and
transforms all operators via (3).

So far this concept is generic and independent of the proper-
ties of the particular physical system, the Hamiltonian, orthe
basis under consideration. If considering anA-body system,
then all the aforementioned relations refer to the operators in
A-body space. One of the consequences is that even a simple
initial Hamiltonian, containing two-body operators at most,
acquires up toA-body terms in the course of the evolution.
For practical applications of the SRG approach in the nuclear
structure context one therefore has to simplify the scheme by
confining the evolution to two or three-body space, thus dis-
carding higher-order contributions in the evolved interaction.
Furthermore, instead of using the diagonal part of the Hamil-
tonian in the definition of the generator, one can use the op-
erator that defines the eigenbasis with respect to which the
Hamiltonian shall be diagonalized.

A simplified scheme suggested by Szpigel and Perry [13]
and applied by Bogner et al. [14, 15] confines the evolution to
two-body space and uses the generator

ηα = [Trel,Hα] = [
q2

2µ
,Hα] , (5)

containing the relative kinetic energyTrel =
1
2µ

q2 in the two-
body system. The square of the two-body relative momentum
operator can be decomposed into a radial and an angular part,

q2 = q2
r +

L2

r2
, qr =

1

2

(
q ·

r

r
+

r

r
· q
)

. (6)

The obvious fix point of the evolution with the explicit gener-
ator (5) is a two-body HamiltonianHα that commutes with
q2
r and L2/r2. Hence, in a partial-wave momentum-space

basis |q(LS)JT 〉 this generator drives the matrix elements
〈q(LS)JT |Hα |q′(L′S)JT 〉 towards a band-diagonal struc-
ture with respect to relative momentum(q, q′) and orbital an-
gular momentum(L,L′). Though we will only use this gen-
erator in the following, one should note that there are other
physically motivated choices forηα. An evident alternative
for the operatorq2 is the single-particle Hamiltonian of the
harmonic oscillator.

Starting from an initial two-body HamiltonianH composed
of relative kinetic energyTrel and two-body interactionV it is
convenient to decompose the SRG-evolved HamiltonianHα

in a similar way

Hα = Trel + Vα . (7)

All flow-dependence is absorbed in the SRG-evolved two-
body interactionVα defined by this relation. Rewriting of
the flow equation (1) using the generator (5) explicitly for the
evolved interactionVα leads to

dVα

dα
= [ηα, Trel + Vα] = [[Trel, Vα], Trel + Vα] . (8)

Even in this simplified form a direct solution of the opera-
tor equation is far from trivial. For practical applications we
therefore resort to the level of matrix elements. Given the
ansatz (5) for the generator, it is convenient to work in mo-
mentum space. Using the partial-wave momentum-space ba-
sis |q(LS)JT 〉 the flow equation (8) translates into a set of
coupled integro-differential equations for the matrix elements

V (JLL′ST )
α (q, q′) = 〈q(LS)JT |Vα |q′(L′S)JT 〉 , (9)

where the projection quantum numbersM andMT have been
omitted for brevity. In a generic form, the resulting evolution
equation reads:

d

dα
Vα(q, q′)

= −
1

(2µ)2
(q2 − q′2)2 Vα(q, q′)

+
1

2µ

∫
dQQ2 (q2 + q′2 − 2Q2) Vα(q,Q)Vα(Q, q′) .

(10)

For non-coupled partial waves withL = L′ = J , the matrix
elements entering into this equation are simply

Vα(q, q′) = V (JJJST )
α (q, q′) . (11)

For coupled partial waves withL,L′ = J ± 1, theVα(q, q′)
are understood as2×2 matrices of the matrix elements for the
different combinations of the orbital angular momentaL =
J − 1 andL′ = J + 1

Vα(q, q′) =

(
V

(JLLST )
α (q, q′) V

(JLL′ST )
α (q, q′)

V
(JL′LST )
α (q, q′) V

(JL′L′ST )
α (q, q′)

)
.

(12)
Each non-coupled partial wave and each set of coupled partial
waves evolves independently of the other channels of the in-
teraction. This is a direct consequence of the choice of the
generator—the evolution towards a diagonal in momentum
space is done in an optimal way for each individual partial
wave.

As mentioned earlier, analogous evolution equations have
to be solved for all observables in order to arrive at a consis-
tent set of effective operators. The evolution of these opera-
tors, e.g. the multipole operators necessary for the evaluation
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of transition strengths or the one-body density operators em-
ployed for the computation of the momentum distribution, is
coupled to the evolution of the Hamiltonian via the generator
ηα. Hence we have to solve these evolution equations simul-
taneously.

An alternative approach is to determine the matrix elements
of the unitary operatorUα explicitly by solving (4). The
evolved matrix elements of all observables can then be ob-
tained by a simple matrix transformation using the same uni-
tary transformation matrix. In the case of the momentum-
space partial-wave matrix elements of the unitary transforma-
tion operator,

U (JLL′ST )
α (q, q′) = 〈q(LS)JT |Uα |q′(L′S)JT 〉 , (13)

the operator equation (4) leads to a coupled set of integro-
differential equations

d

dα
Uα(q, q′)

=
1

2µ

∫
dQQ2 (q2 − Q2) Vα(q,Q)Uα(Q, q′) ,

(14)

where we assume that the evolution equation (10) is solved si-
multaneously providing theVα(q, q′). The generic notation
defined in (11) and (12) for non-coupled and coupled par-
tial waves, respectively, applies here as well. This differen-
tial equation provides direct access to the matrix elementsof
the unitary operator, which maps the initial operators ontoany
particular point of the flow trajectory.

Note that the concept of the SRG discussed so far is inde-
pendent of the particular physical system and the properties
of the Hamiltonian under consideration. The only restriction
concerns the basis with respect to which the Hamiltonian shall
be diagonalized. This is different from the motivation of the
Unitary Correlation Operator Method discussed in the Sec.
III.

B. Numerical Examples

In order to illustrate the impact of the flow evolution on the
properties of the SRG interaction, we discuss the momentum-
space matrix elements for selected partial waves as well as the
deuteron solution obtained with these matrix elements. We
start out from the Argonne V18 (AV18) potential [3] as an
example for interactions with a strongly repulsive core.

The numerical solution of the evolution equations (10) and
(14) for the matrix elements is straightforward. For conve-
nience we absorb the mass factors into a rescaled flow param-
eter ᾱ = α/(2µ)2 given in units of fm4 and rescaled inter-
action matrix elements̄Vα(q, q′) = (2µ)Vα(q, q′) given in
units of fm. After discretizing the momentum variables, the
coupled set of first-order differential equations can be solved
with standard methods, e.g. an adaptive Runge-Kutta algo-
rithm. The numerical solution is robust against changes of the
discretization pattern. However, one has to make sure that the
momentum range covered by the grid is sufficiently large such

that the matrix elements of the initial potential are zero atand
beyond the boundaries.

Based on the SRG evolved momentum-space matrix ele-
ments, we can solve the two-body problem in a given partial
wave in momentum space using the same discretized momen-
tum grid as before. In addition to the bound deuteron solu-
tion we obtain discretized continuum states resulting fromthe
boundary conditions. The eigenvalues of the two-body prob-
lem provide an additional check for the accuracy of the numer-
ical scheme. Since in two-body space the evolution equations
(10) correspond to the complete unitary transformation, the
spectrum of the Hamiltonian is preserved. All energy eigen-
values resulting for any two-body system have to be indepen-
dent ofα. In our numerical calculation this is fulfilled to an
relative accuracy of better than10−6. Of course, the eigen-
states obtained for the two-body system do depend on the
flow parameterα. After transformation to coordinate space,
the resulting wavefunctions provide a direct illustrationof the
interaction-induced correlations and their reduction through-
out the SRG evolution.

Figure 1 illustrates the effect of the SRG evolution in
the deuteron channel. The 3D plots in the upper two rows
show the momentum-space matrix elements for the3S1 and
3S1 − 3D1 partial waves. The plots in the lower row depict
the S- andD-wave component of the radial deuteron wave-
function in coordinate representation obtained from the so-
lution of the two-body problem for the evolved interaction.
Each column of plots corresponds to a different value of the
flow parameter starting from̄α = 0 fm4, i.e. the initial AV18
potential, toᾱ = 0.04 fm4, which is a typical value for the
later applications. The matrix elements clearly show how the
flow evolution drives the matrix towards band-diagonal struc-
ture. The initial AV18 matrix elements in the3S1 channel
have large off-diagonal contributions ranging to very highmo-
mentum differences|q − q′|. In the course of the SRG evo-
lution, the off-diagonal matrix elements are suppressed, any
high-momentum components are concentrated along the diag-
onal, and the attractive low-momentum part is enhanced. Sim-
ilarly, in the 3S1 − 3D1 partial wave, the strong off-diagonal
contributions caused by the tensor interaction are eliminated
outside of a band along the diagonal. Analogous effects are
observed in all other partial waves.

The impact of this pre-diagonalization in momentum space
on the ground state wavefunction of the deuteron in coordinate
representation (bottom row in Fig. 1) is remarkable. The two
distinct manifestations of short-range correlations—the sup-
pression of the relative wavefunction at small interparticle dis-
tances (as a result of the short-range repulsion) and the pres-
ence of theD-wave admixture (as a result of the strong tensor
interaction)—are gradually eliminated during the flow evolu-
tion. Already for very small flow parametersα, the structures
at the shortest distances, corresponding to large momenta,are
removed. The transformed interactionVα for ᾱ & 0.01 fm4

does not generate a correlation hole in the wavefunction any-
more. With increasing flow parameter, structures at larger
and larger radii and thus smaller and smaller momenta are
suppressed. In this way theD-wave admixture is systemat-
ically eliminated starting from smallr. For the flow param-
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(a) ᾱ = 0 fm4 (b) ᾱ = 0.001 fm4 (c) ᾱ = 0.01 fm4 (d) ᾱ = 0.04 fm4
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FIG. 1: (color online) Illustration of the SRG evolution of the momentum-space matrix elements and the deuteron wavefunction starting
from the Argonne V18 potential. The four columns correspond to different values of the flow parameter: (a)ᾱ = 0 fm4, (b) 0.001 fm4, (c)
0.01 fm4, and (d)0.04 fm4. The upper two rows depict the matrix elementsVα(q, q′) for the 3S1 and the3S1 −3 D1 partial waves, resp.,
in units of MeV fm3. The bottom row shows the radial coordinate-space wavefunctionsφL(r) of the deuteron ground state obtained with the
respective SRG-evolved matrix elements: ( ) L = 0, ( ) L = 2.

etersᾱ ≈ 0.04 fm4 the D-wavefunction consists only of a
weak contribution aroundr ≈ 2 fm. The quadrupole mo-
ment is conserved despite the elimination of theD-wave com-
ponent, since the quadrupole operator itself has to be trans-
formed and acquires a more complicated structure. Obviously,
a consistent evolution of the Hamiltonian and all observables
is mandatory.

The simple example of the deuteron shows the connection
between off-diagonal contributions of the interaction andcor-
relations in coordinate space, providing a first link between
the SRG and the Unitary Correlation Operator Method dis-
cussed in the following.

III. UNITARY CORRELATION OPERATOR METHOD

A. Concept & Formalism

The idea of the Unitary Correlation Operator Method
(UCOM) [8, 16] is to include the most important short-range
correlations induced by realistic nuclear interactions with an
explicit unitary transformation described by a so-called corre-

lation operatorC. This unitary operator can be used to imprint
the short-range correlations onto an uncorrelated many-body
state|Ψ〉, leading to a correlated state

|Ψ̃〉 = C |Ψ〉 . (15)

Alternatively, it can be used to define transformed or corre-
lated operators for all observables of interest. The unitary
transformation of the initial HamiltonianH leading to the cor-
related HamiltoniañH reads

H̃ = C†HC . (16)

In contrast to the SRG approach, we choose an explicit
ansatz for the unitary correlation operatorC which is moti-
vated by physical considerations on the structure of the corre-
lations induced by realistic nuclear interactions. First of all,
we distinguish the correlations caused by the short-range re-
pulsion in the central part of the interaction—so-called central
correlations—and those induced by the tensor part—so-called
tensor correlations. The correlation operator is written as a
product of two unitary operatorsCΩ andCr accounting for
tensor and central correlations, respectively, each formulated
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via an exponential ansatz

C = CΩCr = exp
(
−i
∑

j<k

gΩ,jk

)
exp
(
−i
∑

j<k

gr,jk

)
. (17)

Explicit expressions for the hermitian generatorsgΩ andgr

are constructed based on the physical mechanism responsible
for the correlations, as discussed in detail in Refs. [8, 16].

The central correlations induced by the short-range respul-
sion are revealed through the suppression of the two-body
density at short distances. Pictorially speaking, the interaction
pushes close-by nucleons apart and thus out of the region of
the mutual repulsion. This kind of distance-dependent radial
shift is described by the generator

gr =
1

2

(
qrs(r) + s(r)qr

)
(18)

with the radial component of the relative momentum operator
defined in (6). The tensor correlations caused by the tensor
part of the interaction connect the spin and angular degrees
of freedom and result in the mixing of states with orbital an-
gular momentumL andL ± 2. This can be created with the
generator

gΩ = ϑ(r)S12(r, qΩ)

= ϑ(r)
3

2

(
(σ1 · qΩ)(σ2 · r) + (σ1 · r)(σ2 · qΩ)

)
,

(19)

whereqΩ = q−qr
r

r
. The strengths and distance-dependences

of the two transformations are described by the functionss(r)
andϑ(r) that depend on the potential under consideration. In
general we will amend the generators by projection operators
on two-body spinS and isospinT in order to allow for a spin-
isospin dependence of the unitary transformation.

As for the SRG transformation, the correlated Hamiltonian
will contain irreducible contributions to all particle numbers
up to A even if the initial Hamiltonian contains only two-
body terms. Analogously, we restrict the discussion to two-
body space thus discarding any higher-order contributionsof
the cluster expansion of correlated operators. Again, we de-
compose the correlated HamiltoniañH into the relative ki-
netic energyTrel and the correlated interactionVUCOM [cf. Eq.
(7)]

H̃ = C†HC = Trel + VUCOM . (20)

As one of the benefits of the explicit formulation of the corre-
lation operator, we can derive an explicit operator form of the
correlated interactionVUCOM as well as analytic expressions
for the transformed matrix elements. We will not discuss these
aspects in detail but refer to Refs. [8–10, 16].

B. UCOM from an SRG perspective

One can consider the UCOM generators (18) and (19) also
from an SRG perspective. Though the aforementioned phys-
ical picture originally gave rise to the formulation of the

UCOM [8–10], one can obtain the same operator structures
in the framework of the SRG [15]. We assume an initial inter-
action composed of central, spin-orbit and tensor part,

V =
∑

p

vp(r)Op (21)

with Op ∈ {1, (σ1·σ2), (L ·S), S12(
r

r
, r

r
), ...}⊗{1, (τ1·τ2)}.

By evaluating the commutator (5) explicitly forα = 0 using
this operator form we obtain

η0 =
i

2

(
qrS(r) + S(r)qr

)
+ iΘ(r)S12(r, qΩ) . (22)

The operator-valued functionsS(r) andΘ(r) contain the ra-
dial dependencies of the different terms of the interaction

S(r) = −
1

µ

(∑

p

v′
p(r)Op

)
, Θ(r) ≡ −

2

µ

vt(r)

r2
. (23)

Thus, the initial SRG generator has the same operator struc-
ture as the UCOM generatorsgr andgΩ that were constructed
based on the physical picture of central and tensor correlations
[15].

First of all, this formal connection shows that both ap-
proaches address the same physics of short-range correlations,
although starting from quite different backgrounds. Moreover,
it proves that the set of UCOM generators covers the most rel-
evant terms. Although there are other operators appearing in
the initial interaction, e.g. the spin-orbit operator, they do not
require separate generators—their effect on the correlations is
absorbed in the operator-valued functionS(r).

At this point UCOM uses a simplified strategy. The corre-
lation functionss(r) andϑ(r) are chosen to depend on spin
S and isospinT only, they do not depend on orbital and total
angular momentum. Formally one could drop this restriction
and work with separate correlation functions for each partial
wave and thus mimic the flexibility of the SRG generator. In
practice this does not seem necessary or advantageous.

Although there is the direct relation between UCOM and
initial SRG generators, this does not allow us to identify the
UCOM correlation functions directly. In the language of
SRG, a single UCOM transformation encapsulates a whole
flow evolution up to a certain flow parameterα. In order to ex-
tract UCOM correlation functions, we therefore have to solve
the flow equation with the dynamical SRG generator. The ini-
tial SRG generator alone does not provide this information.

C. Correlated two-body states

One aspect of the UCOM formalism of relevance for the
following is the behavior of two-body states under the unitary
transformation. The action of the central correlatorCr on the
relative component|Φ〉 of a two-body state|Ψ〉 = |Φ〉 ⊗
|Φcm〉 can be evaluated directly in coordinate representation

〈r|Cr |Φ〉 =
√

R′
−(r)

R−(r)

r
〈R−(r)|Φ〉 , (24)
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where the correlation functionR−(r) as well as its inverse
R+(r) are connected tos(r) by the integral equation

∫ R±(r)

r

dξ

s(ξ)
= ±1 . (25)

Hence the application ofCr corresponds to a simple coordi-
nate transformationr 7→ R±(r) with the transformation func-
tion R±(r).

The action of the tensor correlatorCΩ on a relative
two-body state with definite angular momentum|Φ〉 =
|φ(LS)JT 〉 can also be evaluated explicitly [8, 10, 16]. States
with L = J are invariant under transformation with the tensor
correlation operator

CΩ |φ(JS)JT 〉 = |φ(JS)JT 〉 . (26)

States withL = J ± 1 acquire an admixture of a component
with L′ = J ∓ 1 with a modified radial dependence

CΩ |φ(J ± 1, 1)JT 〉 = cos θJ(r) |φ(J ± 1, 1)JT 〉

∓ sin θJ(r) |φ(J ∓ 1, 1)JT 〉 ,
(27)

where

θJ(r) = 3
√

J(J + 1) ϑ(r) . (28)

One can easily combine these two transformations obtaininga
closed expression for a correlated two-body state in coordinate
representation.

IV. UCOM CORRELATORS DERIVED FROM SRG
SOLUTIONS

Based on the elements introduced in Secs. II and III we now
devise a scheme to extract UCOM correlation functions from
an SRG evolution of a given initial interaction. So far, the
UCOM correlation functions have been determined through a
variational calculation in the two-body system using simple
parametrizations of the functionsR+(r) andϑ(r) [16]. The
use of the SRG as a tool to construct UCOM correlation func-
tion has several conceptual advantages as will be discussed
later on. In order to avoid confusion, we note from the outset
that the UCOM transformation using SRG-generated correla-
tion functions is not equivalent to the SRG transformation.

The scheme for the construction of SRG-generated UCOM
correlation functions consists of three steps: (i) We solve the
SRG evolution equations for a given initial interaction up
to a flow parameterα, obtaining the momentum space ma-
trix elementsVα(q, q′) for a certain partial wave. (ii ) Using
the evolved matrix elements the two-body problem is solved
leading to a set of coordinate-space wavefunctions. (iii ) The
UCOM correlation functionss(r) and ϑ(r) are determined
such that they map a selected two-body eigenstate of the SRG
evolved interaction onto the corresponding two-body stateof
the initial interaction in the respective partial wave. Thesteps
(i) and (ii ) have already been illustrated for the deuteron chan-
nel in Sec. II B. Step (iii ) is discussed in the following.

A. Mapping Solution

Consider two eigenstates|Φ(0)〉 and |Φ(α)〉 with the same
energy eigenvalue resulting from the solution of the two-body
problem for the initial and the SRG-evolved potential, respec-
tively, in a given coupled or non-coupled partial wave. We
can define a UCOM correlation operatorC that maps the two
states onto each other

|Φ(0)〉 = C |Φ(α)〉 = CΩCr |Φ
(α)〉 . (29)

Based on this formal definition we can derive equations that
determine the correlation functionsR−(r) andϑ(r) that char-
acterize the correlation operator.

For non-coupled partial waves withL = J only the central
correlator appears. With the two-body solutions

|Φ(0)〉 = |φ(0)(LS)JT 〉

|Φ(α)〉 = |φ(α)(LS)JT 〉
(30)

for the initial and the SRG-evolved interaction, respectively,
we obtain from (29) and (24) a relation connecting the known
radial wavefunctionsφ(0)(r) andφ(α)(r) via a yet unknown
correlation functionR−(r):

φ(0)(r) =
R−(r)

r

√
R′

−(r) φ(α)(R−(r)) . (31)

Here and in the following we assume real-valued wavefunc-
tions. The relation (31) can be viewed as a differential equa-
tion for the correlation functionR−(r). After formal integra-
tion we arrive at an implicit integral equation forR−(r)

[R−(r)]3 = 3

∫ r

0

dξ ξ2 [φ(0)(ξ)]2

[φ(α)(R−(ξ))]2
, (32)

which can be solved easily in an iterative fashion. We end up
with a discretized representation of the correlation function
R−(r) for the partial wave under consideration. By construc-
tion it maps a selected SRG-evolved two-body state onto the
corresponding initial state. In general,R−(r) will depend on
the pair of states, e.g. the ground states or a pair of excited
states, we have selected. We will show later on that this de-
pendence is very weak.

For coupled partial waves withL = J − 1 andL′ = J + 1
central and tensor correlators act simultaneously. Using the
two-body eigenstates

|Φ(0)〉 = |φ
(0)
L (LS)JT 〉 + |φ

(0)
L′ (L′S)JT 〉

|Φ(α)〉 = |φ
(α)
L (LS)JT 〉 + |φ

(α)
L′ (L′S)JT 〉

(33)

of the initial interaction and the evolved interaction, respec-
tively, we can extract a unique set of central and tensor cor-
relation functions. After multiplying the mapping equation
(29) with 〈r(LS)JT | and〈r(L′S)JT | , respectively, and us-
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ing Eqs. (27) and (24), we obtain a system of two equations
(

φ
(0)
L (r)

φ
(0)
L′ (r)

)
=

R−(r)

r

√
R′

−(r)×

×

(
cos θJ(r) sin θJ(r)

− sin θJ(r) cos θJ(r)

)(
φ

(α)
L (R−(r))

φ
(α)
L′ (R−(r))

)
,

(34)

from which the correlation functionsR−(r) andϑ(r) can be
determined.

Since the central correlation function acts on both orbital
components in the same way and since the transformation ma-
trix in (34) is unitary, we can determineR−(r) without know-
ing ϑ(r). By considering the sum of the squares of the two
orbital components we obtain from (34) the identity

[φ
(0)
L (r)]2 + [φ

(0)
L′ (r)]2 =

[R−(r)]2

r2
R′

−(r) ×

×
(
[φ

(α)
L (R−(r))]2 + [φ

(α)
L′ (R−(r))]2

)
.

(35)

which corresponds to (31) for the non-coupled case. The cor-
relation functionR−(r) can then be determined iteratively
from the integral equation

[R−(r)]3 = 3

∫ r

0

dξ ξ2 [φ
(0)
L (ξ)]2 + [φ

(0)
L′ (ξ)]2

[φ
(α)
L (R−(ξ))]2 + [φ

(α)
L′ (R−(ξ))]2

.

(36)
OnceR−(r) is known, the system (34) reduces to a set of two
nonlinear equations forθJ(r) = 3

√
J(J + 1) ϑ(r), which

can be solved numerically for eachr. Eventually, we obtain
discretized correlation functionsR−(r) andϑ(r) also for the
coupled partial waves.

B. SRG-Generated Correlation Functions for the AV18

We use this mapping scheme to determine a set of correla-
tion functions for the AV18 potential. In line with the previous
applications of the UCOM approach we allow for different
correlation functions in the different spin-isospin-channels.
An explicit angular-momentum dependence of the correlation
functions is not included. Therefore, the lowest partial wave
for each spin-isopin-channel is used to fix the correlation func-
tions.

As an example for a non-coupled channel, we discuss the
1S0 partial wave. In this partial wave the potential does
not support a bound state, so all discrete eigenstates corre-
spond to continuum states with a discretization resulting from
the boundary conditions employed for the numerical solu-
tion. The correlation functionR−(r) obtained from (32) is
inverted numerically in order to provide the correlation func-
tion R+(r), which is used in all subsequent calculations. Fig-
ure 2 depicts the radial wavefunctions of the lowest eigenstate
for different values of the flow parameterᾱ as well as the cor-
relation functionsR+(r) resulting from the mapping.

The shape of the correlation functionsR+(r) is character-
istic and can be understood intuitively in terms of a coordinate
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FIG. 2: (color online) Radial wavefunctionφ0(r) and resulting cor-
relation functionR+(r) − r for the 1S0 partial wave for different
flow parameters:̄α = 0.02 fm4 ( ), 0.04 fm4 ( ), 0.06 fm4

( ), 0.08 fm4 ( ). The thin solid curve in panel (a) shows
the corresponding wavefunction for the initial potential used for the
mapping.

transformation as mentioned in Sec. III C. At short distances
the quantityR+(r) − r, which can be viewed as a radial shift
distance, is positive. Thus, keeping the transformation (24)
in mind, probability amplitude is shifted from small towards
larger relative distances. At some distance,R+(r)−r changes
sign and becomes negative, corresponding to a shift towards
smallerr. The change of sign appears right within the most
attractive region of the potential, i.e. the probability ampli-
tude is concentrated there. It is worthwhile noting, that all
correlation functions automatically have finite range, which
warrants that initial and transformed potential are phase-shift
equivalent.

For the different SRG parameters̄α used in Fig. 2 the
short-range part of the correlation functionR+(r) does not
change. These short-range and high-momentum correlations
are removed in the initial stages of the SRG evolution and are
unaffected by the further evolution (also see Fig. 1). Only
the long-range part of the correlation functions depends on
the flow parameter—with increasinḡα correlations of longer
and longer range are removed through the SRG transformation
leading to correlation functions of increasing range. Thus,
the SRG parameter̄α and the range of the UCOM correlation
functions are directly connected.

As an example for a coupled channel, we consider the
3S1 − 3D1 partial waves and the two-body ground state of
the deuteron. From the S and D-wave component of the wave
function the central and tensor correlation functions are ex-
tracted by solving Eq. (34). The input wavefunctions and the
resulting correlation functionsR+(r) andϑ(r) are depicted
in Fig. 3. The central correlation functions show the same
structure as in the1S0 channel with a short-range compo-
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FIG. 3: (color online) Radial wavefunctions of theS andD-wave
component,φ0(r) andφ2(r) and resulting central correlation func-
tion R+(r)−r as well as the tensor correlation functionϑ(r) for the
3S1−

3D1 partial waves for different flow parameters:ᾱ = 0.02 fm4

( ), 0.04 fm4 ( ), 0.06 fm4 ( ), 0.08 fm4 ( ). The thin
solid curve in panel (a) shows the corresponding wavefunctions for
the initial potential used for the mapping.

nent independent of the flow parameter. The tensor correla-
tion functionsϑ(r) also exhibit positive and negative contri-
butions, with a dominant positive section at short ranges. The
dependence on̄α is stronger than for the central correlation
function. With increasinḡα the decreasing slope ofϑ(r) as
a whole is shifted towards largerr which also effects the be-
havior aroundr ≈ 1 fm. The tensor correlations do not show
the clear separation of short- and long-range effects that was
observed for the central correlations.

So far, only the two-body ground state for the given par-
tial wave has been used to extract the correlation functions.
In principle, any other state of the two-body spectrum can be
used as well. It is therefore important to check the sensitiv-
ity of the resulting correlation functions on the choice of the
eigenstate. In Fig. 4 we report the correlation functionsR+(r)
extracted from four different1S0 eigenstates spanning a range
of two-body energies from0 to 20 MeV. The correlation func-
tions are surprisingly stable in this energy range, showingonly
a slight tendency towards longer-ranged correlators for larger
excitation energies. The same holds true for the other partial
waves and the tensor correlation functions. This is another
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FIG. 4: (color online) Central correlation functionsR+(r) − r de-
rived from the ground state ( ), the second ( ), the fourth
( ), and the sixth excited states ( ) in the 1S0 partial wave
for the flow parameter̄α = 0.04 fm4. The correlation functions are
plotted only up to the position of the first zero of the radial wave-
functions.

indication that the generator of the UCOM method encapsu-
lates the relevant physics of short-range correlations in asim-
ple explicit operator transformation. In the following we will
always use the lowest state of the two-body spectrum to fix
the UCOM correlation functions.

This construction can be repeated for each partial wave
leading to a different set of correlation functions for eachcom-
bination of angular momenta, spin, and isospin. In the stan-
dard UCOM framework we restrict ourselves to a set of cor-
relation functions depending on spin and isospin alone, i.e.
there are four different central correlation functionsR+(r)
for the different combinations ofS = 0, 1 andT = 0, 1 and
two different tensor correlation functionsϑ(r) for S = 1 and
T = 0, 1. They are determined from a mapping in the lowest
partial wave for eachS andT . As a result of this restriction
the UCOM transformation is not specifically optimized for the
higher partial waves. However, since the centrifugal barrier
suppresses the short-range part of the relative wavefunctions
in higher partial waves, the impact of short-range correlations
is reduced in any case. Eventually, any residual correlations
not covered explicitly by the UCOM transformation have to be
described by the many-body method, which uses the UCOM
interactions as input.

C. Comparison with Variationally-Optimized Correlators

The set of SRG-generated UCOM correlation functions can
be compared to the correlation functions used in previous
UCOM calculations. Those were extracted within a varia-
tional scheme using simple parametrizations of the correla-
tion functionsR+(r) andϑ(r), whose parameters were de-
termined from a minimization of a single momentum space
matrix element of the correlated interaction—the diagonal
q = q′ = 0 matrix element. In this approach the tensor corre-
lation functions are subject to a constraint on the range defined
via the volume integral

Iϑ =

∫
dr r2ϑ(r) (37)
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FIG. 5: (color online) Central correlation functionsR+(r) − r for
different spin and isospin channels obtained from an energy mini-
mization ( ) and from the SRG-mapping ( ).
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FIG. 6: (color online) Tensor correlation functionsϑ(r) obtained
from an energy minimization ( ) and from the SRG-mapping
( ).

in order to isolate the short-range component of the two-body
correlations. A detailed discussion of this scheme including
the parametrizations and optimal parameters can be found in
Ref. [16]. There is a correspondence between the range pa-
rameterIϑ and the flow parameterα. Both define the sepa-
ration scale between short-range and long-range correlations,
where the short range component is eliminated by the UCOM
or SRG-transformation. For the variationally optimized corre-
lators this separation scale is mainly determined by the range
of the tensor correlators, which is controlled directly viathe
integral constraintIϑ.

In Figs. 5 and 6 the central and tensor correlation functions,
respectively, resulting from energy minimization and the
SRG-mapping are compared. The range constraintIϑ,even =

0.09 fm3 and the flow parameter̄α = 0.04 fm4, respec-
tively, are chosen such that the binding energy of4He re-
sulting from a converged no-core shell model calculation is
in agreement with experiment (cf. Sec. V A). In the domi-
nant even channels the short-range behavior of the correlation
functionsR+(r) agrees very well, as depicted in Fig. 5. The
long-range behavior of the SRG-generated correlators is dom-

inated by the negative section inR+(r) − r, which was not
considered in the parametrizations used for the previous de-
termination. For the triplet-even tensor correlator, the shape
of the correlation functions is slightly different, but thegross
behavior agrees, as seen from Fig. 6. The deviations in the
singlet-odd channel result from an additional range-constraint
imposed for the variational construction ofR+(r), since the
interaction is purely repulsive in this channel. In the triplet-
odd channel the tensor correlation function was switched-off
for the variational determinantion, i.e.Iϑ,odd = 0 fm3, which
also induces a different central correlation function.

Aside from these small quantitative differences, the SRG-
mapping is conceptionally superior to the variational con-
struction. There is a single well-defined parameter, the flow
parameter̄α, that unambiguously spans a family of correla-
tion functions. For the variational optimization, one always
has the freedom to choose different parametrizations and dif-
ferent ways to constrain the correlator ranges, which compli-
cates a consistent and unambiguous treatment.

D. Comparison of Matrix Elements

It is important to realize that the UCOM-transformation us-
ing SRG-generated correlators is not equivalent to a direct
SRG-evolution. For the construction of the UCOM correlators
only a single eigenstate from the low-energy part of the two-
body spectrum of the SRG-evolved interaction is used. This
contains the essential information on the decoupling of low-
momentum from high-momentum modes. However, this does
not guarantee a decoupling among high-momentum modes.

This difference is illustrated in Fig. 7 using momentum-
space matrix elements〈q(LS)JT | ◦ |q′(L′S)JT 〉 for the1S0

partial wave. Here and in the following comparisons of SRG-
evolved and UCOM-transformed interactions we fix the pa-
rameters such that the4He binding energy obtained in the
no-core shell model for each of the transformed interac-
tions is in agreement with experiment. For the SRG-evolved
interaction this leads tōα = 0.03 fm4, for UCOM with
SRG-generated correlators we obtainᾱ = 0.04 fm4, and
for UCOM with variationally optimized correlators we use
Iϑ,even = 0.09 fm3. The momentum-space matrix elements
of the UCOM-transformed interaction are computed using the
analytic form discussed in [16].

In comparison to the initial AV18 interaction, all the unitar-
ily transformed interactions exhibit a strong reduction ofthe
off-diagonal matrix elements and an enhancement of the low-
momentum sector. In the high-momentum regime, the SRG-
evolved interaction by construction shows a narrow band-
diagonal structure, i.e. the decoupling is effective at allmo-
menta. The UCOM-transformed interactions for both, the
SRG-generated correlators and the ones determined variation-
ally, exhibit larger off-diagonal contributions connecting dif-
ferent high-momentum states. The SRG-generated correla-
tors lead to a broad band of non-vanishing matrix elements
along the diagonal at high momenta—much broader than for
the SRG-evolved interaction.

The difference is even more pronounced when going from
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(a) VAV18 (b) VSRG (c) VUCOM(SRG gen.) (d) VUCOM(var. opt.)

FIG. 7: (color online) Momentum-space matrix elements〈q(LS)JT | ◦ |q′(L′S)JT 〉 (in units of MeV fm3) for the1S0 partial wave obtained
from (a) the initial AV18 potential, (b) the SRG-evolved interaction (ᾱ = 0.03 fm4), (c) the UCOM-transformed interaction using the SRG-
generated correlators (ᾱ = 0.04 fm4), and (d) the UCOM-transformed interaction using the variationally optimized correlators.

(a) VAV18 (b) VSRG (c) VUCOM(SRG gen.) (d) VUCOM(var. opt.)

FIG. 8: (color online) Relative harmonic-oscillator matrix elements〈n(LS)JT | ◦ |n′(L′S)JT 〉 (in units of MeV) for an oscillator frequency
~Ω = 20 MeV in the1S0 partial wave obtained with the same interactions as in Fig. 7.

momentum-space to the harmonic oscillator basis that will be
used for the following many-body calculations. In Fig. 8
we present the relative harmonic-oscillator matrix elements
〈n(LS)JT | ◦ |n′(L′S)JT 〉 for the same1S0 partial wave and
the same interactions. The UCOM matrix elements are com-
puted directly in the harmonic oscillator basis following Ref.
[16], whereas the SRG matrix elements result from an evolu-
tion in momentum space and a subsequent transformation into
the oscillator basis. Although the SRG-evolution is tailored
for a pre-diagonalization in momentum space, the harmonic
oscillator matrix elements also show a narrow band-diagonal
structure for all radial quantum numbersn. The UCOM-
transformed interactions have more off-diagonal contributions
at largen and thus a stronger coupling between high-lying
states. However, the behavior at smalln and the decoupling
of states with smalln from those with largen is very similar.

The matrix elements show that UCOM is as efficient as
SRG in decoupling low- and high-lying states, but has a dif-
ferent structure in the high-q or large-n regime. The former
is most relevant for the convergence properties of the interac-
tion, the latter influences the behavior when going to heavier
systems.

V. FEW- & MANY-BODY CALCULATIONS

As a first application and test of the SRG-generated UCOM
correlators we discuss No-Core Shell Model (NCSM) cal-

culations for the ground states of3H and 4He and Hartree-
Fock calculations for heavier closed-shell nuclei. These cal-
culations shed light on the similarities of and differencesbe-
tween SRG and UCOM-transformed interactions relevant for
nuclear structure.

A. No-Core Shell Model for 3H and 4He

For light nuclei the NCSM provides detailed insight into
the convergence behavior of the different interactions andthus
allows to disentangle the effects of short- and long-range cor-
relations. For a givenNmax~Ω model space of the NCSM we
diagonalize the translationally invariant many-body Hamil-
tonian consisting of intrinsic kinetic energy and two-body
SRG- or UCOM-transformed interaction directly. No addi-
tional Lee-Suzuki transformation is employed. All calcula-
tions were performed with the Jacobi-coordinate NCSM code
of P. Navŕatil [17].

We will use only the two-body terms of the transformed
interactions in these calculations and discard three-bodyand
higher-order contributions that are inevitably generatedby
the unitary transformation. We are thus treating the trans-
formed two-body terms as a new realistic interaction, which
is phase-shift equivalent to the initial AV18 potential. The
energy eigenvalues obtained with these two-body interac-
tions in a many-body system are different from the eigenval-
ues of the initial potential—only if all many-body terms of
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FIG. 9: (color online) Convergence behavior of the ground-state energy of 3H obtained in no-core shell model calculations as function of~Ω
for different potentials. The various curves correspond to different Nmax~Ω model spaces in the rangeNmax = 6, 12, 18,...,48 as indicated
by the labels. The different potentials are: (a) untransformed AV18 potential (note the different energy scale). (b) SRG-evolved AV18 potential
for ᾱ = 0.03 fm4. (c) UCOM-transformed AV18 potential using the SRG-generated correlators forᾱ = 0.04 fm4. (d) UCOM-transformed
AV18 potential using the standard correlators constructed by energy minimization. The dashed horizontal line indicates the experimental
ground-state energy.
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FIG. 10: (color online) Convergence behavior of the ground-state energy of 4He obtained in no-core shell model calculations as function of
~Ω for different potentials. The various curves correspond to different Nmax~Ω model spaces in the rangeNmax = 0, 2, 4,...,16 as indicated
by the labels. The different potentials are as described in Fig. 9.

the transformed Hamiltonian were included, unitarity would
guarantee invariance of the eigenvalues. As pointed out in
Refs. [16, 18, 19] we can use this fact to choose a uni-
tary transformation that requires minimal many-body forces
for the description of the ground-state energy of a selected
nucleus. For the following discussion we fix the parame-
ter controlling the SRG or UCOM-transformation such that
the converged NCSM ground-state energy of4He is in agree-
ment with experiment, i.e. we minimize the contribution of
three- and four-body interactions to the4He ground-state en-
ergy. As mentioned earlier, this condition is fulfilled for the
SRG-evolved potential with̄α = 0.03 fm4 [20], the UCOM-
transformed potential using the SRG-generated correlation
functions withᾱ = 0.04 fm4, and the UCOM-transformed
potential using the variationally optimized correlation func-
tions withIϑ,even= 0.09 fm3.

In Figs. 9 and 10 we present the ground-state energies of3H
and4He, respectively, as function of the oscillator frequency
~Ω for different model space sizesNmax. First of all, the

systematics of theNmax-dependence reveals the huge differ-
ence in the convergence behavior of the initial AV18 interac-
tion and the different transformed interactions (note the dif-
ferent energy scales). The transformed interactions lead to a
self-bound ground state within a0~Ω model space already.
For 4He the0~Ω space consists of a single Slater determi-
nant which cannot describe any correlations. Thus the large
change of the0~Ω energy proves that the unitary transforma-
tions have eliminated the components of the AV18 interaction
that induce short-range correlations in the many-body states.
These are the components that generate large matrix elements
far-off the diagonal which couple low-lying and high-lying
basis states. The residual correlations resulting from near-
diagonal matrix elements can be described in model spaces
of moderate size. Hence the transformed interactions show a
rapid convergence—for4He atNmax & 10—where the initial
AV18 is still far from the converged result.

The comparison of the results obtained with the three trans-
formed interactions reveals a few subtle but important differ-
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ences. The convergence properties of the SRG-evolved inter-
action and the UCOM-transformed interaction for the SRG-
generated correlators, shown in Figs. 9(b) and (c) and in Figs.
10(b) and (c), is very similar. Both exhibit a very regular con-
vergence pattern. As function of the oscillator frequency there
is a single minimum, which flattens rapidly with increasing
Nmax leading to a converged ground-state energy which is
constant over an extended range of frequencies~Ω. These
similarities indicate that the obvious differences of the matrix
elements in the high-q or large-n sector, as discussed in Sec.
IV D, are irrelevant for the convergence in light nuclei.

The two UCOM-transformed interactions, using the SRG-
generated and the variationally optimized correlation func-
tions, respectively, show slightly different convergencepat-
terns as seen in Figs. 9(c) and (d) and in Figs. 10(c) and
(d). Overall, the SRG-generated correlators lead to lower en-
ergies in small model spaces and to a faster and more regu-
lar convergence. For3H in particular, the variationally op-
timized correlators develop a double-minimum structure for
model spaces aroundNmax = 24, which disturbs the smooth
convergence. Eventually, at largeNmax the minimum shifts to
large values of~Ω. The appearance of the second minimum
indicates that the correlation functions do not describe certain
features of the interparticle correlation properly. The NCSM
corrects for these deficiencies as soon as the model space is
sufficiently large to resolve the relevant length scales. Ifthe
defects are well localized with respect to the interparticle dis-
tance, then huge model spaces are required to resolve them.
The fact that the SRG-generated correlators work much bet-
ter, can be traced back to the negative sections in the correla-
tion functionsR+(r)− r, which pull in probability amplitude
from larger interparticle distances into the attractive region of
the interaction. This localized modification of the two-body
density can be described in the NCSM only with large model
spaces, leading to a change in the convergence pattern.

B. Hartree-Fock for Heavier Nuclei

In order to highlight the differences among the transformed
interactions emerging in heavier nuclei, we present simple
Hartree-Fock (HF) calculations for selected nuclei with closed
j-shells throughout the nuclear chart. We use the HF imple-
mentation discussed in detail in Ref. [21] based on the intrin-
sic HamiltonianHint = T − Tcm + V including all charge de-
pendent and electromagnetic terms of the SRG- and UCOM-
transformed AV18 potential. The single-particle states are ex-
panded in the harmonic oscillator basis with an oscillator pa-
rameter selected via a minimization of the HF energy. All cal-
culations were performed with a basis including 13 major os-
cillator shells which warrants convergence of the HF ground-
state energies.

Of course, the HF many-body state, being a Slater deter-
minant, cannot describe any correlations by itself. Thus com-
pared to the NCSM calculation in the previous section, HF
can only provide results at the level of a0~Ω space. The en-
ergy gain observed in the NCSM by increasing the size of
the model space resulting from residual correlations cannot be
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FIG. 11: (color online) Hartree-Fock ground-state energies per parti-
cle and charge radii obtained with the SRG-evolved AV18 potential
(•), the UCOM-transformed AV18 using SRG-generated correlators
(�), and the UCOM-transformed interaction using the variationally
optimized correlators (�). The parameters of all transformed inter-
actions are the same as in the NCSM calculations. Experimental data
is represented by black bars [22, 23].

obtained in HF. To recover the effect of these residual correla-
tions, extensions beyond HF, e.g. in the framework of many-
body perturbation theory, have to be considered. Nonetheless,
the HF solution provides valueable information on the system-
atics of ground-state energies and rms-radii. For the follow-
ing conclusions we solely rely on the fact that the HF ener-
gies provide a variational upper bound for the exact ground-
state energies and that residual correlations, in the case of the
UCOM interactions, change the binding energies per particle
by an almost constant amount [21].

In Fig. 11 we summarize the HF results for ground-state
energies and charge rms-radii for a range of nuclei from
4He to 208Pb. We use the same transformed interactions
as for the NCSM calculations: the SRG-evolved interaction
(ᾱ = 0.03 fm4), the UCOM-transformed interaction using
SRG-generated correlators (ᾱ = 0.04 fm4), and the UCOM-
tranformed interaction using variationally optimized correla-
tors (Iϑ,even= 0.09 fm3), all derived from the AV18 potential.

A systematic difference is observed between the SRG-
evolved and the UCOM-transformed interactions. In the case
of the UCOM-transformed interactions, the energies per nu-
cleon are almost constant as function of mass numberA. They
resemble the systematics of the experimental binding energies
up to a constant energy shift. The inclusion of the effect of
residual correlations on the energy, e.g. by means of many-
body perturbation theory, will shift the HF energies right into
the region of the experimental data as was demonstrated in
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Ref. [21] for the UCOM interaction with variationally opti-
mized correlators. In contrast, the SRG-evolved interaction
shows a systematic linear increase of the binding energy per
nucleon withA [20], leading to a dramatic overbinding for
heavier nuclei already on the HF level. The inclusion of cor-
relations beyond HF will lead to even more drastic deviations.

The charge radii also reflect this difference. The SRG-
evolved interaction predicts very small charge radii for heavy
nuclei, for208Pb its about1.8 fm smaller than the experimen-
tal value. The two UCOM-transformed interactions generate
radii which are also too small, but much closer to the exper-
imental values. It is interesting to note that the difference in
the radii predicted with the UCOM interactions is rather large,
those obtained with the SRG-generated correlators are signif-
icantly closer to experiment.

One can interpret the different systematics in terms of the
impact of three-body interactions which have been omitted
here. For the SRG-transformed interaction there is a clear
need for a strongly repulsive three-body interaction. Given
the huge effect on binding energies and charge radii the struc-
ture of the states will be changed completely by the additional
three-body force. For the UCOM-transformed interactions a
supplementary three-body force will have a much smaller ef-
fect. One might expect a small correction to the systematics
of the charge radii due to three-body forces, for the energies
the systematics is already reproduced by the two-body force.

VI. CONCLUSIONS

The Unitary Correlation Operator Method and the Sim-
ilarity Renormalization Group are two methods to tackle
short-range correlations in the nuclear many-body problemby
means of unitary transformations. Though both methods start
from a different conceptual background—coordinate-space
picture of short-range correlations and pre-diagonalization via
a flow evolution, respectively—both lead to a decoupling of
low-momentum and high-momentum modes. Moreover, there

are certain formal connections, e.g. regarding the initialstruc-
ture of the generators, and we have shown how to use the
SRG-scheme to construct correlation functions for the UCOM
transformation by means of a mapping of two-body eigen-
states. These SRG-generated UCOM correlation functions
provide an alternative to the previous correlation functions ob-
tained by a variational procedure and will be explored further.

The resulting phase-shift equivalent effective interactions
show similarities but also differences. Because of the decou-
pling of low-q or small-n states from high-q or large-n states,
both the SRG-evolved and the UCOM-transformed interac-
tions lead to a rapid convergence of NCSM calculations for
light nuclei. However, the behavior of matrix elements in the
high-q or large-n sector is quite different. The SRG-evolution
causes a pre-diagonalization at all momentum scales, i.e. it
also leads to a decoupling among the high-q or large-n states.
The UCOM-transformed interaction generates a stronger cou-
pling among high-lying states, i.e. the prediagonalization in
the high-q or large-n regime is not as perfect. This differ-
ence, together with the independence of the UCOM transfor-
mation on angular momentum, seems crucial when going to
heavier systems. Simple HF calculations with a pure two-
body UCOM-transformed and SRG-evolved interactions re-
veal a different systematic behavior of the binding energies
as function of mass number. The SRG-interactions lead to a
systematic overbinding for heavier nuclei already at the HF
level, whereas the UCOM-transformed interaction result ina
constant energy per particle. From this observation one might
conclude that three-body interactions have to have a large ef-
fect in the SRG-scheme, whereas their impact in the UCOM-
framework is much smaller.
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Meißner, and H. Witala, Phys. Rev. C66, 064001 (2002).

[2] D. R. Entem and R. Machleidt, Phys. Rev. C68, 041001(R)
(2003).

[3] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[4] K. Suzuki and S. Y. Lee, Prog. Theo. Phys.64, 2091 (1980).
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