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We discuss relations and differences between two methods for the wdiwtrof unitarily transformed ef-
fective interactions, the Similarity Renormalization Group (SRG) and UniGowrelation Operator Method
(UCOM). The aim of both methods is to construct a soft phase-shifvaignt effective interaction which is
well suited for many-body calculations in limited model spaces. After estitrg the two conceptual frame-
works, we establish a formal connection between the initial SRG-genexatbthe static generators of the
UCOM transformation. Furthermore we propose a mapping procedwdract UCOM correlation functions
from the SRG evolution. We compare the effective interactions resultorg fhe UCOM-transformation and
the SRG-evolution on the level of matrix elements, in no-core shell madeliations of light nuclei, and in
Hartree-Fock calculations up t8%Pb. Both interactions exhibit very similar convergence properties in light
nuclei but show a different systematic behavior as function of partiohebrer.

PACS numbers: 21.30.Fe,21.60.-n,21.45.-v,13.75.Cs

I. INTRODUCTION tion of matrix elements and two-body wavefunctions in Sec.
II, we put the UCOM approach in perspective. In Sec. Ill we

In the past few years several methods for the constructiofSCUSS the formal connections between SRG and the genera-
of phase-shift equivalent soft interactions starting frod- tors pf the UCOM transformatlc_)n. Based on these structural
ern realistic potential have been proposed and applied. TH&!&tions, we propose a mapping scheme to extract UCOM
common goal of these methods is to adapt realistic QCDgorrelgtlon funct|0n§ from the SRG evolution in Sec. IV.
motivated interactions like the ones extracted from chéfal  Following a comparison of matrix elements of the SRG and
fective field theory [1, 2] or more phenomenological high- pCQM—transformed interactions, we compare their behavior
precision potentials like the Argonne V18 [3] to the limited IN different many-body calculations. In 48ec. V we present
model spaces typically available in many-body calculation N0-core shell _model calculations foie and_ He and Hartree-
Apart from approaches providing effective interactions ta FOck calculations for closed shell nuclei up*6Pb for the
lored for a specific model space, e.g. the Lee-Suzuki trandJifferent transformed interactions.
formation [4] widely used in the ab initio no-core shell mbde
[5, 6], there are several schemes to derive model-space inde
pendent effective interactions, e.g. tg,, approach provid-
ing a universal low-momentum interaction [7].

We focus on two alternative schemes, the Unitary Cor-
relation Operator Method (UCOM) [8-10] and the Similar-
ity Renormalization Group (SRG) [11, 12], which both use The basic idea of the Similarity Renormalization Group
phase-shift conserving unitary transformations. The phys (SRG) approach in the formulation of Wegner [11, 12] is to
cal picture behind these two formulations is different: Thetransform the initial Hamiltoniaff of a many-body system
UCOM starts out from a coordinate-space representation dhto a diagonal form with respect to a given basis. The renor-
the short-range correlations induced by the central argbten malization group flow equation governing the evolution & th
components of the realistic nuclear interaction. On this baHamiltonian is of the form
sis ansatzes for the generators of unitary transformatiens dH
scribing central and tensor correlations are formulatetthvh % = [N, Hal Q)
allow for the explicit inclusion of these correlations imsi dex

ple model spaces. The SRG, on the other hand, aims at thghere is the flow parameter an#,, the evolved Hamilto-
pre-diagonalization of a matrix representation of the Hami pjan with 7, = H. Analogous equations can be formulated
tonian in a chosen basis by means of a renormalization grouyr the operators of all observables one is interested in. In
flow evolution. The resultlng band'd|agonal interactioalso genera' terms the anti-hermitian genera’:@mf the flow can

I1. SIMILARITY RENORMALIZATION GROUP

A. Concept & Formalism

well-suited for small model spaces. be written as
We discuss the formal relations and the practical diffeesnc
between these two approaches in detail. After reviewing the Ne = [diag(H, ), Ha) , (2)

formalism of the SRG and discussing examples for the evolu-
where diagH,,) refers to the diagonal part of the Hamilto-
nian in a given basis. This choice can be understood in in-
tuitive terms: if the Hamiltonian commutes with its diagbna
*Electronic addressRober t . Rot h@bhysi k. t u- dar nst adt . de part w.r.t. a given basis, then the generator vanishes and th



evolution has reached a fix point. Apart from trivial caseés th  Starting from an initial two-body HamiltoniaH composed
does only happen if the Hamiltonian is actually diagonal inof relative kinetic energy e and two-body interactiofr it is
the given basis. convenient to decompose the SRG-evolved Hamiltodign
Formally one can integrate this flow equation defining ain a similar way
unitary operatot/,, of the transformation
Ha :ﬂel+Va . (7)
H,=U,HU] . )
All flow-dependence is absorbed in the SRG-evolved two-
Due to the nontriviab--dependence of the generator, the uni-body interactionV,, defined by this relation. Rewriting of
tary operator is not simply given by an exponential of the-genthe flow equation (1) using the generator (5) explicitly foe t
erator. Nevertheless, from (3) and (1) we can construct-a difeyolved interactiorV/,, leads to
ferential equation for the operatdt,, v
dU, T; = [anreI + Va] = [[Treh Va]aTrel + Va] . (8)
Ao =naUa , (4)
. o B ) Even in this simplified form a direct solution of the opera-
with the initial conditionly = 1, whose formal solution can  tor equation is far from trivial. For practical applicatomwe
be written as a Dyson series. Hence, for a given genefiator therefore resort to the level of matrix elements. Given the
one either has to solve the flow equation (1) for all operatorgnsatz (5) for the generator, it is convenient to work in mo-
of interest or one determines the unitary operator via (4) an mentum space. Using the partial-wave momentum-space ba-
transforms all operators via (3). sis |¢(LS)JT) the flow equation (8) translates into a set of

So far this concept is generic and independent of the propegoupled integro-differential equations for the matrixneénts
ties of the particular physical system, the Hamiltonianther

basis under consideration. If considering A+body system, Va(JLL’ST)(q, ¢) = (q(LS)JT|Vy|d (L'S)JT),  (9)

then all the aforementioned relations refer to the opesator

A-body space. One of the consequences is that even a simphhere the projection quantum numbéidsand M have been

initial Hamiltonian, containing two-body operators at mjos omitted for brevity. In a generic form, the resulting evaduat

acquires up tod-body terms in the course of the evolution. equation reads:

For practical applications of the SRG approach in the nuclea

structure context one therefore has to simplify the scheyne b iVa(q, )

confining the evolution to two or three-body space, thus dis- do

carding higher-order contributions in the evolved intdmac _ 1 (@% = ¢)? Via(q, ¢')

Furthermore, instead of using the diagonal part of the Hamil (2p)? o

tonian in the definition of the generator, one can use the op- 1 5 9 o 5 ,

erator that defines the eigenbasis with respect to which the T 2% /dQQ (" +4" =2Q7) Valq, Q)Va(@, ) -

Hamiltonian shall be diagonalized. (10)
A simplified scheme suggested by Szpigel and Perry [13]

and applied by Bogner et al. [14, 15] confines the evolution td=or non-coupled partial waves with = L’ = .J, the matrix

two-body space and uses the generator elements entering into this equation are simply
2 _ JJJST
o = [T Ho =[5 .. ©) Valad) = Va0 e d) - (1)

For coupled partial waves with, L’ = J + 1, theV,(q,¢’)
containing the relative kinetic energye = 5¢” in the two-  are understood a@x 2 matrices of the matrix elements for the
body system. The square of the two-body relative momenturdifferent combinations of the orbital angular momeiita=
operator can be decomposed into a radial and an angular past,— 1 andL’ = J + 1

L2 1 r r (JLLST) , (JLL'ST) ,
C=it . w=g(a T a) © Valgrd) = [ V0 pap (@4 Ve (@4
r 2 r r ? VOEJL LST)(q q/) VOEJL L ST)(q q/)
The obvious fix point of the evolution with the explicit gener (12)

ator (5) is a two-body Hamiltonia®/,, that commutes with Each non-coupled partial wave and each set of coupled partia
q? and L?/r2. Hence, in a partial-wave momentum-spacewaves evolves independently of the other channels of the in-
basis |¢(LS)JT) this generator drives the matrix elementsteraction. This is a direct consequence of the choice of the
(q(LS)JT| H, |¢'(L'S)JT) towards a band-diagonal struc- generator—the evolution towards a diagonal in momentum
ture with respect to relative momentui; ¢’) and orbital an-  space is done in an optimal way for each individual partial
gular momentun{ L, L’). Though we will only use this gen- wave.

erator in the following, one should note that there are other As mentioned earlier, analogous evolution equations have
physically motivated choices foj,. An evident alternative to be solved for all observables in order to arrive at a censis
for the operatoig? is the single-particle Hamiltonian of the tent set of effective operators. The evolution of these @per
harmonic oscillator. tors, e.g. the multipole operators necessary for the etiatua
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of transition strengths or the one-body density operators e that the matrix elements of the initial potential are zerarat
ployed for the computation of the momentum distribution, isbeyond the boundaries.
coupled to the evolution of the Hamiltonian via the genarato  Based on the SRG evolved momentum-space matrix ele-
N« Hence we have to solve these evolution equations simulments, we can solve the two-body problem in a given partial
taneously. wave in momentum space using the same discretized momen-
An alternative approach is to determine the matrix elementsum grid as before. In addition to the bound deuteron solu-
of the unitary operatol/,, explicitly by solving (4). The  tion we obtain discretized continuum states resulting ftoen
evolved matrix elements of all observables can then be obhoundary conditions. The eigenvalues of the two-body prob-
tained by a simple matrix transformation using the same unitem provide an additional check for the accuracy of the numer
tary transformation matrix. In the case of the momentum-cal scheme. Since in two-body space the evolution equsition
space partial-wave matrix elements of the unitary tramséer  (10) correspond to the complete unitary transformatiog, th
tion operator, spectrum of the Hamiltonian is preserved. All energy eigen-
values resulting for any two-body system have to be indepen-
UVELST) (q.¢') = (q(LS)JT|Uq |¢/(L'S)JT) , (13)  dent ofa. In our numerical calculation this is fulfilled to an
relative accuracy of better thard—6. Of course, the eigen-
the operator equation (4) leads to a coupled set of integrostates obtained for the two-body system do depend on the

differential equations flow parametery. After transformation to coordinate space,
the resulting wavefunctions provide a direct illustratafrihe
iU (4.4) interaction-induced correlations and their reductiomtigh-
da (14) out the SRG evolution.
=~ [ dQQ? (¢ — Q) V(g Q)UL(Q.q) . Figure 1 illustrates the effect of the SRG evolution in
2#/ Q¢ = Q) Vala QUa(@Q. ) the deuteron channel. The 3D plots in the upper two rows

. ) . show the momentum-space matrix elements for’tfie and
where we assume that the evolution equation (10) is solved kg, — 3D, partial waves. The plots in the lower row depict

multaneously providing th&, (¢, ¢'). The generic notation he g. and D-wave component of the radial deuteron wave-
defined in (11) and (12) for non-coupled and coupled pargnction in coordinate representation obtained from the so

tial waves, respectively, applies here as well. This d#fer |,on of the two-body problem for the evolved interaction.
tial equation provides direct access to the matrix elemehts £ach column of plots corresponds to a different value of the
the unitary operator, which maps the initial operators @mp  fjo,y parameter starting from = 0 fm*, i.e. the initial AV18
particular point of the flow trajectory. ~ potential, toa = 0.04 fm*, which is a typical value for the
Note that the concept of the SRG discussed so far is indgater applications. The matrix elements clearly show hasv th
pendent of the particular physical system and the progertiefoy evolution drives the matrix towards band-diagonal stru
of the Hamiltonian under consideration. The only reswigti ¢ ,re  The initial AV18 matrix elements in tH&S; channel
concerns the basis with respect to which the Hamiltoniah shap, 5y large off-diagonal contributions ranging to very higtr
be diagonalized. This is different from the motivation oéth mentum differences; — ¢/|. In the course of the SRG evo-
Unitary Correlation Operator Method discussed in the SeCytion, the off-diagonal matrix elements are suppressay, a

. high-momentum components are concentrated along the diag-
onal, and the attractive low-momentum part is enhanced-: Sim
ilarly, in the3S; — 3D, partial wave, the strong off-diagonal

B. Numerical Examples contributions caused by the tensor interaction are elitatha
outside of a band along the diagonal. Analogous effects are

In order to illustrate the impact of the flow evolution on the observed in all other partial waves.
properties of the SRG interaction, we discuss the momentum- The impact of this pre-diagonalization in momentum space
space matrix elements for selected partial waves as wdikeas t on the ground state wavefunction of the deuteron in cootelina
deuteron solution obtained with these matrix elements. Weepresentation (bottom row in Fig. 1) is remarkable. The two
start out from the Argonne V18 (AV18) potential [3] as an distinct manifestations of short-range correlations—ting- s
example for interactions with a strongly repulsive core. pression of the relative wavefunction at small interpéatitis-

The numerical solution of the evolution equations (10) andtances (as a result of the short-range repulsion) and ttse pre
(14) for the matrix elements is straightforward. For conve-ence of theD-wave admixture (as a result of the strong tensor
nience we absorb the mass factors into a rescaled flow pararmteraction)—are gradually eliminated during the flow evolu
etera = a/(2u)? given in units of fnt and rescaled inter- tion. Already for very small flow parametets the structures
action matrix element¥,(q,q¢') = (21) Va(q,q') given in  at the shortest distances, corresponding to large momameta,
units of fm. After discretizing the momentum variables, theremoved. The transformed interactidp for @ = 0.01 fm*
coupled set of first-order differential equations can beesbl does not generate a correlation hole in the wavefunction any
with standard methods, e.g. an adaptive Runge-Kutta alganore. With increasing flow parameter, structures at larger
rithm. The numerical solution is robust against changeb®ft and larger radii and thus smaller and smaller momenta are
discretization pattern. However, one has to make surelieat t suppressed. In this way the-wave admixture is systemat-
momentum range covered by the grid is sufficiently large suclically eliminated starting from small. For the flow param-



FIG. 1: (color online) lllustration of the SRG evolution of the momentumespaatrix elements and the deuteron wavefunction starting
from the Argonne V18 potential. The four columns correspond to diffevalues of the flow parameter: @)= 0 fm*, (b) 0.001 fm*, (c)

0.01 fm*, and (d)0.04 fm*. The upper two rows depict the matrix elemehts ¢, ¢’) for the®S; and the®*S; —* D, partial waves, resp.,

in units of MeV fn?*. The bottom row shows the radial coordinate-space wavefunctipis) of the deuteron ground state obtained with the
respective SRG-evolved matrix elements=) L =0, (---) L = 2.

etersa ~ 0.04 fm* the D-wavefunction consists only of a lation operatorC. This unitary operator can be used to imprint
weak contribution around ~ 2 fm. The quadrupole mo- the short-range correlations onto an uncorrelated mady-bo
ment is conserved despite the elimination of ihevave com-  state| V), leading to a correlated state

ponent, since the quadrupole operator itself has to be-trans

formed and acquires a more complicated structure. Obwipusl W) = C'|W) . (15)
a consistent evolution of the Hamiltonian and all obsersbl
is mandatory. Alternatively, it can be used to define transformed or corre-

The simple example of the deuteron shows the connectiolated operators for all observables of interest. The upitar
between off-diagonal contributions of the interaction and  transformation of the initial Hamiltoniaf leading to the cor-
relations in coordinate space, providing a first link betwee related Hamiltoniar/ reads
the SRG and the Unitary Correlation Operator Method dis- ~
cussed in the following. H=C'HC . (16)

In contrast to the SRG approach, we choose an explicit
ansatz for the unitary correlation operatdrwhich is moti-
vated by physical considerations on the structure of theeeor
lations induced by realistic nuclear interactions. Firfsald
we distinguish the correlations caused by the short-raage r
pulsion in the central part of the interaction—so-calledtian

The idea of the Unitary Correlation Operator Method correlations—and those induced by the tensor part—so-called
(UCOM) [8, 16] is to include the most important short-rangetensor correlations. The correlation operator is writteraa
correlations induced by realistic nuclear interactionthvein ~ product of two unitary operatorS,, and C,. accounting for
explicit unitary transformation described by a so-callede-  tensor and central correlations, respectively, each fatad

IIl. UNITARY CORRELATION OPERATOR METHOD

A. Concept & Formalism
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via an exponential ansatz UCOM [8-10], one can obtain the same operator structures
in the framework of the SRG [15]. We assume an initial inter-

C = CoC, = exp (—i Z gQ,jk> exp (_Z' Zgﬁjk‘) . (17)  action composed of central, spin-orbit and tensor part,

<k j<k

N _ N V=> 0,(r)0, (21)

Explicit expressions for the hermitian generatgrsand g, ,,

are constructed based on the physical mechanism respsnsibl

for the correlations, as discussed in detail in Refs. [8, 16]  with O, € {1, (61-02), (L - S), S12(%,Z), ..} @ {1, (1i-®)}.
The central correlations induced by the short-range respuBy evaluating the commutator (5) explicitly far = 0 using

sion are revealed through the suppression of the two-bodthis operator form we obtain

density at short distances. Pictorially speaking, the@&uton .

pushes close-by nucleons apart and thus out of the region of no = v

the mutual repulsion. This kind of distance-dependentatadi 2

shift is described by the generator

(¢-S(r) + 5(r)gr) +iO(r)S12(r,qa) . (22)

The operator-valued functiorfs(rr) and©(r) contain the ra-
1 dial dependencies of the different terms of the interaction

gr = 5 (QTS(T) + S(T)qr) (18)
2 vy (r)

S(T)z—i(Zv;(r)Op>7 @(r)z—; R )

with the radial component of the relative momentum operator
defined in (6). The tensor correlations caused by the tensor
part of the interaction connect the spin and angular degreephus, the initial SRG generator has the same operator struc-
of freedom and result in the mixing of states with orbital an-tyre as the UCOM generatogs andggq that were constructed
gular momentun?. and L 2. This can be created with the pased on the physical picture of central and tensor coivakat

generator [15].
First of all, this formal connection shows that both ap-
go = V(r)S12(r, q) proaches address the same physics of short-range camslati

(19) although starting from quite different backgrounds. Meezo
it proves that the set of UCOM generators covers the most rel-

- ) evant terms. Although there are other operators appearing i
whereqq = g—g, 7. The strengths and distance-dependencege injtial interaction, e.g. the spin-orbit operator,ytfu® not

of the two transformations are described by the functigng require separate generators—their effect on the corraiat
andv(r) that depend on the potential under consideration. Inycorbed in the operator-valued functifr).
general we will amend the generators by projection opesator - ; this point UCOM uses a simplified strategy. The corre-
on two-body spirs' and isospiri” in order to allow for a spin- |54j0n functionss(r) and«(r) are chosen to depend on spin
isospin dependence of the unitary transformation. g 414 isospir” only, they do not depend on orbital and total
AAs for the SRG transformation, the correlated Hamiltonian, g yjar momentum. Formally one could drop this restriction

will contain irreducible contributions to all particle nbiers — 5nq \work with separate correlation functions for each phrti
up to A even if the initial Hamiltonian contains only two- \yave and thus mimic the flexibility of the SRG generator. In
body terms. Analogously, we restrict the discussion to tWO'practice this does not seem necessary or advantageous.
body space thus discarding any higher-order contributins * ajthough there is the direct relation between UCOM and
the cluster expansion of correlated operators. Again, we d§pitial SRG generators, this does not allow us to identify th
compose the correlated Hamiltonidh into the relative ki-  ycoOM correlation functions directly. In the language of
netic energylre and the correlated interactidycom [cf. EJ.  SRG, a single UCOM transformation encapsulates a whole
("] flow evolution up to a certain flow parameterIn order to ex-

- tract UCOM correlation functions, we therefore have to solv

H = C"HC = T + Vucom - (20)  the flow equation with the dynamical SRG generator. The ini-

) . ) tial SRG generator alone does not provide this information.
As one of the benefits of the explicit formulation of the cerre

lation operator, we can derive an explicit operator formhef t
correlated interactioycom as well as analytic expressions C. Correlated two-body states
for the transformed matrix elements. We will not discusséhe
aspects in detail but refer to Refs. [8-10, 16].

= 90r)3 (o1 ga)(os 1) + (01 ) (o2 a0)

One aspect of the UCOM formalism of relevance for the
following is the behavior of two-body states under the uwita
transformation. The action of the central correlatgron the
relative component{®) of a two-body state|¥) = |®) ®

i |®cm) can be evaluated directly in coordinate representation
One can consider the UCOM generators (18) and (19) also

from an SRG perspective. Though the aforementioned phys- —R_(r)
ical picture originally gave rise to the formulation of the (r|Cr [®) =/ R_(r)

B. UCOM from an SRG perspective

(B_(r)[®),  (24)



where the correlation functio®_(r) as well as its inverse A. Mapping Solution
R, (r) are connected te(r) by the integral equation

ReG) g Consider two eigenstate®(?)) and [(*)) with the same
/ ST B (25)  energy eigenvalue resulting from the solution of the twoibo
r s(§) problem for the initial and the SRG-evolved potential, exsp
tively, in a given coupled or non-coupled partial wave. We
can define a UCOM correlation operatérthat maps the two
states onto each other

Hence the application af',. corresponds to a simple coordi-
nate transformation — R (r) with the transformation func-
tion R (r).

The action of the tensor correlataf, on a relative
two-body state with definite angular momentuf®) =
|o(LS)JT) can also be evaluated explicitly [8, 10, 16]. States . o ) ]
with I = J are invariant under transformation with the tensorBased on this formal definition we can derive equations that

20y = 9@ = Co 0, [8) . (29)

correlation operator determine the correlation functiod&._ (r) andd(r) that char-
acterize the correlation operator.
Cq|d(JS)IT) = |p(JS)JT) . (26) For non-coupled partial waves with = .J only the central

correlator appears. With the two-body solutions
States withl. = J 4+ 1 acquire an admixture of a component

with L' = J F 1 with a modified radial dependence |<I>(0)> _ |¢(°)(LS)JT>
(30)
Cal¢(J £1,1)JT) = cosb;(r) [6(J £ L1JIT) ., ) = |¢(*)(LS)JT)
F sinf;(r) |o(JF1,1)JT) ,
for the initial and the SRG-evolved interaction, respesyiy

where we obtain from (29) and (24) a relation connecting the known
radial wavefunctions () () and¢(®)(r) via a yet unknown
0(r) =3V J(J+1)d(r). (28)  correlation functionR_ (r):
One can easily combine these two transformations obtaaning R
closed expression for a correlated two-body state in coatdi O (r) = R-() R (1) ¢'N(R_(r)) . (31)
representation. r

Here and in the following we assume real-valued wavefunc-
tions. The relation (31) can be viewed as a differential equa
tion for the correlation functiol®_ (). After formal integra-
tion we arrive at an implicit integral equation f&_ (r)

IV. UCOM CORRELATORSDERIVED FROM SRG
SOLUTIONS

Based on the elements introduced in Secs. Il and 11l we now ’ 60 (6)]2
devise a scheme to extract UCOM correlation functions from [R_(r)]® = 3/ a2 —— =2 (32)
an SRG evolution of a given initial interaction. So far, the 0 [ (R-(£))]?
UCOM correlation functions have been determined through a
variational calculation in the two-body system using sienpl Which can be solved easily in an iterative fashion. We end up
parametrizations of the function®, (r) andd(r) [16]. The  With a discretized representation of the correlation fiamct
use of the SRG as a tool to construct UCOM correlation funcf2— (r) for the partial wave under consideration. By construc-
tion has several conceptual advantages as will be discuss&@n it maps a selected SRG-evolved two-body state onto the
later on. In order to avoid confusion, we note from the outse€orresponding initial state. In generd, (r) will depend on
that the UCOM transformation using SRG-generated correlathe pair of states, e.g. the ground states or a pair of excited
tion functions is not equivalent to the SRG transformation. ~ States, we have selected. We will show later on that this de-
The scheme for the construction of SRG-generated UCOMPENdence is very weak.
correlation functions consists of three step¥:We solve the For coupled partial waves with = J — 1l andL' = J + 1
SRG evolution equations for a given initial interaction up central and tensor correlators act simultaneously. Udieg t
to a flow parametery, obtaining the momentum space ma- two-body eigenstates
trix elementsV,, (¢, ¢’) for a certain partial wave.iij Using

the evolved matrix elements the two-body problem is solved |@(0)> _ \qs(o)(LS)JT) + \qs((),)(L’S)JT)
leading to a set of coordinate-space wavefunctioiis) The (La) ?a) (33)
UCOM correlation functions:(r) and 9(r) are determined |©)) = |¢i (LS)JT) + |y (I'S)JT)

such that they map a selected two-body eigenstate of the SRG

evolved interaction onto the corresponding two-body stéte of the initial interaction and the evolved interaction, pes-

the initial interaction in the respective partial wave. Bieps tively, we can extract a unique set of central and tensor cor-
(i) and i) have already been illustrated for the deuteron chanrelation functions. After multiplying the mapping equatio
nelin Sec. II B. Stepii) is discussed in the following. (29) with (r(LS)JT| and{(r(L’'S)JT|, respectively, and us-



ing Egs. (27) and (24), we obtain a system of two equations ' ' ' ' '
=z 0.2
(0) k=
£ ) B0 o =015
( © m) ; (r) 2°
: () =01
o [ cos 0y(r) sinfy(r) L (R_(r)) -
—sinf;(r) cosf(r) (L(f)(R_ (r)) 5005
(34) 0 : : : : :
from which the correlation function®_(r) andd(r) can be 0.2t (b) 1
determined. £
Since the central correlation function acts on both orbital < 01 |
components in the same way and since the transformation ma- \
trix in (34) is unitary, we can determirfe_ () without know- =
ing 9(r). By considering the sum of the squares of the two o 0 N
orbital components we obtain from (34) the identity Nz
0 0 [R_(r)]* , 0 1 2 3 4 5 6
O O+l ) = R X g r [fm]
(@) 2 (@) 2
x ([or" (R=(m)]* + ¢ (R-(r)]?) - FIG. 2: (color online) Radial wavefunctiapy, () and resulting cor-

which corresponds to (31) for the non-coupled case. The cofglation functionfz,. (r) — r for the "’ So partial wave for different

. . ; : . fl tersa = 0.02 fm* (—), 0.04 fm* (---), 0.06 fm*
relation functionR_(r) can then be determined iteratively (V?‘{Vjaﬁgéef;rf O(‘ 77777 0) _0 Thrg tl(nin sz)’"g %ur\r/r; if] par)lélo 83 ;EOWS
from the integral equation !

the corresponding wavefunction for the initial potential used for the
mapping.
R_(r) = 3 / geer DEP+BREOP
0 [0 (R_()2 + [¢13) (R—(9))]2
(36) transformation as mentioned in Sec. Il C. At short distance
OnceR_(r) is known, the system (34) reduces to a set of twothe quantityR (r) — r, which can be viewed as a radial shift
nonlinear equations fof;(r) = 3./J(J + 1) 9(r), which  distance, is positive. Thus, keeping the transformatia¥) (2
can be solved numerically for each Eventually, we obtain in mind, probability amplitude is shifted from small toward
discretized correlation functiong_ (r) andy(r) also for the larger relative distances. At some distangg,(r) —r changes
coupled partial waves. sign and becomes negative, corresponding to a shift towards
smallerr. The change of sign appears right within the most
attractive region of the potential, i.e. the probability @im
B. SRG-Generated Correlation Functionsfor the AV18 tude is concentrated there. It is worthwhile noting, that al
correlation functions automatically have finite range, athi
We use this mapping scheme to determine a set of correlavarrants that initial and transformed potential are pretsé-
tion functions for the AV18 potential. In line with the previs ~ equivalent.
applications of the UCOM approach we allow for different For the different SRG parametefs used in Fig. 2 the
correlation functions in the different spin-isospin-chals.  short-range part of the correlation functiét, (r) does not
An explicit angular-momentum dependence of the corralatio change. These short-range and high-momentum correlations
functions is not included. Therefore, the lowest partialgva are removed in the initial stages of the SRG evolution and are
for each spin-isopin-channel is used to fix the correlatioref ~ unaffected by the further evolution (also see Fig. 1). Only
tions. the long-range part of the correlation functions depends on
As an example for a non-coupled channel, we discuss ththe flow parameter—with increasirgcorrelations of longer
1S, partial wave. In this partial wave the potential doesand longer range are removed through the SRG transformation
not support a bound state, so all discrete eigenstates-corr¢ading to correlation functions of increasing range. Thus
spond to continuum states with a discretization resultiogyf  the SRG parameter and the range of the UCOM correlation
the boundary conditions employed for the numerical solufunctions are directly connected.
tion. The correlation functiorR_ (r) obtained from (32) is As an example for a coupled channel, we consider the
inverted numerically in order to provide the correlationdu 25, — 3D, partial waves and the two-body ground state of
tion R, (r), which is used in all subsequent calculations. Fig-the deuteron. From the S and D-wave component of the wave
ure 2 depicts the radial wavefunctions of the lowest eigagast function the central and tensor correlation functions are e
for different values of the flow parameteras well as the cor- tracted by solving Eq. (34). The input wavefunctions and the
relation functionsR () resulting from the mapping. resulting correlation function&®_ (r) andd(r) are depicted
The shape of the correlation functioRs.(r) is character- in Fig. 3. The central correlation functions show the same
istic and can be understood intuitively in terms of a coomtin  structure as in thé S, channel with a short-range compo-
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0.1 1 FIG. 4: (color online) Central correlation functiom, (r) — r de-

rived from the ground state{—), the second—---), the fourth
(---- ), and the sixth excited states-) in the 1S, partial wave

Ri(r) 7 [fm]

0 for the flow parametet = 0.04 fm*. The correlation functions are
- plotted only up to the position of the first zero of the radial wave-
-0.1 , - , . . 1 functions.
0.08 } £3 © 4
\3 ¢
0.06 } Y 1 indication that the generator of the UCOM method encapsu-
W\ lates the relevant physics of short-range correlationssima
=004y W | le explicit operator transformation. In the following wéllw
= NN p p p . g _
0.02} RS - always use the lowest state of the two-body spectrum to fix
N the UCOM correlation functions.
0 ~<=—=z This construction can be repeated for each partial wave
-0.02 - : : s s leading to a different set of correlation functions for eaom-
0 1 2 3 4 5 6 bination of angular momenta, spin, and isospin. In the stan-

dard UCOM framework we restrict ourselves to a set of cor-
_ _ _ relation functions depending on spin and isospin alone, i.e
FIG. 3: (color online) Radial wavefunctions of tifeand D-wave  ihare are four different central correlation functioRs (r)
componentgpq(r) and2(r) and resulting central correlation func- for the different combinations o§ — 0.1 andT = 0.1 and

tion R4 (r) —r as well as the tensor correlation functiér) for the - . : o

38, —3 D, partial waves for different flow parameters:= 0.02 fm* two different tensor Correla}tlon function&r) fqr S=1 and

(—),0.04 fm* (---), 0.06 fm* (), 0.08 fm* (—--). The thin T = 0,1. They are determined from a mapping in the Iqwest

solid curve in panel (a) shows the corresponding wavefunctions fopartial wave for eacly andT". As a result of this restriction

the initial potential used for the mapping. the UCOM transformation is not specifically optimized foe th
higher partial waves. However, since the centrifugal learri
suppresses the short-range part of the relative wavebunscti

nent independent of the flow parameter. The tensor correl In higher partial waves, the impact of short-range coriet
. P W parar : ) €145 reduced in any case. Eventually, any residual correlatio
tion functionsy(r) also exhibit positive and negative contri-

butions. with a dominant positive section at short ranaée T not covered explicitly by the UCOM transformation have to be
' do P 998 T Gescribed by the many-body method, which uses the UCOM
dependence on is stronger than for the central correlation

) g . ) interactions as input.
function. With increasingy the decreasing slope of(r) as P
a whole is shifted towards largerwhich also effects the be-
havior around %.1 fm. The tensor correlations do not show -~ Comparison with Variationally-Optimized Correlators
the clear separation of short- and long-range effects tlaat w
observed for the central correlations.

f v th for the ai The set of SRG-generated UCOM correlation functions can
_So far, only the two-body ground state for the given par-pe compared to the correlation functions used in previous
tial wave has been used to extract the correlation function§;com calculations. Those were extracted within a varia-
In principle, any other state of the two-body spectrum can bgj | scheme using simple parametrizations of the correla
used as well. Itis therefore important to check the sensitiv functions R..(r) and(r), whose parameters were de-
ity of the resulting correlation functions on the choicelét ormined from a minimization of a single momentum space
eigenstate. In Fig. 4 we reportthe correlation functifsr)  maiix element of the correlated interaction—the diagonal
extracted from four differentS, eigenstates spanningarange , _ ./ _ () matrix element. In this approach the tensor corre-
of two-body energies frorf to 20 MeV. The correlation func- |44ion functions are subject to a constraint on the rangeeiéfi
tions are surprisingly stable in this energy range, showmy i3 the volume integral

a slight tendency towards longer-ranged correlators foela

excitation energies. The same holds true for the othergbarti 1= a2y 37
waves and the tensor correlation functions. This is another v = rred(r) @37
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inated by the negative section i, (r) — r, which was not
considered in the parametrizations used for the previous de
termination. For the triplet-even tensor correlator, thepe

of the correlation functions is slightly different, but tgeoss
behavior agrees, as seen from Fig. 6. The deviations in the
singlet-odd channel result from an additional range-cairst
imposed for the variational construction 8f, (), since the
interaction is purely repulsive in this channel. In thelatp
odd channel the tensor correlation function was switchféd-o
for the variational determinantion, i.€y oqq = 0 fm?, which
also induces a different central correlation function.

Aside from these small quantitative differences, the SRG-
mapping is conceptionally superior to the variational con-
struction. There is a single well-defined parameter, the flow
parametei, that unambiguously spans a family of correla-
3 3 T T 5 3 T tion functions. For the variational optimization, one ajsa

7 [fim] 7 [fm] has the freedom to choose different parametrizations &nd di
ferent ways to constrain the correlator ranges, which compl
FIG. 5: (color online) Central correlation functiod&, (r) — r for cates a consistent and unambiguous treatment.
different spin and isospin channels obtained from an energy mini-
mization (——) and from the SRG-mapping ¢ -).

D. Comparison of Matrix Elements

0.08F ' ]

0.061 (b T=1 Itis important to realize that the UCOM-transformation us-
ing SRG-generated correlators is not equivalent to a direct

=0.04 SRG-evolution. For the construction of the UCOM correlator
%0_02 only a single eigenstate from the low-energy part of the two-
body spectrum of the SRG-evolved interaction is used. This

0 ES——— == contains the essential information on the decoupling of low
0 3 5 0 + 5 3 I momentum from high-momentum modes. However, this does

7 [fm] r [fm] not guarantee a decoupling among high-momentum modes.

This difference is illustrated in Fig. 7 using momentum-
FIG. 6: (color online) Tensor correlation functiod§r) obtained  space matrix elementg(LS).JT|o|¢' (L'S)JT) for thelS,
from an energy minimization{—) and from the SRG-mapping partial wave. Here and in the following comparisons of SRG-
(=--) evolved and UCOM-transformed interactions we fix the pa-
rameters such that thtHe binding energy obtained in the
no-core shell model for each of the transformed interac-
in order to isolate the short-range component of the twoybodtions is in agreement with experiment. For the SRG-evolved
correlations. A detailed discussion of this scheme inclgdi interaction this leads t&¢ = 0.03 fm*, for UCOM with
the parametrizations and optimal parameters can be found ®BRG-generated correlators we obtain= 0.04 fm*, and
Ref. [16]. There is a correspondence between the range pgor UCOM with variationally optimized correlators we use
rameterl, and the flow parameter. Both define the sepa- 7 oyen = 0.09 fm>®. The momentum-space matrix elements
ration scale between short-range and long-range comatati  of the UCOM-transformed interaction are computed using the
where the short range component is eliminated by the UCOMnalytic form discussed in [16].
or SRG-transformation. For the variationally optimizedree In comparison to the initial AV18 interaction, all the urita
lators this separation scale is mainly determined by thgean ily transformed interactions exhibit a strong reductiorthof
of the tensor correlators, which is controlled directly the  off-diagonal matrix elements and an enhancement of the low-
integral constrainfy. momentum sector. In the high-momentum regime, the SRG-
In Figs. 5 and 6 the central and tensor correlation funcfionsevolved interaction by construction shows a narrow band-
respectively, resulting from energy minimization and thediagonal structure, i.e. the decoupling is effective anat-
SRG-mapping are compared. The range constigigfen = menta. The UCOM-transformed interactions for both, the
0.09 fm® and the flow parameteii = 0.04 fm*, respec- SRG-generated correlators and the ones determined variati
tively, are chosen such that the binding energy*de re-  ally, exhibit larger off-diagonal contributions connexfidif-
sulting from a converged no-core shell model calculation isferent high-momentum states. The SRG-generated correla-
in agreement with experiment (cf. Sec. VA). In the domi-tors lead to a broad band of non-vanishing matrix elements
nant even channels the short-range behavior of the camelat along the diagonal at high momenta—much broader than for
functionsR (r) agrees very well, as depicted in Fig. 5. The the SRG-evolved interaction.
long-range behavior of the SRG-generated correlatorsts do  The difference is even more pronounced when going from
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(¢) Vucom(SRG gen.) (d) Vucom(var. opt.)

FIG. 7: (color online) Momentum-space matrix elemefgte..S)JT | o |¢'(L'S)JT) (in units of MeV fr?) for the ' S, partial wave obtained
from (a) the initial AV18 potential, (b) the SRG-evolved interactian=£ 0.03 fm*), (c) the UCOM-transformed interaction using the SRG-
generated correlatorg (= 0.04 fm?), and (d) the UCOM-transformed interaction using the variationally optidhizerelators.

(a) Vavis (b) Vsra () Vucom(SRG gen.) (d) Vucom(var. opt.)

FIG. 8: (color online) Relative harmonic-oscillator matrix elememt6L.S)JT'| o |n'(L'S)JT) (in units of MeV) for an oscillator frequency
12 = 20 MeV in the' S, partial wave obtained with the same interactions as in Fig. 7.

momentum-space to the harmonic oscillator basis that will b culations for the ground states ®f and *He and Hartree-
used for the following many-body calculations. In Fig. 8 Fock calculations for heavier closed-shell nuclei. These ¢
we present the relative harmonic-oscillator matrix elet®en culations shed light on the similarities of and differenbes
(n(LS)JT|o|n'(L'S)JT) for the samé S, partial wave and tween SRG and UCOM-transformed interactions relevant for
the same interactions. The UCOM matrix elements are comauclear structure.

puted directly in the harmonic oscillator basis followingfR

[16], whereas the SRG matrix elements result from an evolu-

tionin momentum_ space and a subsequent trar)sformat_ion into A. No-CoreShell Model for 2H and “He

the oscillator basis. Although the SRG-evolution is talbr

for a pre-diagonalization in momentum space, the harmonic , ) , o )
oscillator matrix elements also show a narrow band-diagona, FOr light nuclei the NCSM provides detailed insight into
structure for all radial quantum numbers The UCOM- the convergence behavior of the different interactionsthod

transformed interactions have more off-diagonal contitims ~ &/10Ws to disentangle the effects of short- and long-ramge c
at largen and thus a stronger coupling between high-lying"elations. For a giveiVy,,..€2 model space of the NCSM we

states. However, the behavior at smatnd the decoupling diagonalize the translationally invariant many-body Hami

of states with smalk from those with large: is very similar. tonian consisting of intrinsic kinetic energy and two-body

The matrix elements show that UCOM is as efficient asSRG— or UCOM-transformed interaction directly. No addi-
SRG in decoupling low- and high-lying states, but has a dif_tlonal Lee-Suzuki transformation is employed. All calcula
ferent structure in the high-or largen regime ’The former tions were performed with the Jacobi-coordinate NCSM code
is most relevant for the convergence properties of theaater of P. Navatil [17].

tion, the latter influences the behavior when going to heavie. W& Will use only the two-body terms of the transformed
systems. interactions in these calculations and discard three-lzwuly

higher-order contributions that are inevitably generabgd
the unitary transformation. We are thus treating the trans-
formed two-body terms as a new realistic interaction, which
is phase-shift equivalent to the initial AV18 potential. €Th
energy eigenvalues obtained with these two-body interac-
As a first application and test of the SRG-generated UCOMions in a many-body system are different from the eigenval-
correlators we discuss No-Core Shell Model (NCSM) cal-ues of the initial potential—only if all many-body terms of

V. FEW-& MANY-BODY CALCULATIONS
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() Vucom(SRG gen.)  (d) Vycom(var. opt.)

\/

B [MeV]

M N —

g0 20

80

80 20

20 40 60 80 20 40 60 40 60 40 60
hQ [MeV] hQ [MeV] hQ [MeV] hQ [MeV]
FIG. 9: (color online) Convergence behavior of the ground-stateggraf *H obtained in no-core shell model calculations as functioh(f
for different potentials. The various curves correspond to difteMén...12 model spaces in the rangé.,..x = 6, 12, 18,...,48 as indicated
by the labels. The different potentials are: (a) untransformed AVi&npial (note the different energy scale). (b) SRG-evolved AV18 ftiatien
for @ = 0.03 fm*. (c) UCOM-transformed AV18 potential using the SRG-generatecetaiors fora = 0.04 fm?. (d) UCOM-transformed

AV18 potential using the standard correlators constructed by energynination. The dashed horizontal line indicates the experimental
ground-state energy.

(a) Vavis (b) Vsra (¢) Vucom(SRG gen.)  (d) Vycom(var. opt.)

4071

E [MeV]

80

20 40 _ 60 80 20 40 _ 60 S0 40 60 80 0 60
nY [MeV] nY [MeV] nY [MeV] nY [MeV]
FIG. 10: (color online) Convergence behavior of the ground-stateggrof *He obtained in no-core shell model calculations as function of
h$2 for different potentials. The various curves correspond to diffeMgn. 22 model spaces in the ran@é,.x = 0, 2, 4,..., 16 as indicated

by the labels. The different potentials are as described in Fig. 9.

the transformed Hamiltonian were included, unitarity wbul systematics of thév,,,..-dependence reveals the huge differ-
guarantee invariance of the eigenvalues. As pointed out ience in the convergence behavior of the initial AV18 interac
Refs. [16, 18, 19] we can use this fact to choose a unition and the different transformed interactions (note ttie d
tary transformation that requires minimal many-body fsrce ferent energy scales). The transformed interactions lead t
for the description of the ground-state energy of a selectedelf-bound ground state within @2 model space already.
nucleus. For the following discussion we fix the parame-For “He the 0} space consists of a single Slater determi-
ter controlling the SRG or UCOM-transformation such thatnant which cannot describe any correlations. Thus the large
the converged NCSM ground-state energyidé is in agree-  change of thé@iS) energy proves that the unitary transforma-
ment with experiment, i.e. we minimize the contribution of tions have eliminated the components of the AV18 interactio
three- and four-body interactions to thee ground-state en- that induce short-range correlations in the many-bodestat
ergy. As mentioned earlier, this condition is fulfilled fdret  These are the components that generate large matrix element
SRG-evolved potential with = 0.03 fm* [20], the UCOM-  far-off the diagonal which couple low-lying and high-lying
transformed potential using the SRG-generated correlatiobasis states. The residual correlations resulting from-nea
functions witha = 0.04 fm*, and the UCOM-transformed diagonal matrix elements can be described in model spaces
potential using the variationally optimized correlatiamé-  of moderate size. Hence the transformed interactions show a
tions with ;3 even= 0.09 fm?. rapid convergence—fdiHe atN,,., > 10—where the initial
AV18 is still far from the converged result.

In Figs. 9 and 10 we present the ground-state energigs of
and“He, respectively, as function of the oscillator frequency The comparison of the results obtained with the three trans-
h§2 for different model space size§,,... First of all, the  formed interactions reveals a few subtle but importanediff
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ences. The convergence properties of the SRG-evolved inter 0
action and the UCOM-transformed interaction for the SRG-
generated correlators, shown in Figs. 9(b) and (c) and is.Fig
10(b) and (c), is very similar. Both exhibit a very regulaneo
vergence pattern. As function of the oscillator frequemeyré
is a single minimum, which flattens rapidly with increasing < )
Nuax leading to a converged ground-state energy which iss_g L
constant over an extended range of frequengies These
similarities indicate that the obvious differences of thatrix -10F
elements in the high-or largen sector, as discussed in Sec. o . , . . . . , . ., . 7}
IV D, are irrelevant for the convergence in light nuclei.
The two UCOM-transformed interactions, using the SRG- 5t
generated and the variationally optimized correlationcfun
tions, respectively, show slightly different convergenpz-
terns as seen in Figs. 9(c) and (d) and in Figs. 10(c) an
(d). Overall, the SRG-generated correlators lead to lower e
ergies in small model spaces and to a faster and more reg
lar convergence. FotH in particular, the variationally op-
timized correlators develop a double-minimum structune fo
model spaces aroundl,,,,,, = 24, which disturbs the smooth
convergence. Eventually, at larg&, .. the minimum shifts to
large values ofif2. The appearance of the second minimum
indicates that the correlation functions do not describage - ;. (color online) Hartree-Fock ground-state energies péir par

features of the Interpa.rtllcle .correlatlon properly. The\C cle and charge radii obtained with the SRG-evolved AV18 potential

corrects for these deficiencies as soon as the model space({s, the UCOM-transformed AV18 using SRG-generated correlators

sufficiently large to resolve the relevant length scaleghéf  (m), and the UCOM-transformed interaction using the variationally

defects are well localized with respect to the interpaetiis-  optimized correlators€). The parameters of all transformed inter-

tance, then huge model spaces are required to resolve theattions are the same as in the NCSM calculations. Experimental data

The fact that the SRG-generated correlators work much beis represented by black bars [22, 23].

ter, can be traced back to the negative sections in the aerrel

tion functionsR_ () — r, which pull in probability amplitude

from larger interparticle distances into the attractivgioa of  obtained in HF. To recover the effect of these residual tarre

the interaction. This localized modification of the tWO-bOd tions, extensions beyond HF, e.g. in the framework of many-

density can be described in the NCSM only with large modehody perturbation theory, have to be considered. Nonethgele

spaces, leading to a change in the convergence pattern.  the HF solution provides valueable information on the syste
atics of ground-state energies and rms-radii. For theviallo
ing conclusions we solely rely on the fact that the HF ener-

B. Hartree-Fock for Heavier Nuclei gies provide a variational upper bound for the exact ground-

state energies and that residual correlations, in the dabe o

In order to highlight the differences among the transformed?COM interactions, change the binding energies per perticl
interactions emerging in heavier nuclei, we present simpl®Y a&n almost constant amount [21].
Hartree-Fock (HF) calculations for selected nuclei withseld In Fig. 11 we summarize the HF results for ground-state
j-shells throughout the nuclear chart. We use the HF impleenergies and charge rms-radii for a range of nuclei from
mentation discussed in detail in Ref. [21] based on therintri *He to ?°*Pb. We use the same transformed interactions
sic HamiltonianH;y = T' — T.m + V including all charge de-  as for the NCSM calculations: the SRG-evolved interaction
pendent and electromagnetic terms of the SRG- and UCOM@ = 0.03 fm*), the UCOM-transformed interaction using
transformed AV18 potential. The single-particle statesex- ~SRG-generated correlators & 0.04 fm*), and the UCOM-
panded in the harmonic oscillator basis with an oscillator p tranformed interaction using variationally optimized reta-
rameter selected via a minimization of the HF energy. Al cal tors (s even= 0.09 fm?), all derived from the AV18 potential.
culations were performed with a basis including 13 major os- A systematic difference is observed between the SRG-
cillator shells which warrants convergence of the HF greund evolved and the UCOM-transformed interactions. In the case
State energies. of the UCOM-transformed interactions, the energies per nu-

Of course, the HF many-body state, being a Slater detercleon are almost constant as function of mass numbdihey
minant, cannot describe any correlations by itself. Thus-co resemble the systematics of the experimental binding &werg
pared to the NCSM calculation in the previous section, HFup to a constant energy shift. The inclusion of the effect of
can only provide results at the level 00)aS) space. The en- residual correlations on the energy, e.g. by means of many-
ergy gain observed in the NCSM by increasing the size obody perturbation theory, will shift the HF energies rightioi
the model space resulting from residual correlations celomo the region of the experimental data as was demonstrated in

R, Fm]

c

24‘0 48‘0& GONi 88ér 114‘Sn ‘ 146‘Gd‘
160 400a 56Ni 78Ni QOZI. 132811 208Pb

4He
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Ref. [21] for the UCOM interaction with variationally opti- are certain formal connections, e.g. regarding the irstiaic-
mized correlators. In contrast, the SRG-evolved intesacti ture of the generators, and we have shown how to use the
shows a systematic linear increase of the binding energy pe8RG-scheme to construct correlation functions for the UCOM
nucleon with A [20], leading to a dramatic overbinding for transformation by means of a mapping of two-body eigen-
heavier nuclei already on the HF level. The inclusion of cor-states. These SRG-generated UCOM correlation functions
relations beyond HF will lead to even more drastic deviation provide an alternative to the previous correlation funtiob-
The charge radii also reflect this difference. The SRG+ained by a variational procedure and will be explored feirth
evolved interaction predicts very small charge radii foahe The resulting phase-shift equivalent effective inteiatdi
nuclei, for?°8Pbp its about .8 fm smaller than the experimen- show similarities but also differences. Because of the deco
tal value. The two UCOM-transformed interactions generateling of low-q or small. states from highy or larges states,
radii which are also too small, but much closer to the experboth the SRG-evolved and the UCOM-transformed interac-
imental values. It is interesting to note that the diffeieint  tions lead to a rapid convergence of NCSM calculations for
the radii predicted with the UCOM interactions is rathegir  light nuclei. However, the behavior of matrix elements ia th
those obtained with the SRG-generated correlators aré-sign high-; or largen sector is quite different. The SRG-evolution
icantly closer to experiment. causes a pre-diagonalization at all momentum scales, ti.e. i
One can interpret the different systematics in terms of thalso leads to a decoupling among the higbr largen states.
impact of three-body interactions which have been omittedrhe UCOM-transformed interaction generates a stronger cou
here. For the SRG-transformed interaction there is a clegoling among high-lying states, i.e. the prediagonalizafio
need for a strongly repulsive three-body interaction. @&ive the highg or largen regime is not as perfect. This differ-
the huge effect on binding energies and charge radii the-stru ence, together with the independence of the UCOM transfor-
ture of the states will be changed completely by the addifion mation on angular momentum, seems crucial when going to
three-body force. For the UCOM-transformed interactions aheavier systems. Simple HF calculations with a pure two-
supplementary three-body force will have a much smaller efbody UCOM-transformed and SRG-evolved interactions re-
fect. One might expect a small correction to the systematicseal a different systematic behavior of the binding energie
of the charge radii due to three-body forces, for the ensrgieas function of mass number. The SRG-interactions lead to a
the systematics is already reproduced by the two-body forcesystematic overbinding for heavier nuclei already at the HF
level, whereas the UCOM-transformed interaction resudt in
constant energy per particle. From this observation onéimig
VI. CONCLUSIONS conclude that three-body interactions have to have a ldrge e
fect in the SRG-scheme, whereas their impact in the UCOM-
The Unitary Correlation Operator Method and the Sim-framework is much smaller.
ilarity Renormalization Group are two methods to tackle
short-range correlations in the nuclear many-body proltdgm

means of unitary transformations. Though both methods star Acknowledgments
from a different conceptual background—coordinate-space
picture of short-range correlations and pre-diagonatimatia This work is supported by the Deutsche Forschungsgemein-

a flow evolution, respectively—both lead to a decoupling ofschaft through contract SFB 634 and through the GSI F&E
low-momentum and high-momentum modes. Moreover, ther@rogram.
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