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1 Introduction

Nuclear structure theory plays an important role in the understanding of the atomic nu-

cleus, e.g., by predicting the relevant experimental observables based on the fundamen-

tal theory of the strong interaction. These calculations can be of huge impact especially

for the nuclear astrophysics, because a lot of nuclear data, e.g., for neutron-rich nuclei,

are not reachable by experiments at the moment. Therefore, one has to use theoretical

predictions to get this data for the astrophysical simulations.

For the theoretical description of an atomic nucleus one has to deal with two demanding

problems. The first one is the construction of the proper nuclear interaction. The second

one is the solution of the many-body eigenvalue problem Ĥ|ψn〉 = En|ψn〉, where the

Hamiltonian Ĥ contains the nuclear interaction. There is a wide range of nuclear inter-

actions from phenomenological approaches over interactions based on meson exchange

theory (like the CD Bonn interaction), to interactions derived in a QCD motivated effec-

tive field theory. We will focus on the latter.

Due to the non-perturbative character of QCD in the low-energy regime it becomes very

complicated to use the quarks and gluons as the underlying degrees of freedom for the

nucleons, which would be the correct choice from a fundamental point of view. There-

fore, the nucleons are used as effective degrees of freedom. This assumption is justified

for excitation energies below the delta resonance ∆(1232) of about 300 MeV. For higher

energies the nucleons have inner excitations and cannot be described as inert particles

anymore.

As a consequence, the effects of the quark- and gluon-substructure of the nucleon must

be subsumed in the interaction between the nucleons. To achieve this with some funda-

mental justification one operates in the framework of chiral effective field theory (χEFT).

The chiral symmetry, a symmetry of QCD in the limit of vanishing quark masses, is spon-

taneously broken. The consequence is the existence of the pion as a so-called pseudo-

Goldstone boson. These pions are added to the nucleons in the χEFT as fundamental

degrees of freedom.

Generally, nucleon-nucleon (NN) interactions are not sufficient to describe even the

low-energy states in light nuclei, although the two-body phase shifts can be reproduced

exactly. Because of this one has to consider higher-order interactions, like three-body

(NNN) interactions and possibly also four-body interactions. According to Weinberg, the

importance of the many-nucleon force decreases with the number m of involved nucle-

ons [1, 2]. Due to this and to the fact that the computational cost rises dramatically with

increasing m, we use NN+NNN interactions obtained from chiral effective field theory,
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which provides the Hamiltonian Ĥ
χEFT
NN+NNN . The NN+NNN interaction is constructed

by using chiral perturbation theory, where one expands the nuclear potential in powers

of the pion mass or momentum. In this expansion the three-body interaction appears

naturally at next-to-next-to leading order (N2LO). Therefore, the χEFT determines the

NN and NNN interaction in a consistent manner, which is a crucial advantage of this

theory. For the construction of the Hamiltonian, a two-body interaction from the N3LO

was used, while the three-body interaction was extracted from the N2LO.

To solve the many-body eigenvalue problem we will choose a basis space which usually

consists of an infinite number of many-body basis states. Since the numerical solution

in such an infinite Hilbert space is impossible, one has to restrict the model space to a

finite number of basis states generally by discarding high-lying basis states. Because of

this truncation, effects involving basis states with high energy or momentum, like short-

range correlations, are not described adequately. An improvement of the description of

these effects will be achieved by the similarity renormalization group (SRG) transforma-

tion of the Hamiltonian.

The untransformed Hamiltonian including NN+NNN interactions from χEFT is provided

through two- and three-body matrix elements in the harmonic oscillator basis, depend-

ing on Jacobi coordinates. For nuclear many-body calculations we need the Hamilton

matrix elements in a Slater determinant basis composed of harmonic oscillator states de-

pending on Cartesian coordinates. This basis is called the m-scheme basis. The first step

will be to perform a basis transformation of the matrix elements using the techniques

discussed in [3]. The implementation of this transformation is not trivial, because of the

computational complexity careful optimization is necessary.

Two applications of this interaction will be discussed in this thesis. The first applica-

tion of the SRG-transformed NN+NNN interaction from χEFT is in the framework of

the importance truncated no-core shell model (IT-NCSM). This exact ab initio method

provides an extension of the classical NCSM and expands the coverage of the NCSM

into the sd-shell. The IT-NCSM method will be applied for 4He and 6Li to investigate the

properties of the NN+NNN interaction from χEFT and of the SRG transformation. The

second application of the SRG-transformed interaction will take place at the Hartree-

Fock level. We will present the results of Hartree-Fock calculations for the ground-state

energies and charge radii for a sequence of closed-shell nuclei.

This work is organized as follows. In Chapter 2 the necessity of a three-body inter-

action is motivated, in Chapter 3 the χEFT is discussed and the interaction we use in
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this thesis is introduced. Theoretical aspects and practical implementation of the basis

transformation leading to m-scheme matrix elements of the interaction are reviewed in

Chapter 4. In Chapter 5 we focus on the SRG transformation and their application in

three-body space. In Chapter 6 the many-body methods are introduced and in Chapter

7 the results for the SRG-transformed NN+NNN interaction from χEFT are presented.

Finally, in Chapter 8 a summary and an outlook is provided.
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2 The Significance of three-body interactions

We start with a brief motivation of the three-body (NNN) interaction, explaining its

relevance and the problems occurring with its determination and application. High

precision two-body interactions, e.g., the Argonne V18 or the charge-dependent Bonn

(CD-Bonn) potential, are able to describe the scattering process of two nucleons as well

as the bound-state properties of the deuteron with high precision. However, in nuclear

structure physics one deals with many-particle systems, which can be much larger than

a two-particle system. Thus, in principle all m-body interactions with 2 ≤ m ≤ A might

be relevant for the description of the whole of nuclear physics of an A-particle system.

Fortunately, the strong interaction among nucleons is very short ranged, therefore, the

contribution of m-body interactions are expected to decrease with m. This expectation

is also confirmed by χEFT [1, 2]. We are restricted to m-body interactions with small m

and have to neglect the remaining interaction contributions, because the complexity of

the physical problem increases dramatically with m.

Generally, this circumstance does not inhibit an adequate prediction of nuclear structure

properties based on two-body (NN) interactions in a phenomenological or approxima-

tive scheme. In the past 15 years the tremendous improvement of exact ab initio meth-

ods for solving the nuclear many-body problem, such as the Green’s function Monte

Carlo (GFMC) and the no-core shell model (NCSM) approaches, enable to verify the

quality of a certain interaction. Figure 1 illustrates such an ab initio calculation with

the GFMC approach. Obviously, even the low-energy states of light nuclei cannot be

described in an adequate way with the NN interaction. The energy spectra show a siz-

able underbinding and the order of the states is not always reproduced correctly. The

ground state of 10B is predicted as an 1+-state instead of a 3+-state. With the inclusion

of the Illinois-2 three-body interaction the results improve significantly. The energies are

reproduced quiet well and also the order of the states conform with experiment. There

are several cases of few-body scattering and nuclear structure observables that clearly

require three-nucleon forces for their microscopic explanation. Famous examples are the

Ay puzzle of N − d scattering [4] and the ground state of 10B [5]. The results presented

in Fig. 1 indicate the need of a NNN interaction.

But there are two problems arising with this approach. First, it is crucial to find a con-

sistent way to obtain the NNN interaction with the same fundamental justification as for

the NN interaction, instead of using an interaction which has no direct relation to the

NN interaction and must be fitted to nuclear data. In χEFT the interaction contribu-

tions for larger particle number m appear naturally from the power expansion (see Sec.
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3), therefore, this theory provides the possibility to construct the NNN interaction in a

consistent way to the NN interaction. The second problem occurring from the consid-

eration of the NNN interaction is that the complexity of the matrix-element treatment

increases. In this thesis we provide a solution of these two problems by using an interac-

tion of χEFT and presenting the techniques to handle the NNN interaction contributions.
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Figure 1: Energy calculation with two- and three-body forces [6]: The figure shows

the low-energy states for light nuclei obtained with the two-body (blue) and two- plus

three-body (yellow) Green’s function Monte Carlo (GFMC) calculations. The experimental

energies are indicated by the green bars. The two-body interaction is the Argonne V18

potential and the three-body part is the Illinois-2 interaction.
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3 Basics of chiral effective field theory (χEFT)

In the 1950s there were many attempts to derive the nuclear interaction within the pion-

exchange theories, but these attempts failed because the chiral symmetry was not taken

into account [7]. The χEFT uses the pions and nucleons as internal degree of freedom

and no heavy mesons and nucleon resonances. Besides, it considers chiral symmetry

and establishes a connection to QCD, providing an interaction with a comparable ex-

planatory power as phenomenological high-precision potentials like Argonne V18 and

CD-Bonn. First, we discuss chiral symmetry. Second, we briefly describe the idea of the

chiral perturbation theory and finally, we describe the procedure to obtain the matrix

elements from χEFT having a closer look at the power counting and parameter depen-

dency.

3.1 Chiral symmetry

We start by investigating symmetries in general. One big advantage of the Lagrangian

formulation is that symmetries lead to conserved quantities, so called currents. For

example let us consider a transformation Φ → Φ + δΦ which conserves the Lagrangian

L(Φ + δΦ) = L(Φ) , (1)

⇒ 0 = L(Φ + δΦ) − L(Φ) = δL =
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
(∂µδΦ) , . (2)

Using the equation of motion ∂L
∂Φ

= ∂µ
∂L

∂(∂µΦ)
one obtains

0 = ∂µ

(

∂L
∂(∂µΦ)

δΦ

)

,

so that the current Jµ = ∂L
∂(∂µΦ)

δΦ is conserved. If the symmetry is explicitly broken in the

Lagrangian, we can divide it into two parts L = L0 +L1, where L0 is the symmetric part

of the Lagrangian with respect to the symmetry transformation and L1 is the symmetry

breaking part. Performing the above calculation again one gets

δL = δL1 = ∂µJ
µ 6= 0. (3)

This means the current Jµ is not conserved anymore. After these general remarks we

now concentrate on the idea of chiral symmetry [8] in QCD.
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First of all, we consider the Lagrangian of free massless fermions

L = i
∑

j

ψ̄j6∂ψj , (4)

where the index j refers to the different flavors, in our case of the up- and the down-

quark. Therefore, we can reformulate our Lagrangian

L = iψ̄u6∂ψu + iψ̄d6∂ψd = iψ̄6∂ψ . (5)

In the last step we switched to an isospinor notation for the fermions, with ψ =
(

ψu

ψd

)

.

Let us have a look at the transformations of the chiral symmetry, also called SU(2)V ×
SU(2)A symmetry:

• The vector transformation Λν(~Θ)

ψ → e−i
~τ
2
~Θψ ≃

(

1 − i
~τ

2
~Θ

)

ψ

⇒ ψ̄ → ψ̄ei
~τ
2
~Θ ≃ ψ̄

(

1 − i
~τ

2
~Θ

)

, (6)

where the absolute value of the rotation angles ~Θ is infinitesimally small and ~τ

refers to the Pauli isospin matrices. Under this transformation the Lagrangian (5)

is invariant and one obtains the vector-current

V a
µ = ψ̄γµ

τa

2
ψ,

which is a conserved Noether current.

• The axial transformation ΛA(~Θ)

ψ → e−iγ5
~τ
2
~Θψ ≃

(

1 − iγ5
~τ

2
~Θ

)

ψ

⇒ ψ̄ → ψ̄e−iγ5
~τ
2
~Θ ≃ ψ̄

(

1 − iγ5
~τ

2
~Θ

)

. (7)

The Lagrangian (5) is also invariant under the axial transformation ΛA and one
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obtains the conserved axial current

Aaµ = ψ̄γµγ5
τa

2
ψ . (8)

Now we introduce a mass term L1 = −m(ψ̄ψ) in the Lagrangian (5), i.e.

L = iψ̄u6∂ψu + iψ̄d6∂ψd = iψ̄6∂ψ −m(ψ̄ψ) . (9)

L1 is invariant under vector transformations ΛV , but not under axial transformations ΛA.

Therefore, ΛA is not a good symmetry if the fermions (quarks) have a finite mass. But

one can regard ΛA as an approximate symmetry, because the quark masses (5− 10 MeV)

are small in comparison to the relevant energy scale of QCD (ΛQCD ≃ 200 MeV). This is

the basis of the so-called partially conserved axial current hypothesis (PCAC).

An interesting point is the application of the upper transformation to meson states

pion-like states: ~π = iψ̄~τγ5ψ , σ-like states: σ = ψ̄ψ ,

ρ-like states: ~̺µ = ψ̄~τγµψ , a1-like states: ~a1µ = ψ̄~τγµγ5ψ , (10)

where the meson states are given as quark fields, which carry the quantum numbers of

the corresponding meson. The vectors again indicate the iso-vector nature of the meson

states, this means the states transform like vectors under isospin rotations. The index µ

indicates that the states transform like vectors under Lorentz transformation.

Performing the vector transformations for the pion-like state in (11), e.g., one can iden-

tify ΛV with the isospin rotation

~π
ΛV−→ ~π + ~Θ × ~π . (11)

The axial transformation rotates the pion and σ−meson into each other

~π
ΛA−→ ~π + ~Θσ ,

σ
ΛA−→ σ + ~Θ~π.

Similarly ΛA mixes ρ-meson and a1-meson states

~̺µ
ΛA−→ ~̺µ + ~Θ × ~a1µ.
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If ΛA is considered as approximate symmetry of the QCD Hamiltonian, states which

are rotated into each other by this transformation must have approximately the same

eigenvalue, i.e. the same mass. However, for the ρ-meson m̺ = 770 MeV and the a1-

meson ma1 = 1260 MeV this is obviously not the case. Therefore, it seems as if chiral

symmetry is not a symmetry of QCD. On the other hand one can show that the weak pion

decay is approximately consistent with a (partially) conserved axial-vector current in the

case of small pion mass compared to the nucleon mass. Furthermore, chiral symmetry

predicts the pion-nucleon coupling constant, deduced from the so called Goldberger-

Treiman relation, in good agreement with the experimental coupling constant from pion-

nucleon scattering.

The solution to these contradictions is the spontaneous breaking of the axial symmetry.

One speaks of a spontaneous symmetry breaking if the Hamiltonian exhibits a symmetry,

which is not realized by the ground state. A consequence of this spontaneous symmetry

breaking is the existence of so-called massless Goldstone bosons, which are represented

by the pion in the two flavor sector. The pions are not exactly massless as it would be

the case for massless up- and down-quarks, but they are light in comparison to other

hadrons. Due to this the pions are sometimes called pseudo-Goldstone bosons. Low-

energy or -temperature hadronic processes1 are dominated by pions. This property is

exploited in chiral perturbation theory (χPT) [1].

3.2 Principle of chiral perturbation theory (χPT)

QCD is the established theory of the strong nuclear interaction, providing precise pre-

dictions for the high-energy regime. This is due to the asymptotic freedom of QCD,

allowing the application of perturbation theory for this regime. But in the low-energy

domain the growing of the coupling constant and the corresponding confinement of

quarks and gluons destroy the convergence of the perturbation series. Therefore, a new

concept is needed to describe low-energy nuclear interactions.

The main idea of chiral perturbation theory (χPT) (see also [9]) is that at low energies

the dynamics is controlled by the lightest particles, the pions, and the chiral symmetry of

the QCD. S-matrix elements, i.e. scattering amplitudes, are expanded in Taylor-series of

pion-momenta or masses, which is consistent with chiral symmetry. Such an expansion

1At high temperature or densities, one expects a chiral restored phase, that means chiral symmetry is
not spontaneously broken anymore and the pion looses its identity as a Goldstone boson, i.e. the pion
will become massive if it exists [8]. One of the major goals of the ultra-relativistic heavy ion program is
to create and identify such a phase in the laboratory.
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is valid until one encounters a resonance, like the one of the ρ-meson. In χPT one takes

the Lagrangian containing the terms which exhibit chiral symmetry and constructs an

effective Lagrangian from chiral perturbation theory by expanding in a Taylor-series of

pion-momenta or masses up to a certain order. The details of the QCD dynamics, which

are not fixed by the symmetry are defined by low-energy constants (LECs) contained in

the expansion coefficients. At some future time these LECs will need to be determined

from Lattice Gauge calculations, but for now they must be obtained by fitting to experi-

mental data. To the considered order the resulting effective Lagrangian should be equiv-

alent to the full QCD Lagrangian. But χPT is not a perturbation theory in usual sense,

because it does not perform an expansion in powers of the QCD-coupling constant. To

generate a pion, infinite orders of QCD-coupling constants are needed. Therefore, it is a

non-perturbative method. χPT represents a power expansion of scattering amplitudes.

3.3 LECs, power counting and matrix element production

Weinberg showed in the chiral perturbation scheme [1], that one can expand the nu-

clear potential in terms of
(

Q

Λχ

)ν

, where Q denotes the momentum or mass of the pion,

Λχ ≈ 1 GeV is the chiral symmetry breaking scale and ν is the order. The number of

contributing terms for a given order is finite and calculable. The terms with ν = 0 are

called the leading order (LO), the terms with ν = 1 vanish, the terms with ν = 2 the

next-to-leading order (NLO), ν = 3 are the next-to-next-to-leading order (N2LO) and so

on. In Fig. 2 the terms up to (N3LO) are listed. One can see that with increasing order

ν, also the particle number of the interaction increases. Due to the fact that the terms

with higher ν become less important, one can reason that also the importance of the

interaction decreases we the increased irreducible particle number.

Before we discuss the three-body (NNN) interaction matrix elements from χEFT we first

have a look at the two-body (NN) interaction. As shown in [7] the NLO or N2LO two-

body interaction is not sufficient to describe the nucleon-nucleon scattering data below

290 MeV. Therefore, we will use the N3LO potential for the two-body interaction from

[7] with 29 LECs fitted to np data. With this potential one obtains a high precision

description of the np data with an accuracy comparable to the Argonne V18 potential.

Since there are expressions in the terms of the χEFT interaction, which are only mean-

ingful for momenta below a certain scale, the expressions have to be regularized. There
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Figure 2: Hierarchy of nuclear forces in χEFT [11]: The interaction potential terms

up to the N3LO are dedicated to the particle number of the interaction. The dashed lines

represent pions and the solid lines nucleons. The small dots, large solid dots, solid squares

and solid diamond denote different vertices.
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Figure 3: N2LO terms of the NNN interaction potential[11]: The term on the left

corresponds to the two-pion exchange depending on the LECs c1, c3, c4 also contained in the

NN interaction. In the middle we see the one-pion plus two-nucleon contact term depending

on cD and on the right the three-nucleon contact term depending on cE.

are different choices for this regulator function and in our case we use

F [q2; Λ] = exp

(

− q2n

Λ2n

)

(12)

depending on the momentum transfer q and the cutoff Λ. For the N3LO two-body inter-

action one has to chose n = 3 and for the N2LO three-body interaction n = 2. One of the

major advantages of χEFT is that one can construct the NNN interaction in a consistent

way. One has to use the same LECs of the NN potential which also appear in the NNN

potential and also the regulator function has to be chosen consistently. Up to now the

NNN interaction matrix elements are only available from the N2LO, leaving an inconsis-

tency in the many-body calculation when combined with the NN force at N3LO. Except

for two LECs, cD and cE, this NNN interaction is completely defined by the parameters

of the NN interaction at N3LO.

In the following, we concentrate on the N2LO NNN interaction. To produce matrix el-

ements from χEFT one has to overcome two challenges. First, one has to calculate the

operator expressions [10] of the diagrams in Fig. 3. One ends up with three operators

depending on a number of LECs. The first term with the two-pion exchange depends

on the LECs c1, c2 and c3 already fitted by the N3LO NN interaction. But the parameters

cD of the one-pion exchange plus two-nucleon contact term and cE of the three-nucleon

contact term are not contained in the NN interaction. The procedure for the second

task, the calculation of the matrix elements [12] from the operators, is the following.

One inserts a regulator function to regularize the momentum integrals. As mentioned

above, there are different regulator choices, where we used a regulator depending on

the momentum transfer with the cutoff Λ = 500 MeV. After some non-trivial calculation
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Figure 4: Fit of the LECs cD and cE [13]: Shown are the fits for cD and cE to the binding

energies of 3H (red curve) and 3He (blue curve), as well as the average of both fits (black

curve). The dotted lines show the regions of the error bars related to the fit of both LECs to

the half-life of Triton.

one obtains an expression for the matrix elements depending on cD and cE. For the

calculations in the second task, the Jacobi states emerge as an appropriate basis. This is

why we will deal with matrix elements in Jacobi representation in Sec. 4. What is left is

to fit the two LECs to A ≥ 3 nuclei observables. In our case we adopt the LECs proposed

in Ref. [13]. They performed a fit to the binding energies of the A = 3 nuclei (3He, 3H)

and the Triton half-life. The fit to the binding energies leads to a curve in the cD − cE

plane, plotted in Fig. 4. Next they searched the values of the LECs on this trajectory for

which the half-life of Triton is reproduced in the best way. From this fit they obtained

cD = −0.2 and cE = −0.205.

Note that there are other choices for the regulator and for the cD and cE fit leading to

different interactions, for example the one used in [14], which differs to some extent to

our interaction (used in [15, 16]) in the description of the mid-p-shell nuclei [12].

18



Moreover, let us assume that the NN interaction from N3LO is sufficient as indicated by

the high-precision description of nucleon-nucleon scattering. We still have an incom-

plete interaction, because only the N2LO is considered for the NNN part and in addition,

there are also interaction contributions involving more than three particles. This incom-

pleteness can be absorbed by a phenomenological fit of the parameters cD and cE. But

it is also possible that one has to choose different parameter sets for different mass re-

gions. Owing to this, one has to explore different choices of the NNN interaction. This

is why we plan to investigate the cD and cE dependence in the future.
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4 Transformation: Jacobi coordinates to m-scheme

The interaction from χEFT (Chapter 3) is provided by a code [17] of Petr Navrátil in

form of matrix elements in an antisymmetrized basis of three-body Jacobi coordinates.

For the many-body calculation we will use matrix elements in the m-scheme, therefore,

we have to perform a non-trivial basis transformation to get these matrix elements. In

the following, we will discuss this transformation and some prerequisites. We start by

introducing the two involved basis sets and some mathematical techniques to perform

the transformation before we discuss the formal transformation and the implementation

in C/C++.

4.1 Jacobi coordinates

The Jacobi coordinates ~ξi provide an alternative to the single-nucleon coordinates ~ri.

Both coordinates can be converted into each other by an orthogonal transformation. We

work in the isospin formalism and consider nucleons with the same mass m. There is

no unique set of Jacobi coordinates, but a number of different sets. For this thesis the

following choice will be used [18]

~ξ0 =

√

1

A
[~r1 + ~r2 + ...+ ~rA] , (13)

~ξn =

√

n

n+ 1
[
1

n
(~r1 + ~r2 + ...+ ~rn) − ~rn+1] , (14)

with n = 1, 2, ..., A − 1 and where A is the number of nucleons of the many-body state

one wants to describe.

We are only interested in two- and three-particle states, therefore, we only need the

Jacobi coordinates ~ξ0, ~ξ1 for two particles and also ~ξ2 for three particles. For a three-

particle state one obtains the Jacobi coordinates

~ξ0 =

√

1

3
[~r1 + ~r2 + ~r3] , (15)

~ξ1 =

√

1

2
[~r1 − ~r2] , (16)

~ξ2 =

√

2

3
[
1

2
(~r1 + ~r2) − ~r3] , (17)

which are illustrated in Fig. 5. In the chosen set of Jacobi-coordinates ~ξ0 (see Eq. 13)

depends on the number of particles, because it is related to the center of mass of the

21



O

b

bb

m1

m2m3

~r1

~r2
~r3

O

b

bb

m1

m2m3

~r1

~r2

~r3

~r1 (~r2)

(~r3)~ξ0

O

b

bb

m1

m2m3

~r1

~r2
~r3

(−~r2)

~ξ1

O

b

bb

m1

m2m3

~r1

~r2~r3
(

~r2
2

)

(−~r3)
~ξ2

Figure 5: Jacobi coordinates for three particles: Top left the Cartesian coordinates are

shown. The other three pictures show the construction of the Jacobi coordinates ~ξ0 (top

right), ~ξ1 (bottom left) and ~ξ2 (bottom right) out of the Cartesian coordinates. The Jacobi

coordinates are constructed by linear combinations of the Cartesian coordinates, indicated

by the dotted vectors, which have to be multiplied by certain factors, according to Eq. (15),

(16) and (17).

whole system, i.e., it is parallel to the center-of-mass vector. The Jacobi coordinate
~ξ1 is related to the relative coordinate of the first two particles and ~ξ2 to the relative

coordinate of the third particle with the center of mass of the first two particles.

Now, after having introduced the Jacobi coordinates we consider the meaning of these

coordinates for our quantum mechanical state. Our many-body basis consists of single-

particle harmonic oscillator states. We use a single-particle state of the form |nlm〉⊗|s =
1
2
ms〉 ⊗ |t = 1

2
mt〉, where the orbital angular momentum and the spin can be coupled

with each other. The choice of the coordinates only has an influence on the spatial

part. It is characterized by the radial quantum number n, the quantum number l of

the orbital angular momentum and the quantum number m corresponding to the z-axis

projection of the orbital angular momentum. All these quantum numbers depend on the

choice of the coordinate system. For instance, an orbital angular momentum in classical

analogy ~l = ~r × ~p depends on the underlying coordinate system and this holds true for

the corresponding quantum numbers as well.

22



The matrix elements of the χEFT interaction are given in the basis {|ncmlcm〉|EiJT 〉}JM,

which will be introduced in Sec. 4.5. However, the state {|ncmlcm〉|EiJT 〉}JM can be

expanded in the following three-body basis depending on Jacobi coordinates

{|ncmlcm〉|α〉}JM = {|ncmlcm〉|[(n12l12, sab)j12, (n3l3, sc)j3]J, [(tatb)tab, tc]TMT 〉}JM, (18)

where ncmlcm are the quantum numbers corresponding to the Jacobi coordinate ~ξ0, n12l12

to ~ξ1 and n3l3 to ~ξ2. A more detailed description of these states will be given in Sec. 4.5.

The advantage of the so-called Jacobi basis (18) is that the intrinsic part |α〉 decouples

from the center-of-mass part |ncmlcm〉, which is not relevant for the interaction. Besides,

the basis dimension up to a given energy becomes small compared to the m-scheme and

the angular momentum is a good quantum number. For the antisymmetrized Jacobi

basis {|ncmlcm〉|EiJT 〉}JM [14] the basis dimension up to a given energy becomes even

smaller. But these bases are not very useful in many-body calculations (Chap. 6).

4.2 The m-scheme

The m-scheme basis is an antisymmetrized many-body basis consisting of harmonic-

oscillator single-particle states, with quantum numbers defined with respect to single-

particle coordinates. In this basis the orbital angular momentum li and the spin si of

each particle are coupled to the angular momentum ji

|(n1l1, s1)j1mj1t1mt1 ; (n2l2, s2)j2mj2t2mt2 ; ...; (nAlA, sA)jAmjAtAmtA〉a
=

√
A!Â |(n1l1, s1)j1mj1t1mt1〉 ⊗ |(n2l2, s2)j2mj2t2mt2〉 ⊗ ...⊗ |(nAlA, sA)jAmjAtAmtA〉 ,

(19)

where Â is the antisymmetrizer.

In this basis the quantum numbers MJ = mj1 + mj2 + ... + mjA and MT = mt1 + mt2 +

... + mtA are the only good quantum numbers of the many-body basis state. Although

the angular momentum is not a good quantum number in this basis, this basis is more

convenient for the many-body calculations. Therefore, we will further perform many-

body calculations in the m-scheme.
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4.3 Coupling and coordinate-transformation formulas

One of the main challenges we will deal with is the transformation of matrix elements

from the Jacobi basis (18) to the m-scheme (19). Therefore, several technical formulas

will be used which are introduced in this section.

4.3.1 6-j symbols

The Wigner 6-j symbols are related to the coefficients of transformations between differ-

ent coupling schemes of three angular momenta. Let us consider the state

|[(j1j2)j12, j3]jm〉, where j1 and j2 couple to j12 and j12 couples with j3 to j. If one wants

to transform this state into another coupling scheme like |[j1, (j2j3)j23]j′m′〉, one has to

insert the identity operator in the basis of the new coupling scheme which yields the co-

efficients 〈[(j1j2)j12, j3]jm|[j1, (j2j3)j23]j′m′〉 which can be calculated from 6-j symbols.

The 6-j symbols are defined by the relations [19]

〈[(j1j2)j12, j3]jm|[j1, (j2j3)j23]j′m′〉 = δjj′δmm′(−1)j1+j2+j3+j ĵ12ĵ23

{

j1 j2 j12

j3 j j23

}

, (20)

〈[(j1j2)j12, j3]jm|[(j1j3)j13, j2]j′m′〉

= δjj′δmm′(−1)j2+j3+j12+j13 ĵ12ĵ13

{

j2 j1 j12

j3 j j13

}

, (21)

〈[j1, (j2j3)j23]jm|[(j1j3)j13, j2]j′m′〉 = δjj′δmm′(−1)j1+j+j23 ĵ13ĵ23

{

j1 j3 j13

j2 j j23

}

, (22)

with ĵ =
√

2j + 1.

It is important to note that the total angular momenta quantum numbers j, j′ and the

corresponding projections m, m′ must be equal. The 6-j symbols can be chosen to be

real, therefore, one can swap the bra and the ket and obtains the same result. For

further symmetry relations see [19].
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4.3.2 9-j symbols

The Wigner 9-j symbols (also called Fano coefficients) are related to the transformation

coefficients of different coupling schemes of four angular momenta.

They are defined by the relations [19]

〈[(j1j2)j12, (j3j4)j34]jm|[(j1j3)j13, (j2j4)j24]j′m′〉

= δjj′δmm′ ĵ12ĵ13ĵ24ĵ34











j1 j2 j12

j3 j4 j34

j13 j24 j











,
(23)

〈[(j1j2)j12, (j3j4)j34]jm|[(j1j4)j14, (j2j3)j23]j′m′〉

= δjj′δmm′(−1)j3+j4−j34 ĵ12ĵ14ĵ23ĵ34











j1 j2 j12

j4 j3 j34

j14 j23 j











,
(24)

〈[(j1j3)j13, (j2j4)j24]jm|[(j1j4)j14, (j2j3)j23]j′m′〉

= δjj′δmm′(−1)j3−j4−j23+j24 ĵ13ĵ14ĵ24ĵ23











j1 j3 j13

j4 j2 j24

j14 j23 j











,
(25)

with ĵ =
√

2j + 1.

Because the 9-j symbols can be chosen to be real, one can swap the bra and the ket

without changing the result. The angular momenta in a row and column of the 9-j

symbol fulfill the triangular condition, where the right angular momentum in a row and

the lower angular momentum in a column are the coupled angular momenta. The 9-j

symbols are invariant under even permutations of columns or rows as well as under

transposition. Odd permutations of rows or columns produce a phase factor (−1)R,

whereR is the sum of all angular momenta in the symbol. For further symmetry relations

see [19].

There are different ways to calculate the 9-j symbols. One is to express them by 6-j
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symbols











a b c

d e f

g h j











=
∑

x

(−2)x(2x+ 1)

{

a b c

f j x

}{

d e f

b x h

}{

g h j

x a d

}

. (26)

This is how we will implement the 9-j symbols.

4.3.3 Harmonic-oscillator brackets (HOBs)

If one wants to transform between harmonic-oscillator states with quantum numbers

defined with respect to different coordinate systems, one can use the harmonic-oscillator

brackets or also called Talmi-Moshinsky coefficients. We will call such a transformation,

therefore, Talmi-transformation. The HOBs are the scalar product of the spatial part of

two two-body states with quantum numbers defined with respect to different coordinate

systems. The angular orbital momenta of each state have to be coupled.

In this thesis we will use the HOBs defined by Kammuntavičius [20]

|[n1l1(~r1), n2l2(~r2)]Λλ〉 =
∑

NL,nl

〈〈NL, nl|n1l1, n2l2; Λ〉〉d |[NL(~R), nl(~r)]Λλ〉 , (27)

with the HOB 〈〈NL, nl|n1l1, n2l2; Λ〉〉d . The orbital angular momenta l1, l2 and L, l

couple to Λ with projection λ. Note Eq. (27) is not written in coordinate representation,

the coordinate vectors ~r1, ~r2, ~R1 and ~r indicate that the radial and the orbital angular

momentum quantum numbers n1, l1, n2, l2, N, L and n, l are defined with respect to

this coordinate.

The corresponding coordinate-transformation matrix reads

(

~R

~r

)

=





√

d
1+d

√

1
1+d

√

1
1+d

−
√

d
1+d





(

~r1

~r2

)

. (28)
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The parameter d defines the type of coordinate transformation.

There are three useful symmetry relations and the fact that the HOBs are real, yielding

〈〈n1l1, n2l2|NL, nl; Λ〉〉d
= 〈〈NL, nl|n1l1, n2l2; Λ〉〉d , (29)

= (−1)l2+L〈〈n2l2, n1l1|nl,NL; Λ〉〉d , (30)

= (−1)L−Λ〈〈n2l2, n1l1|NL, nl; Λ〉〉 1
d
, (31)

= (−1)l1−Λ〈〈n1l1, n2l2|nl,NL; Λ〉〉 1
d
. (32)

For further symmetry relations see [21].

All symmetry relations can be obtained by analogous derivations. Hence, we will only

perform the derivation for one of these relations. First, we insert an identity operator in

coordinate representation

〈〈NL(~R), nl(~r)|n1l1(~r1), n2l2(~r2); Λ〉〉d

=
1

2Λ + 1

∑

λ

ˆ ˆ

d3
r1d

3
r2

{

φn1l1(~r1) ⊗ φn2l2(~r2)
}†

Λλ

{

φNL(~R) ⊗ φnl(~r)
}

Λλ
,

(33)

with a shorthand notation for the coupled wave functions

{

φn1l1(~r1) ⊗ φn2l2(~r2)
}

Λλ
=
∑

m1m2

c

(

l1 l2 Λ

m1 m2 λ

)

φn1l1m1(~r1)φn2l2m2(~r2) ,

where φnlm(~r) are the orthonormalized harmonic-oscillator functions [20]. The factor
1

2Λ+1
results from the fact that the HOBs are independent of the projection quantum

number λ.

In addition, we recognize that the same transformation matrix combines the coordinates

in the following way

(

−~r
~R

)

=





√

d
1+d

√

1
1+d

√

1
1+d

−
√

d
1+d





(

~r2

−~r1

)

, (34)
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where also ~R =
√

d
1+d

~r1 +
√

1
1+d

~r2 and ~r =
√

1
1+d

~r1 −
√

d
1+d

~r2 hold true. Furthermore, it

is essential that

{

φe1l1(~r1) ⊗ φe2l2(~r2)
}

Λλ
= (−1)l1(−1)l1+l2−Λ

{

φe2l2(~r2) ⊗ φe1l1(−~r1)
}

Λλ
, (35)

{

φEL(~R) ⊗ φel(~r)
}

Λλ
= (−1)l(−1)l+L−Λ

{

φel(−~r) ⊗ φEL(~R)
}

Λλ
. (36)

Using these relations we can rewrite Eq. (33) as

〈〈n1l1(~r1), n2l2(~r2)|NL(~R), nl(~r); Λ〉〉d

=
1

2Λ + 1

∑

λ

ˆ ˆ

d3
r1d

3
r2

{

φn2l2(~r2) ⊗ φn1l1(−~r1)
}†

Λλ

{

φnl(−~r) ⊗ φNL(~R)
}

Λλ
(−1)l2+L

= (−1)l2+L〈〈n2l2(~r2), n1l1(−~r1)|nl(−~r), NL(~R); Λ〉〉d
= (−1)l2+L〈〈n2l2, n1l1|nlNL; Λ〉〉d .

(37)

So we obtained the symmetry relation (30). In analogy the other symmetry relations

can be derived.

4.4 Two-body Jacobi basis to m-scheme transformation

In this section we will perform the matrix-element transformation from the Jacobi basis

to the m-scheme in two-body space. This transformation will be used to produce the

two-body m-scheme matrix elements. Moreover, it is a good exercise in view of the

transformation in the three-body space.

We aim at the transformation of the following antisymmetrized matrix element of the

two-body interaction V̂NN to obtain the formula [22]

a〈[(n1l1, s1)j1, (n2l2, s2)j2]JTMT |V̂NN |[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JTMT 〉a

= ĵ1ĵ2ĵ
′
1ĵ

′
2

∑

LSNΛνλ,j

∑

ν′λ′

∑

L′

L̂2L̂′
2
ĵ2Ŝ2

(

1 − (−1)λ+S+T
)

×











l1 l2 L

s1 s2 S

j1 j2 J





















l′1 l′2 L′

s1 s2 S

j′1 j′2 J











{

Λ λ L

S J j

}{

Λ λ′ L′

S J j

}

× 〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈〈NΛ, ν ′λ′|n′
1l

′
1, n

′
2l

′
2;L

′〉〉
× 〈(νλ, S)jTMT |V̂NN |(λ′ν ′, S)jTMT 〉 .

(38)
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In Eq. (38) a coupled antisymmetric m-scheme basis
{

|[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT 〉a
}

is used on the left-hand side. Note that the used

interaction V̂NN is independent of the projection quantum numbers of the angular mo-

menta. To obtain an expression depending on the matrix element represented in the

non-antisymmetrized Jacobi basis |NΛmΛ, (νλ, S) jmjTMT 〉 one has to perform the an-

tisymmetrization to get antisymmetric states on the left-hand side

a〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT |V̂NN |[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉a

= a〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT | (39)

× V̂NN
√

2! Â|[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉

=a 〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT |Â (40)

× V̂NN
√

2!|[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉

= a〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT | (41)

× V̂NN
√

2!|[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉

=
[

〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT | − 〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT |T̂12

]

×
√

2!√
2!
V̂NN |[(n′

1l
′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉 (42)

=
[

〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT |

− (−1)j1+j2−J(−1)T−1〈[(n2l2, s2)j2, (n1l1, s1)j1]JMJTMT |
]

× V̂NN |[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉 . (43)

To obtain (40) we used the commutator relation [V̂NN , Â] = 0 and in (41) the projection

property Â · Â = Â of the antisymmetrizer. To get (42) we insert the antisymmetrizer

Â =
1

A!

∑

P

(−1)P P̂,
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where P is the signature of the permutation operator P̂. Finally we apply T̂12, the

transposition of particle 1 and 2, obtaining a phase factor [23].

So we have to calculate the following two terms

〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT |V̂NN |[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉 , (44)

(−1)j1+j2−J(−1)T−1〈[(n2l2, s2)j2, (n1l1, s1)j1]JMJTMT |V̂NN
× |[(n′

1l
′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJTMT 〉 . (45)

Due to the length of the formulas we will only transform the bra states of these two

terms. The transformation will be performed stepwise by inserting an identity operator

in an appropriate basis. The changes will be marked red.

Let us concentrate now one the bra of the first term (44):

〈1| := 〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT |

=
∑

LS

〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTMT |[(n1l1, n2l2)L, (s1s2)S]JMJTMT 〉

× 〈[(n1l1, n2l2)L, (s1s2)S]JMJTMT | .

(46)

In the next step we can replace the overlap in Eq. (46) by a 9-j symbol via the following

relation

〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJTmT |[(n1l1, n2l2)L, (s1s2)S]JMJTMT 〉

= L̂Ŝĵ1ĵ2











l1 l2 L

s1 s2 S

j1 j2 J











where ĵ =
√

2j + 1, leading to

〈1| =
∑

LS

L̂Ŝĵ1ĵ2











l1 l2 L

s1 s2 S

j1 j2 J











〈[(n1l1, n2l2)L, (s1s2)S]JMJTMT | . (47)
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Now we expand the bra state in the Jacobi basis 〈[(NΛ, νλ)L, (s1s2)S]JMJ |, where

N, Λ are radial and orbital angular momentum quantum numbers corresponding to the

center-of-mass coordinate and ν, λ the ones corresponding to the relative coordinate.

Moreover, we omit the isospin for brevity

〈1| =
∑

NΛνλ

∑

LS

∑

L′S′

L̂Ŝĵ1ĵ2











l1 l2 L

s1 s2 S

j1 j2 J











〈[(n1l1, n2l2)L, (s1s2)S]JMJ |

(48)

× |[(NΛ, νλ)L, (s1s2)S]JMJ〉〈[(NΛ, νλ)L, (s1s2)S]JMJ | .

Next, we introduce the harmonic-oscillator brackets

〈[(n1l1, n2l2)L, (s1s2)S]JMJ |[(NΛ, νλ)L, (s1s2)S]JMJ〉
= 〈〈n1l1, n2l2|NΛ, νλ;L〉〉d (49)

= 〈〈NΛ, νλ|n1l1, n2l2;L〉〉d . (50)

As mentioned in Sec. 4.3.3 the scalar product (49) describes a transformation of the

single-particle coordinates ~r1 and ~r2 to the center-of-mass and relative coordinates ~rcm
and ~rrel by the linear relation

(

~r1

~r2

)

=





√

d
1+d

√

1
1+d

√

1
1+d

−
√

d
1+d





(

~rcm

~rrel

)

, for d = 1.

We omit the index d = 1 at the harmonic-oscillator brackets for brevity

〈1| =
∑

N ′Λ′ν′λ′

∑

NΛνλ

∑

LS

∑

L′S′

L̂Ŝĵ1ĵ2











l1 l2 L

s1 s2 S

j1 j2 J











× 〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈[(NΛ, νλ)L, (s1s2)S]JMJ | .

(51)
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Now we expand the bra in the basis 〈[NΛ, (νλ, S)j]JMJ |

〈1| =
∑

j

∑

N ′Λ′ν′λ′

∑

LS

∑

NΛνλ

∑

L′S′

L̂Ŝĵ1ĵ2











l1 l2 L

s1 s2 S

j1 j2 J











〈〈NΛ, νλ|n1l1, n2l2;L〉〉

(52)

× 〈[(NΛ, νλ)L, (s1s2)S]JMJ |[NΛ, (νλ, S)j]JMJ〉〈[NΛ, (νλ, S)j]JMJ | .

We can introduce the 6-j symbol using

〈[(NΛ, νλ)L, (s1s2)S]JMJ |[NΛ, (νλ, S)j]JMJ〉 = (−1)Λ+λ+S+J
L̂ĵ

{

Λ λ L

S J j

}

, (53)

leading to

〈1| =
∑

j

∑

NνΛλ

∑

LS

∑

N ′ν′Λ′λ′

∑

L′S′

L̂Ŝĵ1ĵ2











l1 l2 L

s1 s2 S

j1 j2 J











〈〈NΛ, νλ|n1l1, n2l2;L〉〉

(54)

× (−1)Λ+λ+S+J
L̂ĵ

{

Λ λ L

S J j

}

〈[NΛ, (νλ, S)j]JMJ | .

Now we expand the states in the basis 〈NΛmΛ, (νλ, S)jmj| for a complete decoupling

of the center-of-mass from the relative part of the states

〈1| =
∑

mΛmj

∑

j

∑

NνΛλ

∑

LS

L̂2Ŝĵ1ĵ2ĵ (−1)Λ+λ+S+J

×











l1 l2 L

s1 s2 S

j1 j2 J











{

Λ λ L

S J j

}

〈〈NΛ, νλ|n1l1, n2l2;L〉〉 (55)

× 〈[NΛ, (νλ, S)j]JMJ |NΛmΛ, (νλ, S)jmj〉〈NΛmΛ, (νλ, S)jmj| .

After introducing the Clebsch-Gordan coefficients

〈[NΛ, (νλ, S)j]JMJ |NΛmΛ, (νλ, S)jmj〉 = c

(

Λ j J

mΛ mj MJ

)

,
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we obtain

〈1| =
∑

mΛmj

∑

j

∑

NνΛλ

∑

LS

L̂2Ŝĵ1ĵ2ĵ (−1)Λ+λ+S+J
c

(

Λ j J

mΛ mj MJ

)

(56)

×











l1 l2 L

s1 s2 S

j1 j2 J











{

Λ λ L

S J j

}

〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈NΛmΛ, (νλ, S)jmj| .

One can perform the analogous steps for the primed quantum numbers of the ket, yield-

ing the term (44)

〈[(n1l1, s1)j1, (n2l2, s2)j2]JMJ |V̂NN |[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]JMJ〉

=
∑

mΛmj

∑

j

∑

NνΛλ

∑

LS

L̂2Ŝĵ1ĵ2ĵ (−1)Λ+λ+S+J
c

(

Λ j J

mΛ mj MJ

)

×











l1 l2 L

s1 s2 S

j1 j2 J











{

Λ λ L

S J j

}

(57)

× 〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈NΛmΛ, (νλ, S)jmj|V̂NN

×
∑

m′
Λm

′
j

∑

j′

∑

N ′ν′Λ′λ′

∑

L′S′

L̂′
2
Ŝ ′ĵ′1ĵ

′
2ĵ

′ (−1)Λ′+λ′+S′+J ′

c

(

Λ′ j′ J

m′
Λ m′

j MJ

)

×











l′1 l′2 L′

s′1 s′2 S ′

j′1 j′2 J











{

Λ′ λ′ L′

S ′ J j′

}

× 〈〈N ′Λ′, ν ′λ′|n′
1l

′
1, n

′
2l

′
2;L

′〉〉|N ′Λ′m′
Λ, (ν

′λ′, S ′)j′m′
j〉 ,
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We make use of the properties of the NN interaction and remark that only matrix el-

ements between states with equal S, j, mj , N, Λ, mΛ in the bra and ket are nonzero.

Because of that we can eliminate sums over S ′, j′, m′
j , N

′, Λ′ and m′
Λ using the follow-

ing condition

〈NΛmΛ, (νλ, S)jmj |V̂NN |N ′Λ′m′
Λ, (ν

′λ′, S ′)j′m′
j〉

= δSS′δNN ′δΛΛ′δmΛm
′
Λ
δjj′δmjm

′
j
〈NΛmΛ, (νλ, S)jmj|V̂NN |NΛmΛ, (ν

′λ′S)jmj〉 .
(58)

In addition, we can use that the interaction is independent of the projection quantum

numbers MJ and mj . Now we can apply the orthogonality relation of the Clebsch-

Gordan coefficients

∑

mΛmj

c

(

Λ j J

mΛ mj MJ

)

c

(

Λ j J

mΛ mj MJ

)

= δJJδMJMJ
= 1 . (59)

Inserting both conditions and performing some reordering yields

〈[(n1l1, s1)j1, (n2l2, s2)j2]J |V̂NN |[(n′
1l

′
1, s

′
1)j

′
1, (n

′
2l

′
2, s

′
2)j

′
2]J〉

=
∑

j

∑

NνΛλ

∑

LS

∑

ν′λ′

∑

L′

L̂2L̂′
2
Ŝ2ĵ2ĵ1ĵ2ĵ

′
1ĵ

′
2 (−1)Λ+λ+S+J (−1)Λ+λ′+S+J

×











l1 l2 L

s1 s2 S

j1 j2 J





















l′1 l′2 L′

s′1 s′2 S

j′1 j′2 J











{

Λ λ L

S J j

}{

Λ λ′ L′

S J j

}

(60)

× 〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈〈NΛ, ν ′λ′|n′
1l

′
1, n

′
2l

′
2;L

′〉〉

× 〈NΛmΛ, (νλ, S)j|V̂NN |NΛmΛ, (ν
′λ′, S)j〉 .

S and J are integer due to s1 = s2 = s′1 = s′2 = 1
2

and Λ is integer due to being an orbital

angular momentum. Thus, (−1)2·Λ = (−1)2·S = (−1)2·J = +1 and with the consideration
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of the isospin, we obtain the final expression for the first term

〈[(n1l1, s1)j1, (n2l2, s2)j2]JTMT |V̂NN |[(n′
1l

′
1, s1)j

′
1, (n

′
2l

′
2, s2)j

′
2]JTMT 〉

=
∑

j

∑

NνΛλ

∑

LS

∑

ν′λ′

∑

L′

L̂2L̂′
2
Ŝ2ĵ2ĵ1ĵ2ĵ′1ĵ

′
2 (−1)λ+λ′

×











l1 l2 L

s1 s2 S

j1 j2 J





















l′1 l′2 L′

s′1 s′2 S

j′1 j′2 J











{

Λ λ L

S J j

}{

Λ λ′ L′

S J j

}

(61)

× 〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈〈NΛ, ν ′λ′|n′
1l

′
1, n

′
2l

′
2;L

′〉〉

× 〈NΛmΛ, (νλ, S)jTMT |V̂NN |NΛmΛ, (ν
′λ′, S)jTMT 〉 .

Now we aim at the bra state of the second term (45):

〈2| := (−1)j1+j2−J(−1)T−1〈[(n2l2, s2)j2, (n1l1, s1)j1]JMJ , (t2t1)TMT | (62)

We can swap the isospin t1 ↔ t2 with no additional factors due to t1 = t2 = 1
2
. Note that

we do not change a coupling order, but only rename t1 and t2 because they are equal.

The isospin part of 〈1| and 〈2| are equal and we again omit it for brevity. The bra 〈2| is

exactly the same as 〈1| except the factor (−1)j1+j2−J(−1)T−1 and except that the spatial

and spin quantum numbers of particle 1 and 2 are swapped. So we can perform the

analogous steps as above also for the bra 〈2| of the second term (45) obtaining

〈2| = (−1)j1+j2−J+T−1
∑

mΛmj

∑

j

∑

NνΛλ

∑

LS

× L̂2Ŝĵ1ĵ2ĵ (−1)Λ+λ+S+J
c

(

Λ j J

mΛ mj MJ

)

(63)

×











l2 l1 L

s2 s1 S

j2 j1 J











{

Λ λ L

S J j

}

〈〈NΛ, νλ|n2l2, n1l1;L〉〉〈NΛmΛ, (νλ, S)jmj| ,
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where have the additional factor and swapped indices in the 9-j symbol and the HOB,

compared to (56). Note that in the state 〈NΛmΛ, (νλ, S)jmj| the coupling order of the

spin s1 = 1
2

= s2 to S does not make a difference, because of the same argument as for

the isospin part. In the next step we swap the first two columns of the 9-j symbol using

the symmetry relation explained in Subsec. 4.3.2











l2 l1 L

s2 s1 S

j2 j1 J











=











l1 l2 L

s1 s2 S

j1 j2 J











· (−1)l1+s1+j1+l2+s2+j2+L+S+J ,

and transform the HOB with the symmetry relation 31

〈〈NΛ, νλ|n2l2, n1l1;L〉〉 = 〈〈n2l2, n1l1|NΛ, νλ;L〉〉
= (−1)L−Λ〈〈n1l1, n2l2|NΛ, νλ;L〉〉
= (−1)L−Λ〈〈NΛ, νλ|n1l1, n2l2;L〉〉 ,

yielding

〈2| = (−1)j1+j2−J+T−1
∑

mΛmj

∑

j

∑

NνΛλ

∑

LS

(−1)l1+s1+j1+l2+s2+j2+L+S+J(−1)L−Λ

(−1)Λ+λ+S+J L̂2Ŝĵ1ĵ2ĵc

(

Λ j J

mΛ mj MJ

)

×











l1 l2 L

s1 s2 S

j1 j2 J











{

Λ λ L

S J j

}

〈〈NΛ, νλ|n1l1, n2l2;L〉〉

〈NΛmΛ, (νλ, S)jmj| .

Now it is time to look also on the right-hand side of the matrix element. It is exactly the

same as derived above (57), so we can use again the properties of the interaction and

the orthogonality relation of the Clebsch-Gordan coefficients (59) obtaining the matrix
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element

(−1)j1+j2−J+T−1〈[(n2l2, s2)j2, (n1l1, s1)j1]J |V̂NN |[(n′
1l

′
1, s1)j

′
1, (n

′
2l

′
2, s2)j

′
2]J〉

=
∑

j

∑

NνΛλ

∑

LS

∑

ν′λ′

∑

L′

L̂2L̂′
2
Ŝ2ĵ2ĵ1ĵ2ĵ′1ĵ

′
2

× (−1)j1+j2−J+T−1(−1)l1+s1+j1+l2+s2+j2+L+S+J(−1)L−Λ (−1)λ+λ′

(64)

×











l1 l2 L

s1 s2 S

j1 j2 J





















l′1 l′2 L′

s1 s2 S

j′1 j′2 J











{

Λ λ L

S J j

}{

Λ λ′ L′

S J j

}

× 〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈〈NΛ, ν ′λ′|n′
1l

′
1, n

′
2l

′
2;L

′〉〉

× 〈NΛmΛ, (νλ, S)j|V̂NN |NΛmΛ, (ν
′λ′, S)j〉 .

The last thing to do is to simplify the phase factor, which is the only difference between

the result for the first term (61) derived above and our result for the second term (64).

Thus we write down the phase factor again

(−1)j1+j2−J+T−1+l1+s1+j1+l2+s2+j2+L+S+J+L−Λ+λ+λ′

= (−1)2j1+2j2(−1)s1+s2−1(−1)2L+2S+2J+Λ−Λ+J−J(−1)λ+λ′(−1)l1+l2−Λ(−1)T+S .
(65)

For the individual phase factors we can use the following properties:

• (−1)2j1+2j2: Since j1 and j2 are half-integral numbers, 2ji are odd numbers and so

2j1 + 2j2 is even and the factor is equal to one.

• (−1)s1+s2−1: s1 = s2 = 1
2

and s1 + s2 − 1 = 0 and the factor is equal to one.

• (−1)2L+2S+2J+Λ−Λ+J−J: L, S and J are integer and so this factor is also equal to

one.

• (−1)λ+λ′: It is a property of the interaction, that λ′ = λ ± 2 and so the factor is

equal to one. This can also be used in (61).
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• (−1)l1+l2−Λ: Here we can make use of the energy-conserving condition 2n1 + l1 +

2n2 + l2 = 2N + Λ +2ν + λ and the fact that n1, n2, N, ν are integers. Using this we

find that the factor is just (−1)λ.

So the overall phase factor is (−1)λ+S+T and the result of both terms together, consider-

ing the isospin, reads

a〈[(n1l1, s1)j1, (n2l2, s2)j2]JTMT |V̂NN |[(n′
1l

′
1, s1)j

′
1, (n

′
2l

′
2, s2)j

′
2]JTMT 〉a

= ĵ1ĵ2ĵ
′
1ĵ

′
2

∑

LSNΛνλ,j

∑

ν′λ′

∑

L′

L̂2L̂′
2
ĵ2Ŝ2

(

1 − (−1)λ+S+T
)

×











l1 l2 L

s1 s2 S

j1 j2 J





















l′1 l′2 L′

s1 s2 S

j′1 j′2 J











{

Λ λ L

S J j

}{

Λ λ′ L′

S J j

}

× 〈〈NΛ, νλ|n1l1, n2l2;L〉〉〈〈NΛ, ν ′λ′|n′
1l

′
1, n

′
2l

′
2;L

′〉〉

× 〈(νλ, S)jTMT |V̂NN |(λ′ν ′, S)jTMT 〉 ,

(66)

as we have anticipated from Eq. (38).

4.5 Three-body Jacobi basis to m-scheme transformation

In this section we will derive the transformation of three-body matrix elements from the

Jacobi basis to m-scheme [14]

〈EJMJTMT i|V̂NNN |E ′JMJTMT i
′〉 −→a 〈abc|V̂NNN |a′b′c′〉a . (67)

Due to the complexity of this transformation, we divide the derivation into several sub-

sections to provide a clear view.

4.5.1 Simplifying the matrix element

We start with the antisymmetrized m-scheme states |abc〉a and transform them stepwise

by inserting appropriate identity operators until we have expressed them in the antisym-
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metrized Jacobi states |EJMJTMT i〉. The state |abc〉a is given by

|abc〉a =
√

3!Â|(nala, sa)jamatamta〉⊗|(nblb, sb)jbmbtbmtb〉⊗|(nclc, sc)jcmctcmtc〉 , (68)

including the center-of-mass part.

It is very important to handle the antisymmetric and non-antisymmetric spaces with

great care. First, we consider the non-antisymmetric state

|abc〉 = |(nala, sa)jamatamta〉 ⊗ |(nblb, sb)jbmbtbmtb〉 ⊗ |(nclc, sc)jcmctcmtc〉 , (69)

which we later will project on the antisymmetric space. The first step is to couple the

angular momenta to a total angular momentum quantum number J

|abc〉 =
∑

JabMab

∑

JMJ

c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

(70)

× |{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ , tamtatbmtbtcmtc〉

In the second step we use the following identity operator

1̂ =
∑

ncmlcmα

{|ncmlcm〉 ⊗ |α〉}JMJ {〈ncmlcm| ⊗ 〈α|}JMJ , (71)

where |α〉 = |[(n12l12, sab)j12, (n3l3, sc)j3]J, [(tatb)tab, tc]TMT 〉 is the relative part of the

Jacobi state (see Eq. (18)) and the sum
∑

α

denotes the sum over

{n12, l12, sab, j12, n3, l3, j3, J, tab, T,MT} . (72)

The state |α〉 is antisymmetric under the exchange of particle 1 and 2, see Appendix A.1.

In the following, quantum numbers with characters as index correspond to Cartesian

coordinates, while quantum numbers with integers as index correspond to Jacobi coor-

dinates. Of course, this notation is not always strictly obeyed for intermediate quantum

numbers, if angular momenta of both coordinate spaces can couple to them.

Because the states we are dealing with are coupled to J , MJ as good quantum num-
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bers, the sums over J , MJ vanish. Inserting (71) into (70) yields

|abc〉 =
∑

JabMab

∑

JMJ

∑

ncmlcm

∑

α

c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

(73)

× T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






{|ncmlcm〉 ⊗ |α〉}JMJ ,

with the T -coefficient

T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT







= {〈ncmlcm| ⊗ 〈α|}JMJ

× |{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ ; tamtatbmtatcmtc〉

:= {〈ncmlcm| ⊗ 〈α|}JMJ |{{|a〉 ⊗ |b〉}Jab ⊗ |c〉}JMJ .

(74)

The arrangement of the quantum numbers in the argument of the T -coefficient has no

physical meaning. We will come back to the calculation of this T -coefficient later. Next

we make use of the projection operator P̂antisym, which is equivalent to the antisymmetrizer

Â

P̂antisym =
∑

ncmlcm

∑

EJ

∑

TMT

∑

JMJ

∑

i

{|ncmlcm〉⊗|EiJTMT 〉}JMJ {〈ncmlcm|⊗〈EiJTMT |}JMJ .

(75)

The auxiliary index i labels the state within the set of antisymmetrized states for total

energy quantum number E, angular momentum J and isospin T of the relative part.
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We have to consider the overlap

{〈ñcml̃cm| ⊗ 〈ẼiJ̃ T̃ M̃T |}J̃ M̃J {|ncmlcm〉 ⊗ |α〉}JMJ

= δJ J̃ δMJ M̃J
δncmñcmδlcm l̃cm

δJJ̃δT T̃ δMT M̃T
δE,2n12+l12+2n3+l3

×{〈ncmlcm| ⊗ 〈EiJTMT |}JMJ {|ncmlcm〉 ⊗ |α〉}JMJ

= δJ J̃ δMJ M̃J
δncmñcmδlcm l̃cm

δJJ̃δT T̃ δMT M̃T
δE,2n12+l12+2n3+l3 cα,i

(76)

with the coefficients of fractional parentage (CFPs)

cα,i := {〈ncmlcm| ⊗ 〈EiJTMT |}JMJ {|ncmlcm〉 ⊗ |α〉}JMJ .

If we plug (75) into (73) and use (76), we antisymmetrize the states on the left and

right hand side

Â|abc〉 =
1√
3!
|abc〉a

=
∑

Jab

∑

J

∑

ncmlcm

∑

α

∑

i

c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

×T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






cα,i{|ncmlcm〉 ⊗ |EiJTMT 〉}JMJ ,

(77)

with the energy quantum number E = 2n12 + l12 + 2n3 + l3 from the Kronecker delta

and Mab = ma + mb, MJ = M12 + mc from properties of the Clebsch-Gordan coeffi-

cients. As the last step we decouple the center-of-mass part and the relative part of
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{|ncmlcm〉|EiJTMT 〉}JMJ and obtain for the antisymmetric m-scheme state

|abc〉a =
√

6
∑

Jab

∑

J

∑

ncmlcm

∑

α

∑

i

∑

mcmMJ

× c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

c

(

lcm J J
mcm MJ MJ

)

(78)

T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






cα,i |ncmlcmmcm〉 ⊗ |EiJMJTMT 〉 .

Now we can write down the interaction matrix element

a〈abc|V̂NNN |a′b′c′〉a

= 6
∑

Jab

∑

J

∑

ncmlcm

∑

α

∑

i

∑

mcmMJ

∑

J ′
ab

∑

J ′

∑

n′
cml

′
cm

∑

α′

∑

i′

∑

m′
cmM

′
J

× c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

c

(

lcm J J
mcm MJ MJ

)

× c

(

j′a j′b J ′
ab

m′
a m′

b M ′
ab

)

c

(

J ′
ab j′c J ′

M ′
ab m′

c M′
J

)

c

(

l′cm J ′ J ′

m′
cm M ′

J M′
J

)

× T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






T







a′ b′ c′ J ′
ab J ′ J ′

n′
cm l′cm n′

12 l′12 n′
3 l′3

s′ab j′12 j′3 t′ab T MT







× cα,i cα′,i′ 〈ncmlcmmcm|n′
cml

′
cmm

′
cm〉〈EiJMJTMT |V̂NNN |E ′i′J ′M ′

JT
′M ′

T 〉 ,

(79)

where we used the fact that the interaction does not affect the center-of-mass part of the

state. For further simplification we make use of

〈ncmlcmmcm|n′
cml

′
cmm

′
cm〉 = δncmn′

cm
δlcml′cm

δmcmm′
cm
, (80)
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and of properties of the interaction which imply

〈EiJMJTMT |V̂NNN |E ′i′J ′M ′
JT

′M ′
T 〉

= 〈EiJMJTMT |V̂NNN |E ′i′JMJTMT 〉δJ ′JδM ′
J
MJ
δT ′T δM ′

T
MT

.

(81)

Using this we eliminate sums in (79) corresponding to the Kronecker deltas

a〈abc|V̂NNN |a′b′c′〉a

= 6
∑

Jab

∑

J

∑

ncmlcm

∑

α

∑

i

∑

mcmMJ

∑

J ′
ab

∑

J ′

∑

α̃′

∑

i′

× c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

c

(

lcm J J
mcm MJ MJ

)

× c

(

j′a j′b J ′
ab

m′
a m′

b M ′
ab

)

c

(

J ′
ab j′c J ′

M ′
ab m′

c M′
J

)

c

(

lcm J J ′

mcm MJ M′
J

)

× T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






T







a′ b′ c′ J ′
ab J J ′

ncm lcm n′
12 l′12 n′

3 l′3

s′ab j′12 j′3 t′ab T MT







× cα,i cα′,i′ 〈EiJMJTMT |V̂NNN |E ′i′JMJTMT 〉 ,

(82)

where
∑

α

again denotes a sum over {n12, l12, sab, j12, n3, l3, j3, J, tab, T} and
∑

α̃′

denotes a

sum over

{n′
12, l

′
12, s

′
ab, j

′
12, n

′
3, l

′
3, j

′
3, t

′
ab}. Furthermore, the Jacobi matrix elements are independent

of MJ and we can use the orthogonality relation of the Clebsch-Gordan coefficients

∑

mcmMJ

c

(

lcm J J
mcm MJ MJ

)

c

(

lcm J J ′

mcm MJ M′
J

)

= δJJ ′δMJM′
J

(83)
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and the interaction matrix element finally reads

a〈abc|V̂NNN |a′b′c′〉a

= 6
∑

Jab

∑

J

∑

ncmlcm

∑

α

∑

i

∑

J ′
ab

∑

α̃′

∑

i′

× c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

× c

(

j′a j′b J ′
ab

m′
a m′

b M ′
ab

)

c

(

J ′
ab j′c J

M ′
ab m′

c MJ

)

× T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






T







a′ b′ c′ J ′
ab J J

ncm lcm n′
12 l′12 n′

3 l′3

s′ab j′12 j′3 t′ab T MT







× cα,icα′,i′ 〈EiJTMT |V̂NNN |E ′i′JTMT 〉 .

(84)
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Or, with all quantum numbers shown explicitly,

a〈abc|V̂NNN |a′b′c′〉a

= 6
∑

JabJ
′
ab

∑

J

∑

ncmlcm

∑

n12n
′
12

∑

l12l
′
12

∑

n3n
′
3

∑

l3l
′
3

∑

sabs
′
ab

∑

j12j
′
12

∑

j3j
′
3

∑

tabt
′
ab

∑

J

∑

T

∑

i i′

× c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

× c

(

j′a j′b J ′
ab

m′
a m′

b M ′
ab

)

c

(

J ′
ab j′c J

M ′
ab m′

c MJ

)

× T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






T







a′ b′ c′ J ′
ab J J

ncm lcm n′
12 l′12 n′

3 l′3

s′ab j′12 j′3 t′ab T MT







× cα,i







n12 l12 n3 l3

sab j12 j3 J

tab T MT i






cα′,i′







n′
12 l′12 n′

3 l′3

s′ab j′12 j′3 J

t′ab T MT i′







× 〈EiJTMT |V̂NNN |E ′i′JTMT 〉 ,

(85)

where in addition the quantum-number dependence of the CFPs, indicated by the α- and

i-index, are illustrated in the squared brackets. Moreover, there are the relations

Mab = ma +mb (86)

M ′
ab = m′

a +m′
b (87)

MJ = ma +mb +mc (88)

mtab
= mta +mtb (89)

MT = mtab
+mtc (90)

E = 2n12 + l12 + n3 + l3 . (91)
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4.5.2 Calculating the T-coefficient

To calculate the T-coefficient

T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT







= {〈ncmlcm| ⊗ 〈α|}JMJ |{{|a〉 ⊗ |b〉}Jab ⊗ |c〉}JMJ (92)

we express the states |{{|a〉⊗|b〉}Jab⊗|c〉}JMJ in terms of the states {|ncmlcm〉⊗|α〉}JMJ .

Starting with

|{{|a〉 ⊗ |b〉}Jab ⊗ |c〉}JMJ

= |{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ , tamtatbmtbtcmtc〉 , (93)

we couple the isospins ta, tb, tc to T, MT using two Clebsch-Gordan coefficients

|{{|a〉 ⊗ |b〉}Jab ⊗ |c〉}JMJ

=
∑

tabmtab

∑

TMT

c

(

ta tb tab

mta mtb mtab

)

c

(

tab tc T

mtab
mtc MT

)

(94)

×|{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ , [(tatb)tab, tc]TMT 〉 .

In the next steps the isospin part will not be changed anymore, so we omit it for brevity.

In the following we have to carry out a number of unitary transformations by inserting

appropriate identity operators. We do this stepwise and collect the resulting factors at

the end in (117). To keep track of the transformations we show the involved quantum

numbers before each transformation step.

[(nala, sa)ja, (nblb, sb)jb]Jab −→ [(nala, nblb)Lab, (sasb)sab]Jab

We aim at the separation of the center-of-mass part of the state, so we have to do Talmi-

transformations. The first Talmi-transformation will introduce the coordinate of the

center-of-mass of the first two particles and the corresponding relative coordinate. Be-

fore doing this we have to change the jj-coupling of particles 1 and 2 into LS-coupling.
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This can be achieved by inserting a suitable identity operator in (94)

|{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ 〉

=
∑

Labsab

|{[(nala, nblb)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ 〉

× 〈{[(nala, nblb)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ |

× |{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ 〉 ,

(95)

and the overlap can be replaced by

〈{[(nala, nblb)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ |

× |{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ 〉

=











la lb Lab

sa sb sab

ja jb Jab











ĵaĵbL̂abŝab ,

yielding

|{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}JMJ 〉

=
∑

Labsab











la lb Lab

sa sb sab

ja jb Jab











ĵaĵbL̂abŝab

× |{[(nala, nblb)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ 〉 .

(96)

(nala, nblb)Lab −→ (N12L12( ~cmab), n12l12(~ξ1))Lab

Now we carry out a Talmi-transformation which transforms the single-particle coordi-

nates ~ra and ~rb into the coordinate of the center-of-mass ~cmab of the first two particles,
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and their relative Jacobi coordinate ~ξ1. The corresponding transformation matrix reads

(

~cmab

~ξ1

)

=





√

1
2

√

1
2

√

1
2

−
√

1
2





(

~ra

~rb

)

(97)

which corresponds to HOBs with parameter d = 1. The result of this transformation is

given by

|{[(nala, nblb)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ 〉

=
∑

N12L12

∑

n12l12

〈〈N12L12, n12l12|nala, nblb;Lab〉〉1

× |{[(N12L12( ~cmab), n12l12(~ξ1))Lab, (sasb)sab]Jab, (nclcsc)jc}JMJ 〉 .

(98)

The coordinates again indicate which basis the quantum numbers correspond to and

will be omitted in the following.

[(Labsab)Jab, (lcsc)jc]J −→ [(Lablc)L, (sabsc)S]J

We change the coupling scheme from jj-coupling to LS-coupling to prepare the next

Talmi-transformation

|{[(N12L12, n12l12)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ 〉

=
∑

LS

|{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ 〉

(99)

× 〈{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ |

× |{[(N12L12, n12l12)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ 〉 .
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Again, the overlap can be replaced by a 9-j symbol

〈{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ |

× |{[(N12L12, n12l12)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ 〉 (100)

=











Lab lc L
sab sc S

Jab jc J











L̂ŜĴabĵc ,

yielding

|{[(N12L12, n12l12)Lab, (sasb)sab]Jab, (nclc, sc)jc}JMJ 〉

=
∑

LS











Lab lc L
sab sc S

Jab jc J











L̂ŜĴabĵc

× |{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ 〉 .

(101)

[(N12L12, n12l12)Lab, nclc]L −→ [(N12L12, nclc)Λ, n12l12]L

Before we can carry out the second Talmi-transformation, which will lead us to the

complete set of Jacobi coordinates, we have to couple L12 with lc

|{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ 〉

=
∑

Λ

|{[(N12L12, nclc)Λ, n12l12]L, [(sasb)sab, sc]S}JMJ 〉

(102)

× 〈{[(N12L12, nclc)Λ, n12l12]L, [(sasb)sab, sc]S}JMJ |

× |{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ 〉 .
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Because we have a reordering of three angular momenta this time, we can replace the

overlap introducing a 6-j symbol

〈{[(N12L12, nclc)Λ, n12l12]L, [(sasb)sabsc]S}JMJ |

× |{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ 〉

= (−1)lc+l12+Λ+LabΛ̂L̂ab

{

lc L12 Λ

l12 L Lab

}

,

(103)

yielding

|{[(N12L12, n12l12)Lab, nclc]L, [(sasb)sab, sc]S}JMJ 〉

=
∑

Λ

(−1)lc+l12+Λ+LabΛ̂L̂ab

{

lc L12 Λ

l12 L Lab

}

× |{[(N12L12, nclc)Λ, n12l12]L, [(sasb)sab, sc]S}JMJ 〉 .

(104)

(N12L12( ~cmab), nclc(~rc))Λ −→ (ncmlcm(~ξ0), n3l3(~ξ2))Λ

Now we carry out the second Talmi-transformation that transforms the coordinates ~cmab

and ~rc into the center-of-mass coordinate ~ξ0 of the three particles and the Jacobi coordi-

nate ~ξ2. Here the transformation matrix reads

(

~ξ0
~ξ2

)

=





√

2
3

√

1
3

√

1
3

−
√

2
3





(

~cmab

~rc

)

(105)

and corresponds to HOBs with parameter d = 2. The result is given by

|{[(N12L12, nclc)Λ, n12l12]L, [(sasb)sabsc]S}JMJ 〉

=
∑

ncmlcm

∑

n3l3

〈〈ncmlcm, n3l3|N12L12, nclc; Λ〉〉2

× |{[(ncmlcm(~ξ0), n3l3(~ξ2))Λ, n12l12]L, [(sasb)sab, sc]S}JMJ 〉 .

(106)
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[(ncmlcm(~ξ0), n3l3(~ξ2))Λ, n12l12]L −→ [ncmlcm, (n3l3, n12l12)L]L

Recoupling of the orbital angular momenta yields

|{[(ncmlcm, n3l3)Λ, n12l12]L, [(sasb)sab, sc]S}JMJ 〉

=
∑

L

|{[(ncmlcm, (n3l3, n12l12)L]L, [(sasb)sab, sc]S}JMJ 〉

(107)

× 〈{[(ncmlcm, (n3l3, n12l12)L]L, [(sasb)sab, sc]S}JMJ |

× |{[(ncmlcm, n3l3)Λ, n12l12]L, [(sasb)sab, sc]S}JMJ 〉 .

Here the overlap can be substituted by

〈{[(ncmlcm, (n3l3, n12l12)L]L, [(sasb)sab, sc]S}JMJ |

× |{[(ncmlcm, n3l3)Λ, n12l12]L, [(sasb)sab, sc]S}JMJ 〉

= (−1)lcm+l3+l12+LΛ̂L̂

{

lcm l3 Λ

l12 L L

}

,

(108)

yielding

|{[(ncmlcm, n3l3)Λ, n12l12]L, [(sasb)sab, sc]S}JMJ 〉

=
∑

L

(−1)lcm+l3+l12+LΛ̂L̂

{

lcm l3 Λ

l12 L L

}

× |{[ncmlcm, (n3l3, n12l12)L]L, [(sasb)sab, sc]S}JMJ 〉 .

(109)
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[(ncmlcm, L)L, S]J −→ [ncmlcm, (L, S)J ]J

Inserting the corresponding identity operator leads to

|{[(ncmlcm, (n3l3, n12l12)L3]L, [(sasb)sab, sc]S}JMJ 〉

=
∑

J

|{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ 〉

(110)

× 〈{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ |

× |{[(ncmlcm, (n3l3, n12l12)L]L, [(sasb)sab, sc]S}JMJ 〉

and the overlap can be replaced by

〈{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ |

× |{[(ncmlcm, (n3l3, n12l12)L]L, [(sasb)sab, sc]S}JMJ 〉

= (−1)lcm+L+S+J L̂Ĵ
{

lcm L L
S J J

}

,

(111)

yielding

|{[(ncmlcm, (n3l3, n12l12)L3]L, [(sasb)sab, sc]S}JMJ 〉

=
∑

J

(−1)lcm+L+S+J L̂Ĵ
{

lcm L L
S J J

}

× |{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ 〉 .

(112)
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[(n3l3, n12l12)L, [sabsc]S]J −→ [(n3l3, sc)j3, (n12l12, sab)j12]J

The final transformation leads to the coupling structure of the state |α〉

|{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ 〉

=
∑

j12j3

|{ncmlcm, [(n3l3, sc)j3, (n12l12, sab)j12]J}JMJ 〉

(113)

× 〈{ncmlcm, [(n3l3, sc)j3, (n12l12, sab)j12]J}JMJ |

× |{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ 〉 .

We can replace the overlap by a 9-j symbol

〈{ncmlcm, [(n3l3, sc)j3, (n12l12, sab)j12]J}JMJ |

× |{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ 〉

= (−1)sab+sc−SL̂ĵ3ĵ12Ŝ











l3 l12 L

sc sab S

j3 j12 J











(114)

= (−1)sab+sc−SL̂ĵ3ĵ12Ŝ











l12 l3 L

sab sc S

j12 j3 J











(−1)l12+l3+L+sab+sc+S+j12+j3+J . (115)

In the previous equation a symmetry relation of the 9-j symbol was used. Additionally,

we change the coupling order from (j3j12) into (j12j3) and collect a phase (−1)j3+j12−J .

Then we can simplify the phase factors, because some combinations of quantum num-

bers are even, and we obtain the phase (−1)l3+l12+L. Altogether the result of this trans-

53



formation reads

|{ncmlcm, [(n3l3, n12l12)L, [(sasb)sab, sc]S]J}JMJ 〉

=
∑

j12j3

(−1)l3+l12+LL̂ĵ3ĵ12Ŝ











l12 l3 L

sab sc S

j12 j3 J











× |{ncmlcm, [(n12l12, sab)j12, (n3l3, sc)j3]J}JMJ 〉 .

(116)

The complete result of the transformation {{|a〉 ⊗ |b〉}Jab ⊗ |c〉}J −→ {|ncmlcm〉 ⊗ |α〉}J
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is given by

{{|a〉 ⊗ |b〉}Jab ⊗ |c〉}J

=
∑

tabmtab

∑

TMT

∑

Labsab

∑

N12L12

∑

n12l12

∑

LS

∑

Λ

∑

ncmlcm

∑

n3l3

∑

L

∑

J

∑

j12j3

× δ2N12+L12+2n12+l12,2na+la+2nb+lbδ2ncm+lcm+2n3+l3,2N12+L12+2nc+lc

× (−1)lc+l12+Λ+Lab(−1)lcm+l3+l12+L(−1)lcm+L+S+J (−1)l3+l12+L

× ĵaĵbĵcL̂
2
abŝabĴabL̂2Ŝ2Λ̂2L̂2Ĵ ĵ12ĵ3

× c

(

ta tb tab

mta mtb mtab

)

c

(

tab tc T

mtab
mtc MT

)

×











la lb Lab

sa sb sab

ja jb Jab





















Lab lc L
sab sc S

Jab jc J





















l12 l3 L

sab sc S

j12 j3 J











×
{

lc L12 Λ

l12 L Lab

}{

lcm l3 Λ

l12 L L

}{

lcm L L
S J J

}

× 〈〈N12L12, n12l12|nala, nblb;Lab〉〉1〈〈ncmlcm, n3l3|N12L12, nclc; Λ〉〉2

× {|ncmlcm〉 ⊗ |α〉}J

(117)

Multiplying (117) with {〈n′
cml

′
cm| ⊗ 〈α′|}J generates Kronecker deltas

δn′
cmncmδl′cmlcmδn′

12n12
δl′12l12δs′ab

sab
δj′12j12δn′

3n3
δl′3l3δj′3j3δJ ′Jδt′

ab
tab
δmt′

ab
mtab

δT ′T δM ′
TMT

(118)

55



which eliminate the corresponding summations, leading to

{〈ncmlcm| ⊗ 〈α|}J {{|a〉 ⊗ |b〉}Jab ⊗ |c〉}J

=
∑

Lab

∑

N12

∑

L12

∑

L

∑

S

∑

Λ

∑

L

× (−1)lc+l12+Λ+Lab(−1)lcm+l3+l12+L(−1)lcm+L+S+J (−1)l3+l12+L

× δ2N12+L12+2n12+l12,2na+la+2nb+lbδ2ncm+lcm+2n3+l3,2N12+L12+2nc+lc

× ĵaĵbĵcL̂
2
abŝabĴabL̂2Ŝ2Λ̂2L̂2Ĵ ĵ12ĵ3

× c

(

ta tb tab

mta mtb mtab

)

c

(

tab tc T

mtab
mtc MT

)

×











la lb Lab

sa sb sab

ja jb Jab





















Lab lc L
sab sc S3

Jab jc J





















l12 l3 L

sab sc S

j12 j3 J











×
{

lc L12 Λ

l12 L Lab

}{

lcm l3 Λ

l12 L L

}{

lcm L L
S J J

}

× 〈〈N12L12, n12l12|nala, nblb;Lab〉〉1 〈〈ncmlcm, n3l3|N12L12, nclc; Λ〉〉2 .

(119)

Here we dropped the primes and used the additional constraints mtab
= mta + mtb ,

MT = mtab
+mtc from the Clebsch-Gordan coefficients. Moreover, we can eliminate the

sum over N12 with help of the first Kronecker delta δ2N12+L12+2n12+l12),2na+la+2nb+lb . Then

the second Kronecker delta reads

δ2na+la+2nb+lb−2n12−l12+2nc+lc,2ncm+lcm+2n3+l3 (120)
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and our final result for the T-coefficient is

T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT







= {〈ncmlcm| ⊗ 〈α|}J {{|a〉 ⊗ |b〉}Jab ⊗ |c〉}J

=
∑

Lab

∑

L12

∑

L

∑

S

∑

Λ

∑

L

(−1)lc+Λ+Lab+L+S+l12+J

× δ2na+la+2nb+lb−2n12−l12+2nc+lc,2ncm+lcm+2n3+l3

× ĵaĵbĵcL̂
2
abŝabĴabL̂2Ŝ2Λ̂2L̂2Ĵ ĵ12ĵ3

× c

(

ta tb tab

mta mtb mtab

)

c

(

tab tc T

mtab
mtc MT

)

×











la lb Lab

sa sb sab

ja jb Jab





















Lab lc L
sab sc S

Jab jc J





















l12 l3 L

sab sc S

j12 j3 J











×
{

lc L12 Λ

l12 L Lab

}{

lcm l3 Λ

l12 L L

}{

lcm L L
S J J

}

× 〈〈N12L12, n12l12|nala, nblb;Lab〉〉1 〈〈ncmlcm, n3l3|N12L12, nclc; Λ〉〉2 ,

(121)

where we also simplified the phase factor. This is also the result of reference [14].

4.6 Implementation of the three-body basis transformation

In this section we discuss the implementation of the three-body Jacobi to m-scheme

transformation, considering the problems and limits of the transformation. The whole

implementation is too complicated to describe it in this thesis, for a more detailed dis-
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cussion of some implementation issues see the appendix. Our aim is to use the NNN

Jacobi interaction matrix elements from χEFT and the CFPs up to a certain three-body

energy limit E3max and produce a file containing the m-scheme matrix elements up to

that energy limit. This file serves as input for many-body calculations, like those dis-

cussed at the end of this thesis.

First of all, we consider Eq. (84), which we have to implement. Most important for

the implementation of our formulas is that we try to arrange the sums in order to avoid

multiple calculation of the same term. Besides, one should put the computationally

intensive terms as far out as possible in the hierarchy of summations to minimize the

number of evaluations. If we arrange (84) considering these circumstances, we obtain

a〈abc|V̂NNN |a′b′c′〉a

= 6
∑

J

∑

ncmlcm

×
∑

α

∑

Jab

c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

× T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT







×
∑

α̃′

∑

J ′
ab

c

(

j′a j′b J ′
ab

m′
a m′

b M ′
ab

)

c

(

J ′
ab j′c J

M ′
ab m′

c MJ

)

× T







a′ b′ c′ J ′
ab J J

ncm lcm n′
12 l′12 n′

3 l′3

s′ab j′12 j′3 t′ab T MT







×
∑

i

cα,i
∑

i′

cα′,i′ 〈EiJTMT |V̂NNN |E ′i′JTMT 〉 ,

(122)
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where the T -coefficients, the computationally most demanding terms, are outside and

the sum are arranged in an efficient manner. In order to accelerate the evaluation

further, we precompute the T -coefficients and save them combined with the Clebsch-

Gordans in a new quantity called T̃ -coefficient

T̃ (a, b, c,J , lcm, α) =
∑

Jab

c

(

ja jb Jab

ma mb Mab

)

c

(

Jab jc J
Mab mc MJ

)

(123)

× T







a b c Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3 tab T MT






,

which is kept in memory.

Remember a, b, c are collective indices for the quantum numbers of the single-particle

states and α is a collective index for the Jacobi quantum numbers n12, l12, sab, j12, n3, l3,

j3, J, tab, T. The MT dependence of α can be neglected because MT is already determined

by the m-scheme basis. Besides, also the ncm dependence of the T - and T̃ -coefficient

vanishes owing to the Kronecker delta (120).

The new expression for the m-scheme matrix-element as it is used in the computation

reads

a〈abc|V̂NNN |a′b′c′〉a

= 6
∑

J

∑

ncmlcm

∑

α

T̃ (a, b, c,J , lcm, α)
∑

α̃′

T̃ (a′, b′, c′,J ′, l′cm, α
′)

×
∑

i

cα,i
∑

i′

cα′,i′ 〈EiJTMT |V̂NNN |E ′i′JTMT 〉 .

(124)

After precomputing of the T̃ -coefficients we end up with the CFPs, the Jacobi matrix

elements and the T̃ -coefficients, saved to memory. To determine the m-scheme matrix

elements we just have to loop over a couple of indices and read out the right values from

memory. The massive memory consumption of the T̃ -coefficients is the major limitation

of formula (124). In Fig. 6 we illustrate that already for a three-body energy larger

than E3max = 8 the memory required for the T̃ -coefficients becomes larger than 16 GB.

Similarly, the set of m-scheme matrix elements, that needs to be kept in RAM for the

many-body calculations, exceeds 16 GB for E3max > 8 as shown in Fig. 7. Due to the

59



0 2 4 6 8 10 12 14
E3max

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

.

M
em

or
y

in
M

B

T̃ -Memory

16 GB

Figure 6: Memory requirements for the T̃ -coefficient: The figure shows the memory

requirements of the nonzero T̃ (a, b, c,J , lcm, α) up to the three-body energy limit E3max. To

find the right T̃ -coefficient we used a memory scheme where apart from T̃ also J , lcm, α are

saved. Note that it is a logarithmic plot.
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Figure 7: Memory requirements for the m-scheme matrix elements: The figure shows

the memory requirements of the nonzero m-scheme interaction matrix elements up to the

three-body energy limit E3max. The matrix elements are saved in double precision. Note

that it is a logarithmic plot.
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exponential growth of the required memory with increasing energy E3max we have to

apply a new concept, discussed in the next subsection.

4.6.1 Implementation of the J-coupling

A remedy for the limitations discussed in the previous subsection is a simple trick. We

save the matrix elements in a J-coupled representation and decouple them on the fly

during the many-body calculation. Because the coupled basis has a smaller dimension,

we have a smaller number of matrix elements.

We adopt a very simple coupling scheme:

First, we jj-couple the particles 1 and 2 of the m-scheme state as well as their isospin.

Next, we couple the resulting Jab with jc and tab with tc, yielding

a〈{[(nala, sa)ja, jb]Jab, (nclc, sc)jc}JMJ ; [(tatb)tab, tc]TMT |

=
∑

mambmc

∑

mtamtb
mtc

c

(

ja jb Jab

ma mb Mab

)

c

(

ta tb tab

mta mtb mtab

)

× c

(

Jab jc J
Mab mc MJ

)

c

(

tab tc T

mtab
mtc MT

)

× a〈(nala, sa)jamatamta(nblb, sb)jbmbtbmtb(nclc, sc)jcmctcmtc | ,

(125)
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with Mab = ma +mb, MJ = Mab +mc, mtab
= mta +mtb and MT = mtab

+mtc .

For the matrix elements in the J-coupled basis we obtain

a〈[(ab)Jab, c]JMJ ; [(tatb)tab, tc]TMT |V̂NNN

× |[(a′b′)J ′
ab, c

′]JMJ ; [(tatb)t
′
ab, tc]TMT 〉a

=
∑

mambmc

∑

mtamtb
mtc

∑

m′
am

′
b
m′

c

∑

m′
ta
m′

tb
m′

tc

× c

(

ja jb Jab

ma mb Mab

)

c

(

ta tb tab

mta mtb mtab

)

× c

(

Jab jc J
Mab mc MJ

)

c

(

tab tc T

mtab
mtc MT

)

c

(

j′a j′b J ′
ab

m′
a m′

b M ′
ab

)

× c

(

t′a t′b t′ab

m′
ta

m′
tb

m′
tab

)

c

(

J ′
ab j′c J

M ′
ab m′

c MJ

)

c

(

t′ab t′c T

m′
tab

m′
tc

MT

)

× a〈abc|V̂NNN |a′b′c′〉a ,

(126)

where one has to insert (124) for the m-scheme matrix elements. Now one can apply

the orthogonality relation of the Clebsch-Gordan coefficients

∑

m1m2

c

(

j1 j2 j12

m1 m2 m12

)

c

(

j1 j2 j̃12

m1 m2 m̃12

)

= δj12 j̃12δm12m̃12 , (127)

to the Clebsch-Gordans obtained from the J-coupling and those contained in the T̃ -

coefficients of the m-scheme matrix element. In the expression for the J-coupled matrix

elements this leads to a vanishing of all Clebsch Gordans and sums over m-quantum

numbers as well as of the sums over j12, j′12, tab and t′ab.

In the following, interaction matrix elements will be expressed in the J-coupled basis

a〈[(ab)Jabtab, c]J T | = a〈{[(nala, sa)ja, jb]Jab, (nclc, sc)jc}J |〈[(tatb)tab, tc]T | ,
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where MJ and MT are omitted, because the initial Jacobi matrix elements are indepen-

dent of those quantum numbers. Note that the MT independence of the Jacobi matrix

elements of the NNN interaction is only an approximation. After dropping the MT quan-

tum number and applying the orthogonality relation of the Clebsch-Gordan coefficients,

we obtain the following expression for the J-coupled matrix elements

a〈[(ab)Jabtab, c]J T |V̂NNN |[(a′b′)J ′
abt

′
ab, c

′]J T 〉a

= 6
∑

ncmlcm

∑

n12n
′
12

∑

l12l
′
12

∑

n3n
′
3

∑

l3l
′
3

∑

sabs
′
ab

∑

j12j
′
12

∑

j3j
′
3

∑

J

∑

ii′

× TJ







ã b̃ c̃ Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3






TJ







ã′ b̃′ c̃′ J ′
ab J J

ncm lcm n′
12 l′12 n′

3 l′3

s′ab j′12 j′3







× cα,i







n12 l12 n3 l3

sab j12 j3 J

tab T i






cα′,i′







n′
12 l′12 n′

3 l′3

s′ab j′12 j′3 J

t′ab T i′







× 〈EiJT |V̂NNN |E ′i′JT 〉 ,

(128)
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with the TJ -coefficient

TJ







ã b̃ c̃ Jab J J
ncm lcm n12 l12 n3 l3

sab j12 j3







= {〈ncmlcm| ⊗ 〈α|}J |[(ab)Jabtab, c]J T 〉

=
∑

Lab

∑

L12

∑

L

∑

S

∑

Λ

∑

L

(−1)lc+Λ+Lab+L+S+l12+J

× δ2na+la+2nb+lb+2nc+lc,2ncm+lcm+2n12+l12+2n3+l3

× ĵaĵbĵcL̂
2
abŝabĴabL̂2Ŝ2Λ̂2L̂2Ĵ ĵ12ĵ3

×











la lb Lab

sa sb sab

ja jb Jab





















Lab lc L
sab sc S

Jab jc J





















l12 l3 L

sab sc S

j12 j3 J











×
{

lc L12 Λ

l12 L Lab

}{

lcm l3 Λ

l12 L L

}{

lcm L L
S J J

}

× 〈〈N12L12, n12l12|nala, nblb;Lab〉〉1 〈〈ncmlcm, n3l3|N12L12, nclc; Λ〉〉2 .

(129)

Note that due to the vanished Clebsch-Gordans there is no direct tab and T dependence

of the TJ -coefficient, even the quantum numbers appear in the scalar product

{〈ncmlcm| ⊗ 〈α|}J |[(ab)Jabtab, c]J T 〉. Again, the ncm dependence vanishes owing to the

Kronecker delta in (129). In Eq. (128) and (129) the single particle indices ã, b̃, c̃ now

only correspond to the quantum numbers nalaja, nblbjb, nclcjc. The single-particle m

quantum numbers have disappeared, which decreases the basis dimension. The im-

provements resulting from the J-coupling regarding the memory needed to store the

TJ -coefficients and the J-coupled matrix elements are illustrated in Fig. 8 and 9, respec-

tively. After the J-coupling the memory needed for storing both quantities for E3max = 8

is now in the range of some MB, far away from the initial 16 GB of the m-scheme version.
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The limit of 16 GB is now reached at E3max = 12.

4.6.2 Problems and limits of the implementation

Even if we use the J-coupled matrix elements, the required memory shows a polynomial

increase with E3max, which is illustrated in Fig. 8 and 9. So with the new improvements

we still have the same type of limitation, but now at a higher energy, what is very impor-

tant for the convergence of the many-body calculations, as we will see in Sec. 6. Besides

this limitation, there are also other problems occurring with increasing energy.

For instance, to accelerate the transformation code we precompute not only the TJ -

coefficients, but also the occurring 6-j and 9-j symbols as well as the Clebsch-Gordan

coefficients and the harmonic oscillator brackets. All these precomputed quantities have

to fit into the memory and their size also increases polynomially with E3max. In a word,

there are also many other quantities used for the implementation of the transformation

which increase with the energy, due to this one has to be very careful with the memory

management.

At the moment we are able to perform the transformation code for E3max = 12, this

basis space is already larger than any other space used for the three-body interaction. In

addition, we plan to expand our transformation code to a basis space corresponding to

E3max = 16 for nodes with 16 GB RAM. In order to achieve this we will split our trans-

formation to several nodes so that just a part of the TJ -coefficients have to be imported

to the RAM of one node. At this energy also the limit of the many-body calculation code

is reached. For E3max > 14 the number of m-scheme matrix elements becomes so large,

that the eigenvalue problem cannot be solved anymore (depending on the many-body

method and on the observed nuclei).
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Figure 8: Memory requirements for the TJ -coefficient: The figure shows the memory

requirements of the nonzero TJ (a, b, c,J , lcm, α) up to the three-body energy limit E3max.
To find the right T̃ -coefficient we used a memory scheme where besides TJ also the indices

J , lcm, α are saved. Note that it is a logarithmic plot.
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Figure 9: Memory requirements for the J-coupled m-scheme matrix elements: The

figure shows the memory requirements of the J-coupled m-scheme interaction matrix ele-

ments up to the three-body energy limit E3max. The matrix elements are saved in double

precision. Note that it is a logarithmic plot.
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5 Similarity renormalization group (SRG)

The topic of this section is the similarity renormalization group (SRG) transformation,

which is used to make the χEFT interaction softer to accelerate the convergence of

the many-body calculations. In the first subsection we describe the basic concepts of

the SRG, in the second we describe the application of the SRG transformation to the

three-body interaction, in the third section we explain the implementation of the SRG

evolution and finally in the fourth section we show the impact of the SRG transformation

to the form of the Hamilton matrix.

5.1 Basic concepts

Besides the unitary correlation operator method (UCOM) [24] the SRG method provides

an alternative way to handle short-range correlations by pre-diagonalization of the in-

teraction in momentum space [25], leading to a phase-shift equivalent potential. As in

the UCOM, the basic idea of SRG is to transform an initial Hamiltonian Ĥ0 by an unitary

transformation

Ĥα = Û †
αĤ0Ûα , (130)

with the α-dependent unitary operator Ûα. Unitary transformations do not change the

spectrum of the Hamiltonian.

In order to obtain a diagonalization of the Hamiltonian Ĥα in a particular basis rep-

resentation, a renormalization group flow equation [26] is formulated that induces a

continuous flow of Ĥα to a diagonal form with increasing flow parameter α. How such

a transformation must be structured is shown in the following and also in [27]. The

derivative of the Hamiltonian is given by

dĤα

dα
=

d

dα
(Û †

αĤ0Ûα) =
dÛ †

α

dα
Ĥ0Ûα + Û †

αĤ0
dÛα

dα
, (131)

with

Û †
αÛα = 1̂ ⇒ d

dα

(

Û †
αÛα

)

= 0 ⇒ d

dα
Û †
α = −Û †

α

dÛα

dα
Û †
α ,
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leading to

dĤα

dα
= −Û †

α

dÛα

dα
Û †
αĤ0Ûα + Û †

αĤ0ÛαÛ
†
α

dÛα

dα
, (132)

where we replaced d
dα
Û †
α in the first term and inserted an identity operator in the second

term. Introducing the anti-Hermitian generator η̂α = −Û †
α
dÛα

dα
= −η̂†α one obtains the

following initial-value problem

dĤα

dα
= [η̂α, Ĥα], with Ĥ0 = Ĥα=0 . (133)

Generally, one can transform an arbitrary operator Ô by the SRG flow equation

dÔα

dα
= [η̂α, Ôα] , (134)

where the generator has the general form η̂α = [ξ̂, Ĥα]. We have to keep in mind that the

generator η̂α depends on the Hamiltonian Ĥα. Because of this dependence one always

has to evolve the Hamiltonian to transform an arbitrary operator. There are various

choices for the generator η̂α, i.e., for the operator ξ̂ entering the generator.

Let us concentrate again on the evolution of the Hamiltonian. The choice of η̂α deter-

mines the basis in which the Hamiltonian is pre-diagonalized [28]. In general, for a

many-body basis {|i〉}, the generator

η̂α = [diag(Ĥα), Ĥα] , with diag(Ĥα) =
∑

i

|i〉〈i|Ĥα|i〉〈i| , (135)

is an evident choice for the diagonalization of the Hamiltonian with respect to the basis

{|i〉}.

In the following we use the generator η̂α = (2µ)2[T̂int, Ĥα] with the intrinsic kinetic

energy operator

T̂int = T̂ − T̂cm (136)

=
1

2µ
~̂q 2 , (137)

with the total kinetic energy operator T̂ and the center-of-mass kinetic energy operator

T̂cm. In Eq. (137) we assume equal proton and neutron masses and thus a reduced

nucleon mass µ = mN

2
. In an A-body space the kinetic energy operator for equal proton
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and neutron masses is given by

T̂int =
1

Aµ

∑

i<j

~̂q 2
ij , (138)

with the relative momentum operator ~̂qij =
~̂pi−~̂pj

2
for the particles i and j .

The flow equation with this generator is given by

dĤα

dα
= [η̂α, Ĥα] = (2µ)2

(

[T̂int, Ĥα]Ĥα − Ĥα[T̂int, Ĥα]
)

, (139)

= (2µ)2
(

T̂intĤαĤα − 2 · ĤαT̂intĤα + ĤαĤαT̂int

)

. (140)

The occurrence of the intrinsic kinetic energy T̂int in the flow equation leads to a de-

coupling of the high- and low-momentum parts of the Hamiltonian Ĥα, which causes a

softer and more convergent potential [29]. For instance, in two-body space the gener-

ator leads to a diagonalization of the Hamiltonian in a LS-coupled relative-momentum

basis
{

|q(LS)JMJTMT 〉
}

. Since we do not plan to use basis states in momentum space,

but in harmonic-oscillator space, our generator does not lead to an exact diagonal Hamil-

tonian, but to a pre-diagonalization through the SRG evolution (see Sec. 5.4). More

important is that a SRG transformation slides the effects of the interaction to lower ener-

getic basis spaces. So that we can describe also high-energetic effects in a low-energetic

basis space and thus accelerate the convergence behavior with the energy.

5.2 Application to the NN+NNN interaction and subtraction proce-

dure

We apply the SRG transformation to the NN+NNN interaction and discuss the occur-

ring problems. Because we will only deal with operators in this section, we omit the

hat notation. First, we consider the initial Hamiltonian H0 with two- and three-body

interactions, which we obtained from chiral effective field theory

H0 = T int0 + V NN
0 + V NNN

0 . (141)

We have to deal with different one- , two- and three-body interaction operators, which

also can be SRG transformed, as well as induced interaction contributions. To keep track

of the various interaction operators and matrix elements of this section we will introduce
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the following notation:

• The index below indicates the kind of interaction and the upper index in squared

brackets indicates the “irreducible” n-body contributions of the operator, where

n corresponds to the smallest particle number of a basis, which is necessary to

represent the operator completely. For instance, the untransformed NN interaction

operator V [2]
NN has an irreducible two-body part. To denote that the operator is SRG

transformed we will use a tilde. In addition we will also deal with matrix elements

of an operator, this means an operator in a certain basis representation. To indicate

a matrix element we will use angle brackets with an upper index in round brackets

denoting the particle number of the representing basis. For instance 〈Ṽ [3]
NN〉(4) are

the matrix elements of the irreducible three-body part of the SRG-transformed NN

interaction represented in a four-body basis.

Equation (141) in the upper notation reads

H [2,3] = T
[2]
int + V

[2]
NN + V

[3]
NNN . (142)

One of the challenging features of the SRG is that a transformation of an irreducible

n-body interaction V [n] leads to an interaction Ṽ [n,n+1,..,A] = Ṽ [n] + Ṽ [n+1] + ..., which

contains also irreducible m-body interactions, with n ≤ m ≤ A [30]. If we apply the

SRG transformation to the irreducible two-body part of the interaction we do not just

obtain an irreducible two-body part in the SRG-transformed interaction, but also an

induced irreducible three-body part. This makes the transformation more complicated,

because it is necessary to distinguish between the irreducible two- and three-body parts

of our untransformed Hamiltonian (see Appendix A.3).

First of all, we list some basic properties of the SRG transformation, which are necessary

to understand our SRG approach:

• As already mentioned a SRG-transformed irreducible n-body interaction contains

also irreducible m-body contributions with n ≤ m ≤ A. Note that the irreducible

one-body contributions of an operator are invariant under the SRG transformation,

but induces irreducible m-body contributions with 2 ≤ m ≤ A [24]. For instance,

the SRG transformation of the kinetic energy operator T [1], which is an irreducible

one-body operator, yields T̃ [1,2,...,A] = T [1] + T̃ [2] + T̃ [3] + ..., where the irreducible

one-body contribution T [1] stay unchanged.
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• Let us have a look at the SRG-transformed intrinsic kinetic energy operator

T̃
[2,...,A]
int = T̃

[2]
int + T̃

[3]
int + T̃

[4]
int + ... ,

= T
[2]
int +

(

T̃
[2]
int − T

[2]
int

)

+ T̃
[3]
int + T̃

[4]
int + ... ,

where T [2]
int is the untransformed intrinsic kinetic energy operator and T̃ [k]

int, with k ≥
2, are the irreducible k-body parts of the SRG-transformed intrinsic kinetic energy.

We point out that T̃ [2]
int contains the induced part as well as the SRG-transformed

genuine irreducible two-body contributions. For brevity we will absorb the induced

terms T̃ [k]
int, with k ≥ 3 as well as the term

(

T̃
[2]
int − T

[2]
int

)

in the NN terms of the

nucleon interactions.

• To solve the initial-value problem of the flow equation, one has to represent the

interaction operators in an appropriate basis and perform the SRG evolution for

the individual matrix elements

d〈i|Hα|i′〉
dα

= (2µ)2

(

∑

j,j′

〈i|Tint|j〉〈j|Hα|j′〉〈j′|Hα|i′〉

− 2 ·
∑

j,j′

〈i|Hα|j〉〈j|Tint|j′〉〈j′|Hα|i′〉

+
∑

j,j′

〈i|Hα|j〉〈j|Hα|j′〉〈j′|Tint|i′〉
)

, (143)

where |i〉 are the n-body basis states.

If one uses a n-body basis, with n < A, for this evolution one discards all higher-

order interaction than the n-body order.

• By the phrase “SRG evolution in a n-body basis” we mean that during the SRG

evolution the operators are represented in a special basis by inserting several iden-

tity operators, see Eq. (143). These identity operators should be constructed in

an A-body Hilbert space for an A particle system, to consider all induced inter-

action parts up to the irreducible A-body contribution. The problem is that we

cannot insert the complete n-body identity operator 1̂ =
∑ |i〉〈i|, because it con-

sists of an infinite number of basis states |i〉. Therefore, we have to restrict the

basis space. For example in the three-body space we use the Jacobi basis states

{|ncmlcm〉 ⊗ |EiJT 〉}JMJ (see Chapter 4) up to a certain energy quantum num-
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ber E(SRG)
3max ≥ 2ncm + lcm + E and for a two-body space we use the Jacobi basis

states up to the energy quantum number E(SRG)
2max . This limited basis states span

the model space. The energy quantum-number limit and the corresponding model

space must be large enough, so that the effect of the neglected basis states approx-

imately vanishes. Due to this we have to investigate the convergence of the many-

body calculations for interactions SRG transformed in different model spaces. The

model space of an A-body basis would be to large to achieve such a convergence,

moreover we will only use irreducible two- and three-body interaction contribu-

tions for the many-body calculation, therefore, we restrict the SRG evolution to a

two- and three-body space.

• To solve the initial-value problem (133) one evolves α (see Sec. 5.3), with a

sufficient small step size. In our implementation we use a Runge–Kutta method

with an adaptive step size. During every evolution step higher-order interactions

are induced and with rising α-parameter these higher-order induced contributions

increase [30].

• For a certain energy limit the model space in Jacobi basis is smaller than the model

space in the m-scheme basis, therefore, we will perform the SRG transformation

in the two- and three-body Jacobi basis.

To construct the SRG-transformed Hamiltonian in a form, where the irreducible two-

and three-body contributions are separated

H̃ [2,3] = T
[2]
int + Ṽ

[2]
NN +

(

Ṽ
[3]
NN + Ṽ

[3]
NNN

)

, (144)

one can use the intrinsic kinetic energy operator T [2]
int of the initial Hamiltonian, because

the corresponding induced terms T̃ [3]
int as well as

(

T̃
[2]
int−T [2]

int

)

will be absorbed in Ṽ [2]
NN and

Ṽ
[3]
NN , respectively, to abbreviate the expression for the transformed Hamiltonian H̃ [2,3].

The irreducible two-body part Ṽ (2)
NN results from a SRG transformation of the genuine

NN interaction in the two-body space, this means one inserts identity operators in a

two-body Hilbert space (see Subsec. 5.3.1), which is equivalent to a projection to the

two-body space, so that the induced irreducible three-body part is discarded.

The irreducible three-body contributions are more complicated, because they consist of

Ṽ
[3]
NN the induced irreducible three-body contribution from the NN interaction, as well

as of the genuine three-body interaction, which is SRG transformed in three-body space

Ṽ
[3]
NNN . First, one considers the initial matrix elements 〈V [2,3]

NN+NNN〉(3) := 〈V [2]
NN〉(3) +
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〈V [3]
NNN〉(3) given in a three-body Jacobi basis and perform a SRG transformation in

three-body space (see Subsec. 5.3.2), obtaining the matrix elements 〈Ṽ [2,3]
NN+NNN〉(3) =

〈Ṽ [2]
NN〉(3) + 〈Ṽ [3]

NN〉(3) + 〈Ṽ [3]
NNN〉(3). At this point we got the SRG-transformed matrix el-

ements 〈Ṽ [2,3]
NN+NNN 〉(3) and 〈Ṽ [2]

NN〉(2) in Jacobi basis representation. In the next step we

transform these matrix elements to the m-scheme (or J-coupled scheme see Chapter

4) and convert the two-body m-scheme matrix elements 〈Ṽ [2]
NN〉(2) to 〈Ṽ [2]

NN〉(3) in the

three-body m-scheme basis (see Appendix A.2). Next we perform a subtraction of

the NN interaction matrix elements from the NN+NNN interaction matrix elements in

the three-body m-scheme to obtain the m-scheme matrix elements 〈Ṽ [3]
NN+NNN〉(3) :=

〈Ṽ [3]
NN〉(3) + 〈Ṽ [3]

NNN〉(3)

〈Ṽ [3]
NN+NNN〉(3) = 〈Ṽ [2,3]

NN+NNN〉(3) − 〈Ṽ [2]
NN〉(3)

= 〈Ṽ [3]
NN〉(3) + 〈Ṽ [3]

NNN〉(3) . (145)

Note that the operator Ṽ [3]
NN+NNN does not contain an irreducible two-body contribution,

but only an irreducible three-body contribution.

Due to the fact that the NN+NNN interaction matrix elements 〈Ṽ [3]
NN+NNN〉(3) of the

isospin projection MT , which is an approximation, also the 〈Ṽ [2]
NN〉(2) matrix elements has

to be MT independent to perform the subtraction consistently. Thus, the 〈Ṽ [2]
NN〉(2) ma-

trix elements for the SRG subtraction and for the many-body calculation will not be the

same, because we want to include the isospin projection dependence of the NN inter-

action (like the Coulomb interaction and the isospin breaking of the strong interaction)

in the many-body calculation. In other words we consider the MT dependence of the

irreducible two-body contribution Ṽ
[2]
NN , but not of the irreducible three-body contribu-

tions Ṽ [3]
NN and Ṽ

[3]
NNN . The consistency is an important issue one has to take account of

for the subtraction procedure. For the subtraction the α parameter and the model space

for the SRG evolution has to be the same for all involved interactions. Thus, the limits

E
(SRG)
2max and E

(SRG)
3max , for the two- and three-body basis states, have to be equal, and we

will call this limit E(SRG)
max := E

(SRG)
2max = E

(SRG)
3max in the following. Note that the SRG model

spaces for the subtraction have to be the same, but the SRG model space, for irreducible

two-body interactions used in the many-body calculation, can be chosen much larger.

As outlook we want to mention that the subtraction could also be performed in the

Jacobi basis. This also enable to perform a consistent subtraction, if one uses a more

flexible model space spanned by basis states with a limited energy quantum number

E
(SRG)
max (J), where the limit depends on the angular momentum J of the intrinsic Jacobi

state. Because the effect of a SRG model space part to a certain target state does not
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only depend on the energy of the model space part, but also depends on the angular

momentum. For instance one would expect that effect of the SRG model space part to

the ground state of a light nuclei is basically determined by the basis states with a small

angular momentum. Therefore, it is adequate to use a SRG model space with large en-

ergy quantum-number limits E(SRG)
max (J) for basis states with small angular momentum

and decline the limit with increasing angular momentum. These SRG transformations

are a budding subject we want to investigate in the future.

5.3 Implementation of the SRG evolution

Now that we have discussed the basic procedure to obtain the SRG matrix elements, we

will have a closer look at the implementation of the SRG evolution. As we know from

Section 5.2 we have to perform separate calculations, a transformation of V [2]
NN with MT

dependence to obtain 〈Ṽ [2]
NN〉(2), a SRG transformation of V [2]

NN without MT dependence

for the subtraction and a SRG run with V
[2,3]
NN+NNN . In the following we do not differ-

entiate between the first two runs. Remember that the irreducible two- and three-body

contributions from the intrinsic kinetic energy, caused by the SRG transformation, are

included in the NN interaction terms.

5.3.1 SRG transformation of V
[2]
NN

We perform the SRG evolution in the two-body Jacobi basis, therefore, the NNN inter-

action part will not be considered and we use the Hamiltonian H [2]
α = T

[2]
int + V

[2]
α,NN . The

flow equation for H [2]
α is given by

dH
[2]
α

dα
= [η[2]

α , H
[2]
α ] = (2µ)2[[T

[2]
int, H

[2]
α ], H [2]

α ] ,

= (2µ)2
(

T
[2]
intH

[2]
α H

[2]
α − 2H [2]

α T
[2]
intH

[2]
α +H [2]

α H
[2]
α T

[2]
int

)

, (146)

where we skipped the tilde notation and indicate the α dependence directly by the lower

index.

A representation of (146) in the model space of the two-body Jacobi basis (see Eq.

(143)) leads to some matrix multiplications and additions on the right-hand side. The

two-body Jacobi matrix elements of the kinetic energy 〈T [2]
int〉(2) and the Hamiltonian

〈H [2]
α 〉(2) are stored to memory so the evaluation of (146) is easy to perform, providing
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the matrix elements of the derivative
〈

dH
[2]
α

dα

〉(2)

. As mentioned before, we use a Runge-

Kutta method, but for simplification we will show the procedure with an Euler algorithm

to point out the principle. Let us start with the matrix element 〈H [2]
α 〉(2) of a Hamilto-

nian evolved to the parameter α. In the Euler algorithm we multiply the matrix element
〈

dH
[2]
α

dα

〉(2)

with the step size of α to obtain the change ∆〈H [2]
α 〉(2) of the Hamilton ma-

trix element during one evolution step, this change we can add to the initial Hamilton

matrix element 〈H [2]
α 〉(2) and get the Hamilton matrix element 〈H [2]

α+∆α〉(2) evolved to the

parameter α + ∆α

〈H [2]
α+∆α〉(2) = 〈H [2]

α 〉(2) + ∆〈H [2]
α 〉(2) = 〈H [2]

α 〉(2) +
〈

dH
[2]
α

dα

〉(2)

∆α . (147)

This can be iterated until the desired α value is reached. It is crucial to realize that, for

the SRG evolution of a single Hamilton matrix element 〈H [2]
α 〉(2), all other Hamilton ma-

trix elements are needed. Therefore, one has to transform all Hamilton matrix elements

simultaneously.

Finally we subtract the kinetic energy matrix element 〈T [2]
int〉(2) from the SRG-transformed

Hamilton matrix element 〈H [2]
α 〉(2) yielding the matrix element 〈V [2]

α,NN〉(2) of the SRG-

transformed NN interaction.

5.3.2 SRG transformation of V
[2,3]
NN+NNN

The SRG evolution of V [2,3]
NN+NNN has to be performed in three-body space to take the

three-body interaction into account. The corresponding flow equation reads

dH
[2,3]
α

dα
= [η[2,3]

α , H [2,3]
α ] = (2µ)2[[T

[2]
int, H

[2,3]
α ], H [2,3]

α ] ,

= (2µ)2
(

T
[2]
intH

[2,3]
α H [2,3]

α − 2H [2,3]
α T

[2]
intH

[2,3]
α +H [2,3]

α H [2,3]
α T

[2]
int

)

, (148)

with H [2,3]
α = T

[2]
int + V

[2,3]
α,NN+NNN = T

[2]
int + V

[2]
α,NN + V

[3]
α,NN + V

[3]
α,NNN .

We can perform the α-evolution in the same way as above, using a model space of a

three-body Jacobi basis instead of a two-body Jacobi basis. But the model space size

becomes very large in the three-body basis and we cannot perform the SRG evolution of

the complete Hamilton matrix due to the limited available memory. This is one of the

reasons we perform the SRG transformation for every TJP -block separately (Fig. 10).

Owing to the properties of the nuclear interaction, only matrix elements between states

with the same total isospin T , angular momentum J and parity P are nonzero, thus the
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Hamilton matrix exhibits a block structure in the three-body Jacobi basis representation.

A separated SRG evolution of all these TJP -blocks is equivalent to the SRG evolution

of the complete Hamilton matrix. After the SRG evolution and the kinetic energy sub-

traction we obtain the matrix elements 〈V [2,3]
α,NN+NNN〉(3) containing the genuine two- and

three-body interactions, as well as the induced irreducible two- and three-body contribu-

tions of the intrinsic kinetic energy and the induced irreducible three-body contribution

from the two-body interaction.

〈EiJT |Ĥ|ẼĩJ̃ T̃ 〉 ≡

























TJP

T ′J ′P ′

T ′′J ′′P ′′

. . .

























Figure 10: Representation of the Hamiltonian in antisymmetrized Jacobi basis: The

Hamiltonian only connects Jacobi states with same total isospin T , angular momentum J

and parity P . Thence, the matrix of the Hamiltonian in antisymmetric Jacobi representa-

tion exhibits a TJP -block structure.

5.4 Diagonalization of the interaction matrix

We will investigate the diagonalization properties of the implemented SRG transforma-

tion. Therefore, we examine the antisymmetrized three-body Jacobi matrix elements

〈V [2,3]
α,NN+NNN〉(3) = 〈EiJT |V [2,3]

α,NN+NNN |E ′i′JT 〉 of the SRG transformed NN+NNN inter-

action. As mentioned in Subsec. 5.3.2 we can divide the Hamilton matrix into TJP -

blocks and perform the SRG transformation separately. The subtraction of the intrinsic

kinetic energy matrix from the Hamilton matrix yields the interaction matrix. In Fig. 11

this interaction matrix for the TJP -block, with T = 1
2
, J = 1

2
and P = +1 is illustrated

for different SRG evolution parameters α. The states with different energy quantum

number E and E ′ of the bra and ket become decoupled with increasing α parameter.

This means that the corresponding absolute value of the matrix elements decreases. The

strength of the decoupling grows with the difference between E and E ′. This leads to

a more diagonal form of the TJP -block. Note that there is no unique choice of the

CFPs (see Appendix A.1), thus, there is no unique choice for the antisymmetrized Ja-
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Figure 11: TJP-block structure through the SRG transformation: The figure shows

the absolute value of the matrix elements 〈V [2,3]
α,NN+NNN〉(3) = 〈EiJT |V [2,3]

α,NN+NNN |E ′i′JT 〉 of

the NN+NNN interaction in Jacobi basis. The illustrated matrices correspond to the TJP -

block with T = 1
2
, J = 1

2
and P = +1, for the SRG parameter α = 0.00 fm4, α = 0.02 fm4,

α = 0.04 fm4, α = 0.08 fm4, α = 0.16 fm4, α = 0.32 fm4, α = 0.64 fm4, α = 1.28 fm4 and

α = 2.56 fm4. For the SRG transformation a model space corresponding to E
(SRG)
max = 28

is used. The grid lines denote the areas for a given energy quantum number E and E ′ of

the bra and ket Jacobi state, respectively. The more the blue color of a matrix element is

saturated the larger is the corresponding absolute value.
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Figure 12: TJP-block structure through the SRG transformation: The figure

shows the same TJP -block as in Fig. 11 the absolute value of the matrix elements

〈V [2,3]
α,NN+NNN〉(3) = 〈EiJT |V [2,3]

α,NN+NNN |E ′i′JT 〉 is now averaged for the E-E ′-region. The

illustrated matrices correspond to the SRG parameter α = 0.00 fm4, α = 0.02 fm4,

α = 0.04 fm4, α = 0.08 fm4, α = 0.16 fm4, α = 0.32 fm4, α = 0.64 fm4, α = 1.28 fm4

and α = 2.56 fm4. The more the blue color of an E-E ′-region is saturated the larger is the

corresponding averaged absolute value.
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cobi basis. Owing to this the matrix elements of an E-E ′-region of the TJP -block can

show also completely different behavior, depending on the choice of the CFPs. The

E-E ′-regions correspond to the parts of the TJP -block, where the bra has the energy

quantum number E and the ket has the energy quantum number E ′. These areas are

indicated by the grid lines in Fig. 11. The general properties of the SRG transformation

can be observed more adequately, treating the E-E ′-regions as a whole. Figure 12 shows

the averaged absolute value of the E-E ′-areas. As already observed also the averaged

absolute values of the E-E ′-regions transform to a more diagonal form with increasing

α-parameter. In addition we can find that the averaged absolute values for the diagonal

E-E ′-regions decrease with increasing E. Besides, it seems as if the transformation to a

diagonal form slows down after a certain α parameter value. For the finite α parameters

we will use in the following the SRG transformation does not provide a complete diago-

nalization of the interaction matrix elements in the antisymmetrized Jacobi basis, but a

pre-diagonalization.
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6 Many-body methods

The aim of the different many-body methods employed in this thesis is to solve the

eigenvalue problem

Ĥ|ψn〉 = En|ψn〉 , (149)

derived from the stationary Schrödinger equation, with the many-body Hamilton op-

erator Ĥ, the n-th eigenstate |ψn〉 and the corresponding energy eigenvalue En. The

Hamiltonian contains contains the SRG-transformed NN plus NNN interactions from

χEFT. Before we come to the results (see Chapter 7), we will discuss the basic ideas of

the many-body methods used, we point out their range of application, as well as their

advantages and disadvantages. The first many-body method is the importance trun-

cated no-core shell model (IT-NCSM), which is an extension of the no-core shell model

(NCSM). Both are exact ab initio approaches and will be discussed in Sec. 6.1. The

second method we use is the Hartree-Fock method, which is an approximate approach

and will be discussed in Sec. 6.2.

6.1 Exact ab initio approaches

Exact ab initio approaches are very important for modern nuclear structure theory. They

are necessary to investigate the properties of new interactions and they provide a con-

nection between QCD-based interactions and nuclear structure observables. Moreover,

they establish a reference point for approximative methods.

Two methods are particularly successful in describing nuclei up to the mid-p-shell re-

gion, the Green’s functions Monte Carlo approach (GFMC) [31, 32] and the no-core

shell model (NCSM) [17, 33, 34]. First, we want to concentrate on the NCSM to estab-

lish a basis for the explanation of the IT-NCSM.

6.1.1 No-core shell model (NCSM)

The NCSM is a special case of a configuration interaction (CI) approach. A conven-

tional CI calculation would use a model space spanned by all Slater determinants build

from a finite set of single-particle states. For instance one can use the single-particle

states of the harmonic-oscillator up to a maximum energy quantum number emax, where

e = 2n + l, with the radial quantum number n and the orbital angular momentum l of

a harmonic-oscillator single-particle state. In the limit emax → ∞ one approaches the
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exact solution of the eigenvalue problem (149).

In the NCSM the model space is defined in a different way. Also in the NCSM the model

space is spanned by Slater determinants |φν〉 consisting of harmonic-oscillator single-

particle states, but not every Slater determinant, which can be constructed from a finite

set of single-particle states, is used. Instead the NCSM model space is spanned by the

Slater determinants up to a certain many-body excitation energy Nmax~Ω with respect

to the unperturbed Slater determinant |φ0〉. Here, Ω is the frequency associated with the

harmonic oscillator basis. The unperturbed Slater determinant consists of the single-

particle configurations with the lowest possible energy allowed by the Pauli principle.

For illustration of the NCSM model space, we depict an exemplary configuration for a

Slater determinant of 16O in Fig. 13. From the unperturbed configuration one proton

is excited by 1~Ω from the p-shell (e = 1) into the sd-shell (e = 2) and one neutron is

excited from the s-shell (e = 0) by 3~Ω, so the whole Slater determinant is excited by

4~Ω and is included in every NCSM model space with Nmax ≥ 4. The exact solution of

the eigenvalue problem (149) is systematically approached for Nmax → ∞.

The NCSM has many advantages that we will discuss now. Due to the special many-

body basis truncation and the use of the harmonic-oscillator basis for the single-particle

states, the center-of-mass motion separates from the intrinsic motion, which is neces-

sary to obtain translationally invariant intrinsic many-body eigenstates. Furthermore,

the variational principle holds. Thus the energy eigenvalues of a NCSM calculation

provide an upper bound for the exact solution of (149) for a given Hamiltonian. More-

over, the energy eigenvalues decrease with increasing size of the model space defined

by Nmax. Because the contribution of a many-body configuration to a low-energy state

typically decreases with increasing unperturbed excitation energy, the energy eigenval-

ues converge with Nmax. The NCSM is applicable for closed as well as open-shell nuclei

and treats ground and excited eigenstates at the same footing. Moreover, the NCSM

calculation does not only provide the energy eigenvalues En, but the eigenstates |ψn〉 as

well. The eigenstates are expressed as a superposition of the many-body basis states |φν〉

|ψn〉 =
∑

ν

Cn
ν |φν〉 , (150)

where the coefficients Cn
ν , determined by the solution of the eigenvalue problem, define

the eigenvector. Therefore, in principle every nuclear structure observable of the low-

energy states can be extracted.

A disadvantage of the NCSM is the fast growth of the model space size with Nmax and
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Figure 13: NCSM model space: The figure shows an exemplary 4~Ω excited configuration

for the protons (disks) and neutrons (circles) of 16O arranged in an harmonic-oscillator

potential. The illustrated orbits correspond to an energy quantum number e = 2n+ l.

with the nucleon number A. Nowadays one can handle model space dimensions up to

the order of 109 or even 1010 with massive parallelization. For a NCSM calculation of
16O in a Nmax = 8 model space the dimension is in the order of 109, but a 8~Ω model

space is not sufficient to obtain energy convergence, therefore, the NCSM is limited to

mid-p-shell nuclei.

6.1.2 Importance truncated no-core shell model (IT-NCSM)

The importance truncated no-core shell model (IT-NCSM) [35, 36, 37] is based on bases

the NCSM and extends the range of applicability to larger model spaces. The NCSM

and the full CI method use a global truncation of the many-body basis, which do not

account for the specific properties of the Hamiltonian and of the investigated states. As

a result the model spaces contain a substantial number of basis states that are irrelevant

for the description of the investigated states. The importance truncation scheme uses

an additional truncation in order to neglect these irrelevant basis states from the model

space, by considering to properties of the Hamiltonian and the target states. Generally

the idea of importance selection, pioneered in quantum chemistry in the 1970s, can be

applied to any CI method. In nuclear structure theory the application to the NCSM is at

the moment the most successful approach.

Let us consider the basic concept of the IT-NCSM. We start with an approximation of the

target state, called reference state |ψref〉, carrying the correct quantum numbers of the

85



target state

|ψref〉 =
∑

ν∈Mref

C(ref)
ν |φν〉 . (151)

The reference state is a superposition of the basis states |φν〉 spanning the reference space

Mref , which is a subspace of the Nmax~Ω model space MNmax of the NCSM. For instance

one can obtain the reference state |ψref〉 from a NCSM calculation in a 2~Ω reference

space. The next element is a priori measure for the relevance of the individual basis

states |φν〉 in MNmax , which are not contained in Mref . Based on the reference state,

multi-configuration perturbation theory provides a natural framework for assessing the

importance of these basis states. From the amplitudes of first order perturbation to the

reference state, one obtains the dimensionless measure of the importance

κν = −〈φν |Ĥ|ψref〉
εν − εref

, (152)

= −
∑

µ∈Mref

C(ref)
µ

〈φν |Ĥ|φµ〉
εν − εref

,

where εν can be obtained in the simplest case at the level of the independent particle pic-

ture (Møller-Pleset-type formulation). In this formulation we set εν := εref +∆εν , where

∆εν corresponds to the excitation energy of 〈φν| to the unperturbed ground state. Alter-

natively, in an Epstein-Nesbet partitioning, the energy εν is defined by the expectation

value of the Hamiltonian

εν = 〈φν |Ĥ|φν〉 . (153)

Although definition (153) appears to be the more natural choice we use the simpler

Møller-Pleset-type formulation to obtain the energy εν, because the formulation choice

has no significant influence on the importance-truncated model space and for our appli-

cation computational efficiency is the prime concern. Due to implementation reasons we

use the SRG-transformed Hamiltonian Ĥ [1,2]
α = T̂

[1]
int + V̂

[2]
α,NN for the importance measure

in (152), without irreducible three-body contributions. We will discuss this point at the

end of the subsection.

Only those basis states with an absolute value of the importance measure |κν | larger than

a certain threshold κmin ≥ 0 are included in the importance-truncated model space. Due

to the importance measure we do not have to solve the eigenvalue problem in the MNmax

86



model space to determine the relevance of the individual basis states, but we are able to

estimate the relevance a priori. In the importance-truncated model space we solve the

eigenvalue problem. The resulting eigenstate provides a better approximation for the

target state and is used as new reference state. With the new reference state one can

iterate the previous steps, obtaining again an importance truncated model space and

after the eigenvalue solution a better approximation for the target state. This procedure

can be iterated until the reference state and energy converge.

In the following we use a sequential construction of the model space, which we will

discuss now. Again we start with the first reference state |ψ〈1〉
ref〉 obtained from a NCSM

calculation in a 2~Ω model space as reference space M〈1〉
ref , where the upper index in

angle brackets indicate the number of iterations. Next we extend the model space M〈1〉
ref

by 2~Ω excitations and obtain a 4~Ω model space, where we perform an a priori impor-

tance selection of the basis states. Note that we use an Hamiltonian with irreducible

two- but without three-body contributions, therefore, only basis states |φν〉 which can be

produced by 1p1h- and 2p2h-excitations of the basis states in the reference space, have

an importance measure κν 6= 0 and can be included to the importance truncated model

space M〈2〉
ref . In M〈2〉

ref one can solve the eigenvalue problem obtaining |ψ〈2〉
ref〉. Again we

extend the reference model space M〈2〉
ref by 2~Ω excitations, obtaining a 6~Ω model space

and perform the importance measure with respect to |ψ〈2〉
ref〉 yielding the new importance

truncated model space M〈3〉
ref and so on. These steps can be sequentially iterated until

the Nmax~Ω space is reached for which the eigenenergy converges.

The importance threshold κmin has an essential role. For the limit κmin → 0 the impor-

tance truncated model space corresponds to the NCSM model space. The aim of the

IT-NCSM is to reproduce the results of the full NCSM calculation, therefore, we calcu-

late the eigenenergies or other nuclear structure observables for different importance

thresholds κmin and extrapolate the κmin → 0 limit through a polynomial fit of the order

2 − 4. This procedure we will call threshold extrapolation.

In order to perform the IT-NCSM calculation for more than one eigenstate simultane-

ously, one uses the same steps as explained above with several reference states |ψ(i)
ref〉

simultaneously, where i = 0, ..., m and m is the number of target states. In this case

one has to include a basis state |φν〉 to the importance truncated model space, as soon

as |κ(i)
ν | ≥ κmin holds true for at least one reference state. Thus, the dimension of the

importance truncated model space increases with the number of simultaneous target

states.

In order to reduce the uncertainties of the extrapolation we will use very small impor-
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tance thresholds, with a minimal threshold of κmin = 10−5. Therefore, even if we use

the importance truncation, we still deal with very large model spaces, for example for
16O and Nmax = 8 the dimension of the order 109 for NCSM model space decreases to

the order of 107 for the IT-NCSM model space. Since the resulting eigenvalue problems

are still sparse, we will use the Lanczos algorithm to solve them.

Remember that we use a Hamiltonian without irreducible three-body contributions for

the importance measure (152), but for the eigenvalue problem (149) we include them.

This approximation is reasonable, because the irreducible one- and two-body contri-

butions have a much larger influence to the importance measure than the irreducible

three-body contribution of the Hamiltonian. Besides, one can compare the NCSM re-

sults with the one of the IT-NCSM to check the used basis truncation.

In conclusion the IT-NCSM facilitates ab initio nuclear structure calculations beyond the

domain of the full NCSM, providing the same results [35, 36] where ever the NCSM is

applicable. The IT-NCSM extends the range of application to the sd-shell, keeping all the

advantages of the NCSM. For instance, there is only a negligible center-of-mass contami-

nation, the calculations provide the eigenstates for a given importance threshold, so one

can ascertain other nuclear structure observables by using the threshold-extrapolation

technique, and the variational principle holds.

6.2 Hartree-Fock method

In the Hartree-Fock scheme, the many-body state is approximated by a single Slater

determinant [23, 38, 39]. In second quantization this Slater determinant for an A-

particle system reads

|Φ〉 = â
†
1â

†
2...â

†
A|0〉, (154)

where |0〉 is the vacuum state and â
†
k are the creation operators of the single-particle

states

|αk〉 = â
†
k|0〉. (155)

The Hartree-Fock single-particle states |αk〉 are used as variational degrees of freedom in

the minimization of the energy expectation value E[|Φ〉] of the many-body Hamiltonian.

In the following we briefly discuss the Hartree-Fock approximation for a Hamiltonian
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Ĥ [1,2,3] = T̂ [1] + V̂ [2] + V̂ [3], with irreducible one-, two- and three-body contributions, in

a general basis representation. For a detailed derivation we refer to [40]. The Hartree-

Fock single particle states |αk〉 are represented in an auxiliary basis
{

|χl〉
}

, with the

creation operators c†l , e.g., the harmonic oscillator basis,

|αk〉 =
∑

l

D
(k)
l |χl〉 or â

†
k =

∑

l

D
(k)
l ĉ

†
l , (156)

where the expansion coefficients D(k)
l are used as variational parameters. The idea

is to transform the linear many-body eigenvalue problem into a non-linear one-body

eigenvalue problem. This is one of the reasons one uses the one-body density matrix

operator ˆ̺[1] of the Hartree-Fock Slater determinant, with the matrix elements

̺
[1]
ll′ = 〈χl| ˆ̺[1]|χl′〉 = 〈Φ|ĉ†l′ ĉl|Φ〉 =

∑

k k′

D
(k)
l D

(k′)∗
l′ 〈Φ|â†k′ âk|Φ〉 . (157)

Due to the fact that the one-body density matrix operator ˆ̺[1] is diagonal in the |αk〉-
basis representation with the eigenvalue 1 for an occupied state and 0 for an unoccupied

state, we obtain

̺
[1]
ll′ =

A
∑

k=1

D
(k)
l D

(k′)∗
l′ , (158)

where we only sum over the k of the occupied states |αk〉. The Hamiltonian will be

expressed in the auxiliary basis in second quantization

Ĥ [1,2,3] =
∑

a a′

t
[1]
aa′ ĉ

†
aĉa′

+
1

4

∑

a a′

∑

b b′

V
[2]
ab,a′b′ ĉ

†
aĉ

†
bĉb′ ĉa′ (159)

+
1

36

∑

a a′

∑

b b′

∑

c c′

V
[3]
abc,a′b′c′ ĉ

†
aĉ

†
bĉ

†
cĉc′ ĉb′ ĉa′ ,

with the matrix elements

t
[1]
aa′ = 〈χa|T̂ [1]|χa′〉 , (160)

V
[2]
ab,a′b′ = a〈χaχb|V̂ [2]|χa′χb′〉a , (161)

V
[3]
abc,a′b′c′ = a〈χaχbχc|V̂ [3]|χa′χb′χc′〉a . (162)
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For the energy expectation value one obtains

E[|Φ〉] = 〈Φ|Ĥ|Φ〉
=

∑

a a′

taa′̺
[1]
aa′ +

1

4

∑

a a′

∑

b b′

V
[2]
ab,a′b′̺

[2]
ab,a′b′

+
1

36

∑

a a′

∑

b b′

∑

c c′

V
[3]
abc,a′b′c′̺

[3]
abc,a′b′c′ , (163)

with the two- and three-body density matrix elements ̺[2]
ab,a′b′ and ̺[3]

abc,a′b′c′.

Owing to the properties of the density operators of a Slater determinant [23, 38, 39, 40],

one can reduce the two- and three-body density matrix elements to one-body density

matrix elements. From the variational principle one can derive the non-linear one-

body eigenvalue problem, using the fact that the one-body density operator of a Slater

determinant is Hermitian and idempotent. This non-linear one-body eigenvalue problem

is also well known as the Hartree-Fock equation

ĥ[̺[1]]|αk〉 = εk|αk〉 , (164)

where ĥ[̺[1]] is the density-dependent one-body Hamilton operator given by the matrix

elements

haa′ [̺
[1]] = t

[1]
aa′ +

∑

b b′

V
[2]
ab,a′b′̺

[1]
b,b′ +

1

2

∑

b b′

∑

c c′

V
[3]
abc,a′b′c′̺

[1]
b,b′̺

[1]
c,c′ . (165)

Representing (164) in the auxiliary basis
{

|χl〉
}

, yields

∑

a′

haa′ [̺
[1]]D

(k)
a′ = εkD

(k)
a . (166)

The one-body density matrix elements depend on the Hartree-Fock single-particle states,

therefore, we have a non-linear eigenvalue problem for the Hartree-Fock single-particle

energies εk and the expansion coefficients D(k)
a .

Equation (166) is solved in an iterative procedure until full self-consistency is obtained.

In practice one starts with a certain guess for the coefficients D(k)
a . This coefficients are

used to determine the one-body density matrix elements in the one-body Hamiltonian

haa′ [̺
[1]]. With a determined one-body Hamiltonian, the Eq. (166) transforms to a linear

eigenvalue problem, which can be solved, providing a new set of coefficients D(k)
a . This

new set of coefficients is used to determine the one-body Hamiltonian again and the
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steps described above can be repeated. This procedure will be iterated until the conver-

gence of the coefficients is reached. The coefficients D(k)
a determine the Hartree-Fock

single-particle states |αk〉. The approximation for the ground state |Φ〉 = |HF 〉 is given

by a Slater determinant of the A single-particle states |αk〉, with the lowest energy. Note

that the ground state energy E[|HF 〉] is not the same as the sum of the single particle

energies [23, 38, 39, 40].

Let us summarize the advantages and limitations of the Hartree-Fock approximation.

First of all, in the Hartree-Fock scheme the many-body eigenstate is approximated by a

single Slater determinant, which is not sufficient to describe the short-range and tensor

correlations. Therefore, one has to use an effective interaction, otherwise one obtains

unbound ground states for nuclei through the whole nuclear chart [22]. In our case we

use the SRG-transformed Hamiltonian Ĥ
[2,3]
α = T̂

[2]
int + V̂

[2]
α,NN +

(

V̂
[3]
α,NN + V̂

[3]
α,NNN

)

, see

Chapter 5.

Although we use a Galilei-invariant Hamiltonian, there is the possibility of a center-of-

mass excitation, whose contribution to the ground state is expected to be small. How-

ever, for the purpose of this thesis, the effect of the center-of-mass contamination on the

ground state is irrelevant. A stringent but computationally expensive approach requires

an explicit center-of-mass projection, which will not be performed in this thesis.

With the Hartree-Fock scheme we are not limited to light nuclei like for the exact ab

initio methods, and are able to investigate ground states of nuclei through the whole

nuclear chart (especially closed-shell nuclei). Even if the Hartree-Fock approach does

not provide such accurate ground-state energies as the ab initio methods, it is able to

illustrate the general systematics, e.g. of the binding energies as function of the mass

number. Furthermore, the Hartree-Fock approach provides a variational upper bound for

the exact ground-state energy. Finally, the Hartree-Fock solution can serve as a starting

point for improved approximations that take the missing correlations into account.
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7 Many-body calculation results

In this chapter we present and discuss the results of the many-body calculations with

the NSCM and IT-NCSM as well as with the Hartree-Fock approach (see Chapter 6), us-

ing the SRG-transformed two- and three-body interaction from χEFT. To disentangle the

effects of the irreducible three-body contributions, we investigate the results of nuclear

many-body calculations for irreducible three-body contribution induced during the SRG

transformation of the two-body interaction V̂ [3]
α,NN with and without genuine three-body

interaction V̂
[3]
α,NNN as well as for the pure irreducible two-body interaction V̂

[2]
α,NN . We

will use the following notation to identify the various calculations:

• NN-only No genuine NNN interaction and no SRG-induced irreducible

three-body contribution (Ĥ [2]
α = T̂

[2]
int + V̂

[2]
α,NN).

• NN+NNN-induced No genuine NNN interaction, but SRG-induced irreducible

three-body contribution (Ĥ [2,3]
α = T̂

[2]
int + V̂

[2]
α,NN + V̂

[3]
α,NN).

• NN+NNN-complete Include the genuine NNN interaction as well as the SRG-

induced irreducible three-body contribution

(Ĥ [2,3]
α = T̂

[2]
int + V̂

[2]
α,NN + V̂

[3]
α,NN + V̂

[3]
α,NNN).

7.1 (IT-)NCSM calculations for 4He

We use the NCSM and the IT-NCSM approaches to investigate the interactions defined

above, for the 4He nucleus. This nucleus is an ideal candidate for our investigations, be-

cause due to the small nucleon number the model spaces are sufficiently small to obtain

an energy convergence for the ground-state even with the NCSM, provided that we use

a SRG-transformed interaction. For instance, this is relevant to check if the IT-NCSM

calculations produce the same results as the NCSM calculations. The following investi-

gations of the 4He ground state will be used to study the sensitivity of of the many-body

results as a function of the unfixed parameters of the interaction and the many-body

calculation. These parameters are the harmonic oscillator frequency, SRG model space

as well as the range of the SRG parameter α. The conclusion of this investigations will

be used to determine the parameters in the Hartree-Fock calculations (Sec. 7.3).
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Figure 14: Frequency dependence of the NN+NNN calculation: The figure shows

the 4He ground-state energies obtained in NCSM calculations, with the bare NN+NNN

interaction, as function of the harmonic oscillator frequency, for different model spaces

corresponding to Nmax = 2 ( ), Nmax = 4 ( ), Nmax = 6 ( ), Nmax = 8 ( ) and Nmax = 10
( ).
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First of all, we discuss the behavior of the 4He ground-state energy for the bare NN+NNN

interaction, i.e., without a SRG transformation, as function of the harmonic oscillator

frequency, defined by ~Ω. In Fig. 14 the corresponding results are shown. With growing

NCSM model space, defined by Nmax, the ground-state energy decreases as expected

from the variational principle. Moreover, the energy depends on ~Ω. For an exact so-

lution of the eigenvalue problem in an infinite model space the result should be inde-

pendent of the harmonic oscillator frequency. Generally for the NCSM and IT-NCSM

calculations in a finite Nmax model space there is a minimum in the energy for a certain

~Ω. This is seen in Fig. 14, even if the frequency range is sometimes too small. More-

over, the results show that the frequency for the minimal ground-state energy increases

with model space and that the frequency dependence flattens out with larger Nmax. The

decrease of the curve for Nmax = 10 shows that the calculations are not yet converged.

Therefore, we either have to use a much larger model space or we have to SRG trans-

form the interaction to accelerate the convergence. Because we are limited to three-body

matrix elements up to an energy quantum number E3max = 12 at the moment (see Sec.

4.6), we can maximally use an 4He many-body model space up to Nmax = 12. This is

why we must use SRG-transformed interactions in the following.

Next we analyze whether the model space we use for the SRG transformation is large

enough to ensure the convergence of this transformation. As mentioned in Sec. 5.2 we

have to check whether the many-body results are invariant for increasing SRG model

space. Figure 15 shows a NN+NNN-complete IT-NCSM calculation for the ground-state

energy of 4He for two SRG model spaces, which are defined by E(SRG)
max . In the figures

an interaction with α = 0.08 fm4 is used. The error bars of the IT-NSCM calculations are

caused by the threshold extrapolation (see Sec. 6.1.2). For a harmonic oscillator basis

with ~Ω = 16 MeV (top left) and ~Ω = 20 MeV (top right) there are still significant con-

tributions to the SRG-transformed Hamiltonian from states beyond E(SRG)
max = 28. These

contributions affect the result and lead to a reduction of the ground-state energy. With

increasing ~Ω the effect of these high energetic contributions becomes smaller and for

~Ω = 28 MeV it approximately vanishes. Moreover, for E(SRG)
max = 32 and ~Ω = 16 MeV the

curve converges to an energy several 100 MeV higher than the converged ground-state

energies of the other frequencies. This indicates that even an E
(SRG)
max = 32 SRG model

space is not sufficient for ~Ω = 16 MeV and that larger model spaces are needed to lower

the ground-state energy to the same value as for the other frequencies. What we learn

from the calculations of Fig. 15 is that the required model space for the SRG transforma-

tion depends on the harmonic oscillator frequency and that for small ~Ω larger model
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Figure 15: Ground-state energies for different SRG-model spaces: The plots show the
4He ground-state energies obtained by the IT-NCSM calculation as function of Nmax, for

a NN+NNN-complete interaction, SRG transformed in an E
(SRG)
max = 28 model space ( )

and in an E
(SRG)
max = 32 model space ( ). For the calculations we used a SRG parameter

α = 0.08 fm4 and the harmonic oscillator frequencies ~Ω = 16 MeV (top left), ~Ω = 20 MeV

(top right), ~Ω = 24 MeV (bottom left) and ~Ω = 28 MeV (bottom right).
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spaces are necessary. We want to point out that for very large ~Ω we expect that the

required model space for the SRG transformation increases again, but this topic has to

be investigated in the future. Furthermore, there is no guarantee that the influence of

~Ω on the required E(SRG)
max is always the same. The relation of these two quantities can

depend on the nucleus (see Sec. 7.2) and even on the investigated state or the observ-

able. Therefore, one has to check whether the SRG model space is large enough.

Figure 16 shows the 4He ground-state energy for the NN+NNN-complete IT-NCSM cal-

culation for various α-parameters. The curve for α = 0.00 fm4 corresponds to the bare

interaction. The energy curves converge in a Nmax = 12 model space for α ≥ 0.02 fm4,

the converged energy of the α ≤ 0.08 fm4 curves is indicated by the gray dotted line. So

even if the ground state energy does not exhibit the fastest convergence for ~Ω = 28 MeV

with a bare interaction (see Fig. 14), we obtain convergence for the SRG-transformed

interaction. The lower plot of Fig. 16 shows the same curves with a closer range about

the converged energy. For α = 0.16 fm4 and α = 0.32 fm4 the converged energies dif-

fer from the common converged energy of the other curves (gray dotted line) by about

100 keV. This is due to induced irreducible four-body contributions. With increasing α

these obviously repulsive contributions become larger. Note that repulsive contributions

lead to a decrease and attractive contributions to an increase of the binding energy. This

is a very important observation, because we want to choose α as large as possible to

enhance the convergence, as long as the irreducible four-body contribution are negligi-

ble. For the ground-state of 4He α = 0.08 fm4 is an adequate choice. The calculations

of Fig. 16 offer another interesting information, the experimental ground-state energy

(black dashed line) is approximately 100 keV higher (less bound) than the converged en-

ergy (gray dotted line). This indicates a deficiency in the initial interaction from χEFT.

There are various possible reasons for this deviation. For instance we neglect the isospin

dependence for the irreducible three-body contributions, but we would not expect that

this causes a deviation of 100 keV. What is most likely that the deviation is caused by

the missing genuine four-body interaction. Due to the results of the above calculations,

we can determine the mentioned parameters for the following calculations. We will use

an harmonic oscillator basis with ~Ω = 28 MeV, a SRG model space corresponding with

E
(SRG)
max = 28 and α parameters up to 0.08 fm4.

After we have investigated the NN+NNN-complete interaction properties in dependence

of the harmonic oscillator frequency, the α parameter as well as the NCSM and SRG

model space sizes, we will now examine the influence of the irreducible three-body

contributions. Therefore, we first compare the results of the NN-only and NN+NNN-
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Figure 16: NN+NNN-complete calculation: The upper plot shows the 4He ground-state

energies obtained by NN+NNN-complete IT-NCSM calculations as function of Nmax, for the

SRG parameter α = 0.00 fm4 ( ), α = 0.01 fm4 ( ), α = 0.02 fm4 ( ), α = 0.04 fm4 ( ),

α = 0.08 fm4 ( ), α = 0.16 fm4 ( ) and α = 0.32 fm4 ( ). The dashed black line indicates

the experimental value [41] and the gray dotted line corresponds to the converged energy

of the curves up to α = 0.08 fm4. In the plot below we see the same curves for a closer range

about the converged energy. The interaction is SRG transformed in an E
(SRG)
max = 28 model

space and an harmonic oscillator basis with ~Ω = 28 MeV is used.
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Figure 17: Comparison of the NN-only with the NN+NNN-induced calculation:

The figure shows the 4He ground-state energies obtained by NN-only (open symbols) and

NN+NNN-induced IT-NCSM calculations (solid symbols) as function of Nmax, for the SRG

parameter α = 0.01 fm4 ( , ), α = 0.02 fm4 ( , ), α = 0.04 fm4 ( , ) and α = 0.08 fm4

( , ). The interactions are SRG transformed in an E
(SRG)
max = 28 model space and an har-

monic oscillator basis with ~Ω = 28 MeV is used.
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Figure 18: Comparison of the NN+NNN-complete with the NN+NNN-induced cal-
culation: The figure shows the 4He ground-state energies obtained by NN+NNN-complete

(solid symbols) and NN+NNN-induced (open symbols) IT-NCSM calculations as function of

Nmax, for the SRG parameter α = 0.01 fm4 ( , ), α = 0.02 fm4 ( , ), α = 0.04 fm4 ( , )

and α = 0.08 fm4 ( , ). The interactions are SRG transformed in an E
(SRG)
max = 28 model

space and an harmonic oscillator basis with ~Ω = 28 MeV is used. The dashed black line

indicates the experimental ground state energy [41].

induced IT-NCSM calculations for the 4He ground-state energy, shown in Fig. 17. The

NN-only results (open symbols) for the different α parameters do not converge to the

same energy. The larger α the lower are the converged energies. This is due to the

missing induced contributions, which increase with the α parameter. If one includes

the induced three-body interaction (solid symbols) the curves converge to the same

energy, which is higher than all the converged energies of the NN-only calculations.

The α-independence shows that, it is sufficient to consider only the induced irreducible

three-body contribution of the two-body interaction. Note that the induced three-body

interaction leads to a shift of the energy curves, but the convergence is not much effected

by it. Moreover, the induced three-body contributions are repulsive and with increasing

α the repulsiveness enlarges.

Let us consider the role of the genuine three-body interaction. Figure 18 illustrates the

NN+NNN-complete (solid symbols) and NN+NNN-induced (open symbols) IT-NCSM
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calculation for the 4He ground-state energy. As we already have seen in Figs. 16 and 17

the curves up to α = 0.08 fm4 converge to the same energy for the NN+NNN-complete

and NN+NNN-induced calculations, respectively. But the converged energy for the

NN+NNN-complete interaction is several MeV lower than the one for the NN+NNN-

induced interaction. This indicates that the genuine three-body contribution is attrac-

tive. Moreover, it seems that the genuine three-body interaction just causes a constant

shift of the ground-state energies, without changing the convergence notably.

Finally we compare the results of the NN+NNN-complete and NN-only calculations, il-

lustrated in Fig. 19. The upper plot shows the 4He ground-state energies for the both

interactions. Due to the induced and genuine three-body contributions, the curves of

the NN-only interaction (open symbols) get shifted. This is shown in the lower plot of

Fig. 19, where the NN-only curves (open symbols) are displaced by a constant shift in

the way that the NN+NNN-complete and NN-only curves with the same α intersect at

Nmax = 12. The two curves with the same α show almost equal convergence behavior.

As a consequence the convergence behavior is determined by the irreducible two-body

interaction. This is a very interesting property, if this holds true even for other nuclei

and states or observables, one could perform the NN-only calculation in a model space

with large Nmax to determine the convergence behavior and ascertain the energy shift,

due to the three-body contributions, for a smaller Nmax, manageable for the irreducible

three-body interaction.

7.2 IT-NCSM calculations for 6Li

To investigate the influence of the size of the SRG model space with varying harmonic

oscillator frequencies, we perform a IT-NCSM calculation with a NN+NNN-complete in-

teraction for the ground-state energy of 6Li, in analogy to the Helium calculations shown

in Fig. 15. We again compare the 6Li ground-state energies of the NN+NNN-complete

interaction, SRG transformed in an E
(SRG)
max = 28 and E

(SRG)
max = 32 model space. The

results2 are summarized in Fig. 20. As in the 4He case the two energy curves differ for

~Ω = 16 MeV (top left) and also for ~Ω = 20 MeV (top right), which indicates that for

these frequencies the effects of the E(SRG)
max ≥ 28 states are not negligible. The two curves

corresponding to E
(SRG)
max = 28 ( ) and E

(SRG)
max = 32 ( ) for ~Ω = 24 MeV (bottom left)

2The actually available three-body matrix elements are limited to an energy quantum number E3max =

12 (see Sec. 4.6). Because the unperturbed configuration of 6Li contains two nucleons in the p-shell, the
Nmax = 10 model space is the largest NCSM model space we can completely cover, using those matrix
elements.
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Figure 19: Comparison of the NN+NNN-complete with the NN-only calculation:
The upper figure shows the 4He ground-state energies obtained by NN+NNN-complete

(solid symbols) and NN-only (open symbols) IT-NCSM calculations as function of Nmax,

for the SRG parameter α = 0.01 fm4 ( , ), α = 0.02 fm4 ( , ), α = 0.04 fm4 ( , ) and

α = 0.08 fm4 ( , ). In the figure below the NN-only curves (open symbols) are displaced by

a constant shift in the way that the NN+NNN-complete and NN-only curves with the same

α intersect at Nmax = 12 . This illustration serves to investigate the contribution of the irre-

ducible three-body part to the convergence behavior. The interactions are SRG transformed

in an E
(SRG)
max = 28 model space and an harmonic oscillator basis with ~Ω = 28 MeV is used.
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Figure 20: Ground-state energies for different SRG-model spaces: The figures show

the 6Li ground-state energies obtained by the IT-NCSM calculation as function of Nmax, for

a NN+NNN-complete interaction, SRG transformed in an E
(SRG)
max = 28 model space ( )

and in an E
(SRG)
max = 32 model space ( ). For the calculations we used the SRG parameter

α = 0.08 fm4 and the harmonic oscillator frequencies ~Ω = 16 MeV (top left), ~Ω = 20 MeV

(top right), ~Ω = 24 MeV (bottom left), and ~Ω = 28 MeV (bottom right).
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and ~Ω = 28 MeV (bottom right) do agree with each other, respectively. This indicates

that the E(SRG)
max = 28 model space is sufficient for the SRG transformation. On closer

examination one observes that the curves for ~Ω = 24 MeV and for ~Ω = 28 MeV show a

different convergence behavior. This frequency dependence of the convergence behav-

ior was also illustrated for 4He (Fig. 14). The convergence behavior of the ~Ω = 24 MeV

curves is improved in comparison to the ~Ω = 28 MeV curves and the ~Ω = 20 MeV

curves converge even faster. It seems as if the frequency, with the fastest convergence,

decreases with increasing mass number. Furthermore, it seems that the effect of the

high-energy states in the SRG model space is not influenced by the mass number. Of

course the available data sets are not sufficient to prove these observations. Therefore,

further investigations are required.

7.3 Closed-shell nuclei with the Hartree-Fock method

We will apply the Hartree-Fock method to closed-shell nuclei beyond the p-shell, to in-

vestigate the ground-state energies and charge radii. The aim is not to provide precise

predictions those observable, but to assess the systematic behavior of our interactions

with increasing mass number.

The upper plots in Fig. 21 show the differences of the calculated ground-state energy to

the experimental value per nucleon, obtained at the Hartree-Fock level for the NN-only

, NN+NNN-induced and NN+NNN-complete Hamiltonians for different α parameters.

As mentioned in Sec. 6.2 a calculation with a bare NN and NN+NNN interaction would

yield unbound ground states, and the SRG transformation is essential to obtain physical

meaningful results. The ground-state energies obtained with SRG-transformed interac-

tions correspond to bound states for all nuclei, indicating that the dominant correlations

are indeed introduced very efficiently by the SRG transformation. Let us first concen-

trate on the ground-state energies for the NN-only calculation ( ). For light nuclei the

interaction underestimates the binding energies in comparison to experiment. With in-

creasing mass number the ground-state energies drop relative to the experimental values

[41]. In contrast the results for the NN+NNN-induced calculation ( ) reproduce the sys-

tematics of the ground-state energies very well. The reason is the induced three-body

contribution, which is produced during the SRG transformation. As observed in the IT-

NCSM calculations (Fig. 17) these induced contributions are repulsive and lead to a

decrease of the binding energies. Apparently the importance of the induced three-body

contributions for the description of the ground states increases with mass number, this

is why the binding energies for the NN-only interaction increase with the mass number
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Figure 21: Investigation of closed-shell nuclei: Illustrated are the differences of the

calculated ground-state energy to the experimental value per nucleon (upper row) and the

charge radii (lower row) for a sequence of closed-shell nuclei, obtained by the Hartree-

Fock approach. The data sets correspond to the NN-only ( ), NN+NNN-induced ( ) and

NN+NNN-complete ( ) interactions, which are SRG transformed in an E
(SRG)
max = 28 model

space, for α = 0.02 fm4 (left column), α = 0.04 fm4 (middle column), and α = 0.08 fm4

(right column). We use a harmonic oscillator basis with ~Ω = 28 MeV. For the Hartree-Fock

calculation the single-particle states are truncated to an energy quantum number emax = 14
and the three-particle states are limited to an energy quantum number E3max = 12. The

black bars indicate the experimental values [41, 42].
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relative to the experimental values. If we increase the SRG parameter α also the induced

three-body contributions grow (see Sec. 5.2), therefore, we observe an accelerated drop

of the energy differences per nucleon, for increasing α parameter. In conclusion, the

information contained in the bare NN interaction is sufficient to describe the general

systematics of the ground-state energies, through the nuclear chart. But the Slater de-

terminant used in the Hartree-Fock approach is not able to describe any correlations.

That is why we have to apply a SRG transformation to the interaction. To consider the

induced irreducible three-body contribution is necessary to describe the general system-

atics of the ground-state energies. The small α dependence indicates that the induced

irreducible m-body contributions with 4 ≤ m ≤ A are insignificant.

We will now include the genuine three-body contributions. The curves for the NN+NNN-

complete calculation ( ) show a similar trend as the curves of the NN-only calculation

but drop less for the light nuclei. With increasing mass number and especially increas-

ing α parameter the drop of the NN+NNN-complete curves is faster than the drop of the

NN-only curves. The α dependence indicates that analog to the NN-only calculations the

neglected induced irreducible m-body contributions with 4 ≤ m ≤ A are necessary. In

addition to this we observe a notable drop in energy from 48Ca to 90Zr for α = 0.08 fm4.

Unfortunately, the datasets are not sufficient to make a reasonable conclusion, but it

seems that the induced higher-order contributions of the genuine NNN interaction be-

come more and more important for increasing mass number and α parameter. Because

of analog reasons we would expect that a consideration of the induced four-body con-

tributions of the genuine NNN interaction would again lead to a stabilization of the

ground-state energy systematics. The inclusion of four-body contributions would pose

an enormous challenge.

An important aspect are the missing correlations in the Hartree-Fock Slater determinant,

leading to an underestimated binding energy. The larger the α parameter the less corre-

lations are generated by the interaction. This can also be observed in the upper plots of

Fig. 21 by the drop of the ground-state energies with increasing α parameter.

In the three lower plots of Fig. 21 the charge radii of the NN-only , NN+NNN-induced

and NN+NNN-complete calculations are shown for different α parameters. The black

bars correspond to the experimental charge radii [42]. The charge radii are underesti-

mated for all nuclei but 4He. Already the NN-only interaction ( ) is able to reproduce

the pattern of the charge radii and the inclusion of the induced irreducible three-body

contribution ( ) even enhances the result by increasing the values. With increasing α the

charge radii for the NN-only interaction drop, owing to the missing induced three-body
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contributions, which become larger with increasing α. For the NN+NNN-induced inter-

action, in contrast, the charge radii increase with α, what improves the result. Because

of the small α dependence of the NN+NNN-induced calculations the consideration of

the induced three-body contribution of the two-body interaction is sufficient and the

induced m-body contributions with m ≤ 4 ≤ A can be neglected for the description of

the charge-radii at the Hartree-Fock level.

However, the genuine three-body interaction, added in the NN+NNN-complete calcula-

tion ( ) reduces the charge radii. For α = 0.02 fm4 the effect of the genuine three-body

interaction is small and the charge radii approximately correspond to the one of the

NN+NNN-induced calculation. But with increasing α the NN+NNN-complete curve

drops below the NN+NNN-induced curve. For α = 0.08 fm4 the even the pattern cannot

be reproduced, due to the massive reduction of the charge radii for the heavy nuclei.

Note that for heavy nuclei the radii even decreases with mass number. This observation

indicates that the irreducible four-body and higher-order contributions induced by the

genuine three-body interaction become very important and the effect of the neglected

induced contributions increases with mass number.

In conclusion, the irreducible four-body and higher-order contributions, induced by the

genuine three-body interaction, have an important impact on the ground states of heav-

ier nuclei. As long as these contributions are neglected, the NN+NNN-induced calcula-

tions produce superior results for the ground-state energies and charge radii. Besides,

the induced three-body contribution of the two-body interaction is also crucial for the

ground-state charge radii and in particular for the energies.
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8 Summary and outlook

In this thesis we apply a SRG-transformed NN+NNN interaction from χEFT for different

nuclear many-body calculations. The two-body part of the initial interaction is obtained

at N3LO and the three-body part at N2LO. The corresponding interaction matrix ele-

ments are provided in the Jacobi basis. We discussed the SRG transformation of the

NN+NNN interaction in the Jacobi basis and investigated the diagonalization proper-

ties of the χEFT interaction through the SRG evolution. For the many-body calculations

the interaction matrix elements need to be transformed to an m-scheme representation.

Thus, we derive the formulas for the transformation of the interaction matrix elements

from the Jacobi basis to m-scheme and implement the transformation in C/C++. We

show that a direct transformation to the m-scheme is limited to a model space up to

a three-body energy quantum number E3max = 8, due to the fast growth of the mem-

ory requirement with E3max. In this work we establish a second procedure, where we

transform the Jacobi matrix elements to a J-coupled scheme and decouple the matrix

elements on-the-fly during the many-body calculations. At the moment the model space

of this improved transformation is limited to E3max = 12, which is larger than every

other m-scheme model space used by a many-body calculation code. For the future we

plan to enhance our code by an improved parallelization in order to expand the range

of application to a model space corresponding to E3max = 16. The enhancement of the

model space from E3max = 8 to E3max = 12 or 16 is crucial to obtain converged results

in exact ab initio calculations for nuclei in the p- and sd-shell.

We perform many-body calculations with the NCSM and IT-NCSM for ground-state ener-

gies of 4He and 6Li, using the SRG-transformed interaction from χEFT. We investigated

the influence of the SRG model space and the SRG flow-parameter α to the ground-state

energy results and analyzed the effect of the induced and genuine irreducible three-body

interactions for 4He. In the calculations we observed that the required SRG model space,

depends on the harmonic oscillator frequency. In particular for small frequencies in the

order of ~Ω = 16 MeV the used SRG model space has to be enlarged. In the near future

we plan to construct the SRG model space in a more flexible manner, therefore, we will

use a maximum energy quantum number E(SRG)
max (J) depending on angular momentum.

This will enable us to increase E(SRG)
max for the relevant angular momenta, while decreas-

ing it for the other angular momenta. In addition we observed that the convergence

accelerates with increasing parameter α, but also the induced interaction contributions

increase. Thus, one has to find a trade-off between the acceleration of the convergence

and the growing induced irreducible four-body contributions which cannot be consid-
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ered in the many-body calculations, so far. In this context we aim to study the properties

of different SRG generators ηα in order to reduce the induced four-body contributions.

Concerning the studies of the irreducible three-body contributions we find that the in-

duced contribution from the genuine two-body interaction is repulsive and leads to an

decrease of the ground-state binding energy. The induced irreducible three-body con-

tribution is necessary to obtain the same converged energy for different α parameters,

which is not the case for the pure two-body interaction. The genuine three-body inter-

action is attractive and leads to a ground-state, which is more than 100 keV overbound

compared to the experiment. This indicates a deficiency of the initial interaction from

χEFT. The reason could be the absence of the N3LO contribution of the NNN interaction,

which has to be compensated by the fit of the LECs cD and cE. But more likely is that

the discrepancy is caused by the absence of the genuine four-body interaction. In this

context one also has to consider the description of the nuclei in the p- and sd-shell. We

expect that the discrepancy of the calculated ground-state energies will increase with

the mass number. As an outlook we plan to investigate nuclei in the p- and sd-shell and

try to determine a different set of LECs to improve their description with the NN+NNN

interaction from χEFT. From the 4He ground-state energy calculations we learn that

the irreducible three-body contributions do not affect the convergence behavior signif-

icantly, but lead to an almost constant shift of the pure two-body results for a range

of Nmax model spaces. We will investigate whether this property also holds for heavier

nuclei and other states or observables. In this case one could use the pure two-body

interaction in a model space corresponding to Nmax, which is sufficiently large to obtain

the convergence, while the three-body contributions would be considered in a model

space with smaller Nmax. Using such a procedure would enable us to obtain the result

for a three-body interaction in a model space, which would not be reachable for a con-

ventional exact ab initio calculation with a three-body interaction.

Finally, we performed Hartree-Fock calculations for a set of closed-shell nuclei, where we

investigated the energies and charge radii of the ground states. In conclusion, the repul-

sive induced three-body contribution from the genuine two-body interaction improves

the Hartree-Fock result for both observables. Compared to the experiment the Hartree-

Fock ground states are underbound, but the general systematics of the ground-state en-

ergies can be reproduced. The charge radii are to small compared to the experiment, but

show a similar pattern. The consideration of the genuine three-body interaction leads

to a strong overbinding with increasing mass number and α parameter. This seems to

be related to induced four-body contributions from the genuine three-body interaction.
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As long as we are not able to include four-body interactions, the calculations using a

two-body interaction with induced three-body contribution provide better systematics

than the calculations with genuine three-body interaction.

In the future we will extend the application of the χEFT interaction to further nuclei

and observables, using also other many-body approaches. In particular the application

of many-body perturbation theory will be studied.
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A Appendix

A.1 Antisymmetrization in Jacobi basis

In this section we concentrate on the calculation of the coefficients of fractional parent-

age (CFPs) by diagonalizing the matrix of the antisymmetrizer represented in the Jacobi

basis |α〉. Note that the CFPs are m independent [14], therefore they are identical in the

complete and in the intrinsic basis

cα,i = {〈ncmlcm| ⊗ 〈EiJTMT |}JMJ {|ncmlcm〉 ⊗ |α〉}JMJ ,

= 〈EiJT |α〉 .

The major task to compute the CFPs, is to ascertain the matrix elements of the antisym-

metrizer in Jacobi basis 〈α|Â|α′〉.
First, we have a look at the Jacobi basis state. As mentioned in Sec. 4.5, |α〉 is anti-

symmetric under exchange of the particle 1 and 2. For the formula of the three-body

interaction matrix element and especially the T -coefficient (see Sec. 4.5) that does not

make a difference, if one has in mind that the |α〉 state reside in a 1↔2 antisymmet-

ric space. For the implementation of the T -coefficient this has the consequence, that

only the T -coefficients are nonzero, which have an even sum of tab + sab + l12. The

antisymmetrizer of particle 1 and 2, has the following definition in three-body space

Â12 =
1

2!
(P̂123 − P̂213) . (167)

If we apply the operator to an antisymmetric state, it will not change the state, since

Â12Â = ÂÂ12 = Â . (168)

We will use the special symmetry of the Jacobi state to rewrite the antisymmetrizer in

three-body space

Â =
1

3!
(P̂123 − P̂213 + P̂231 − P̂132 + P̂312 − P̂321) . (169)

Using P̂ijk = −P̂jik owing to the antisymmetry of particle 1 and 2 we obtain

Â =
1

3
(P̂123 + P̂231 + P̂312) ,

=
1

3
(1̂ + P̂231 + P̂312) .

113



Expressing the permutation operators by transposition operators yields

Â =
1

3
(1̂ + τ̂23τ̂12 + τ̂12τ̂23) .

Generally the transposition operators do not commute, but in the Jacobi basis τ̂12 = −1

and we end with the antisymmetrizer

Â =
1

3
(1̂− 2τ̂23) . (170)

Note that (170) holds only in a 1↔2 antisymmetric space. Now we will briefly describe

the concept of calculating the matrix elements

〈α|Â|α′〉 = 〈α|1
3
(1̂− 2τ̂23)|α′〉

= 〈[(n12l12, sab)j12, (n3l3, sc)j3]J, [(tatb)tab, tc]TMT |
1

3
(1̂− 2τ̂23)

× |[(n′
12l

′
12, s

′
ab)j

′
12, (n

′
3l

′
3, s

′
c)j

′
3]J

′, [(t′at
′
b)t

′
ab, t

′
c]T

′M ′
T 〉 .

(171)

Since the Jacobi basis is orthonormalized we only have to concentrate on the term with

the transposition operator τ̂23. In order to apply τ̂23 to a state we decouple the space,
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spin and isospin part, obtaining

〈[(n12l12, sab)j12, (n3l3, sc)j3]J, [(tatb)tab, tc]TMT |τ̂23

× |[(n′
12l

′
12, s

′
ab)j

′
12, (n

′
3l

′
3, s

′
c)j

′
3]J

′, [(t′at
′
b)t

′
ab, t

′
c]T

′M ′
T 〉

=
∑

LS

∑

L′S′

∑

MLMS

∑

M ′
LM

′
S

ĵ12ĵ
′
12L̂L̂

′ŜŜ ′ĵ3Ĵ
′
3

×











l12 sab j12

l3 sc j3

L S J





















l′12 s′ab j′12

l′3 s′c j′3

L′ S ′ J ′











c

(

L S J

ML MS MJ

)

c

(

L′ S ′ J ′

M ′
L M ′

S M ′
J

)

× 〈(n12l12, n3l3)LML|τ̂23|(n′
12l

′
12, n

′
3l

′
3)L

′M ′
L〉

× 〈(sab, sc)SMS|τ̂23|(s′ab, s′c)S ′M ′
S〉

× 〈(tab, tc)TMT |τ̂23|(t′ab, t′c)T ′M ′
T 〉 .

(172)

The spin 〈(sab, sc)SMS|τ̂23|(s′ab, s′c)S ′M ′
S〉 and isospin part 〈(tab, tc)TMT |τ̂23|(t′ab, t′c)T ′M ′

T 〉
have the same form in (172), therefore it is adequate to consider only one of these parts

and the space part 〈(n12l12, n3l3)LML|τ̂23|(n′
12l

′
12, n

′
3l

′
3)L

′M ′
L〉.
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However, we will just present the results, see [43] for a detailed derivation

Spin: 〈(sab, sc)SMS|τ̂23|(s′ab, s′c)S ′M ′
S〉

= δSS′δMSM
′
S
(−1)1+sab+s

′
ab ŝabŝ′ab

{

s′b s′a sab

s′c S ′ s′ab

}

.

Isospin: 〈(tab, tc)TMT |τ̂23|(t′ab, t′c)T ′M ′
T 〉

= δTT ′δMTM
′
T
(−1)1+tab+t

′
ab t̂abt̂′ab

{

t′b t′a tab

t′c T ′ t′ab

}

.

Space: 〈(n12l12, n3l3)LML|τ̂23|(n′
12l

′
12, n

′
3l

′
3)L

′M ′
L〉

= δLL′δMLM
′
L
δ2n12+l12+2n3+l3,2n′

12+l′12+2n′
3+l

′
3

× 〈〈2n12l12, 2n3l3|2n′
12l

′
12, 2n

′
3l

′
3;L〉〉 1

3
.

With all this formulas we are able to calculate the matrix of the antisymmetrizer in

Jacobi representation yielding the block matrix illustrated in Fig. 22. The last task is

to diagonalize the block matrix, which can be performed by diagonalizing every single

block separately. This operation provides the CFPs defining the antisymmetric Jacobi

states

|EiJT 〉 =
∑

α

cα,i|α〉 , (173)

where the states |α〉 must have the same quantum numbers E = 2n12 + l12 + 2n3 + l3, J

and T . Have in mind that there are several diagonalization methods leading to different

results for the CFPs.

For our implementation of the transformation code (Sec. (4.6)) we need to know the

number of antisymmetric Jacobi states for the given quantum numbers E, J, T . This

number is equal to the trace of an EJT -Block of the antisymmetrizer.
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〈α|Â|α̃〉 =

























EJT

E ′J ′T ′

E ′′J ′′T ′′

. . .

























Figure 22: Representation of the antisymmetrizer in Jacobi basis: The antisym-

metrizer only connects Jacobi states with same E, J, T , where E = n12 + l12 + n3 + l3 is

the energy quantum number of the intrinsic Jacobi state. Thence the matrix of the antisym-

metrizer in Jacobi representation, exhibit a EJT -block structure.

A.2 Conversion of two-body to three-body m-scheme matrix ele-

ments

In this chapter we want to calculate the three-body m-scheme matrix elements

a〈ψ(3)|V̂NN |ψ′(3)〉a of an irreducible two-body interaction V̂NN by using the two-body

m-scheme matrix elements a〈ψ(2)|V̂NN |ψ′(2)〉a of this interactions, with the k-body m-

scheme state

|ψ(k)〉a =
1√
k!

∑

P

(−1)P P̂
{

|α1〉 ⊗ ...⊗ |αk〉
}

= |α1...αk〉a , (174)

where P is the signature of the permutation operator P̂. In doing so we have to distin-

guish between three cases depending on the number of different single-particle states

|αi〉 in the three-body m-scheme states |ψ′(3)〉a and |ψ(3)〉a.
First case: Equal three-body states

The three-body matrix elements of the irreducible two-body interaction is given by

a〈ψ(3)|V̂NN |ψ(3)〉a = a〈ψ(3)|
∑

i<j

V̂ij |ψ(3)〉a = 3a〈ψ(3)|V̂12|ψ(3)〉a , (175)

where we used the antisymmetry of the m-scheme state. The operator V̂ij acts like the

irreducible two-body operator V̂NN in the two-body space of particle i and j and as an

identity operator in the other particle spaces. Inserting the antisymmetric three-body
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state in (175), yields

a〈ψ(3)|V̂NN |ψ(3)〉a = 3 · 1

3!

{

∑

P

(−1)P P̂〈α1α2α3|
}

V̂12

{

∑

P

(−1)P P̂|α1α2α3〉
}

,

=
1

2

∑

i<j

(〈αiαj | − 〈αjαi|) V̂NN (|αiαj〉 − |αjαi〉) ,

=
∑

i<j

a〈αiαj |V̂NN |αiαj〉a . (176)

From the first to the second line we used the property of the orthonormalized single-

particle basis. So we expressed the three-body matrix elements by the two-body matrix

elements a〈αiαj |V̂NN |αiαj〉a for the first case.

Second case: One different single-particle state

We have a look at the matrix elements of the three-body states |ψ(3)〉 = |α1α2α3〉 and

|ψ′(3)〉 = |α′
1α2α3〉

a〈ψ(3)|V̂NN |ψ′(3)〉a = a〈ψ(3)|
∑

i<j

V̂ij|ψ′(3)〉a ,

= 3 · 1

3!

{

∑

P

(−1)P P̂〈α1α2α3|
}

V̂12

{

∑

P

(−1)P P̂|α′
1α2α3〉

}

=
1

2

3
∑

i=2

(〈α1αi| − 〈αiα1|) V̂NN (|α′
1αi〉 − |αiα′

1〉)

=

2
∑

i=2

a〈α1αi|V̂NN |α′
1αi〉a . (177)

Note that their is only the sum over i, |α1〉 and |α′
1〉 are the different single-particle states

of the both three-body states.

Third case: Two different single-particle states

Using analogous steps as above, the matrix elements of the three-body states |ψ(3)〉 =

|α1α2α3〉 and |ψ′(3)〉 = |α′
1α

′
2α3〉 reads

a〈ψ(3)|V̂NN |ψ′(3)〉a =a 〈α1α2|V̂NN |α′
1α

′
2〉a . (178)

There is no fourth case, because the three-body matrix elements of an irreducible two-

body interaction, are zero for three different single-particle states in the bra and ket,

due to the orthogonality of the single particle basis.

118



A.3 NN+NNN interactions in four-body basis

We point out why it is necessary to distinguish between the NN and NNN interaction

instead of using the three-body matrix elements of a NN+NNN SRG-transformed inter-

action without a distinction. We use the notation introduced in Sec. 5.2.

For a nucleus with A = 3 nucleons, that would be a right choice. But if we investigate

a nuclei with more nucleons, e.g. a nucleus with A = 4, we have to perform a cluster

expansion to construct four-body matrix elements out of the NN+NNN matrix elements.

To do this we have to treat the NN and NNN matrix elements in a different way. To get

the four-body matrix elements out of the NN matrix elements one has to sum up the

permuted two-body matrix elements

〈V [2]
NN〉(4) = 〈V [2]

NN〉
(2)
12 + 〈V [2]

NN〉
(2)
13 + 〈V [2]

NN〉
(2)
14 + 〈V [2]

NN〉
(2)
23 + 〈V [2]

NN〉
(2)
24 + 〈V [2]

NN〉
(2)
34 , (179)

where 〈V [2]
NN〉

(2)
ij means the NN interaction operator applied in the two-body space of

particle i and j (analog for the three-body matrix elements). The NNN interaction matrix

elements in four-body space are given as

〈V [3]
NNN〉(4) = 〈V [3]

NNN〉
(3)
123 + 〈V [3]

NNN〉
(3)
124 + 〈V [3]

NNN〉
(3)
134 + 〈V [3]

NNN〉
(3)
234 , (180)

yielding the NN+NNN interaction in the four-body space

〈V [2,3]
NN+NNN〉(4) = 〈V [2]

NN〉(4) + 〈V [3]
NNN〉(4)

= 〈V [2]
NN〉

(2)
12 + 〈V [2]

NN〉
(2)
13 + 〈V [2]

NN〉
(2)
14 + 〈V [2]

NN〉
(2)
23

+〈V [2]
NN〉

(2)
24 + 〈V [2]

NN〉
(2)
34 (181)

+〈V [3]
NNN〉

(3)
123 + 〈V [3]

NNN〉
(3)
124 + 〈V [3]

NNN〉
(3)
134 + 〈V [3]

NNN〉
(3)
234 .

Let us concentrate on the three-body space

〈V [2]
NN〉(3) = 〈V [2]

NN〉
(2)
12 + 〈V [2]

NN〉
(2)
13 + 〈V [2]

NN〉
(2)
23 , (182)

〈V [3]
NNN〉(3) = 〈V [3]

NNN〉
(3)
123 . (183)
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So the NN+NNN interaction in the three-body space is

〈V [2,3]
NN+NNN〉(3) = 〈V [2]

NN〉(3) + 〈V [3]
NNN〉(3) = 〈V [2]

NN〉
(2)
12 + 〈V [2]

NN 〉
(2)
13 + 〈V [2]

NN〉
(2)
23 + 〈V [3]

NNN〉
(3)
123 .

(184)

If we would use the NN+NNN matrix elements in the same way as the NNN matrix

elements to construct the four-body matrix elements we would yield

〈V [2,3]
NN+NNN〉(4)

?
= 〈V [3]

NN+NNN〉
(3)
123 + 〈V [3]

NN+NNN〉
(3)
124 + 〈V [3]

NN+NNN〉
(3)
134 + 〈V [3]

NN+NNN〉
(3)
234 ,

= 2 ·
(

〈V [2]
NN〉

(2)
12 + 〈V [2]

NN〉
(2)
13 + 〈V [2]

NN〉
(2)
14 + 〈V [2]

NN〉
(2)
23 + 〈V [2]

NN〉
(2)
24 + 〈V [2]

NN〉
(2)
34

)

+ 〈V [3]
NNN〉

(3)
123 + 〈V [3]

NNN〉
(3)
124 + 〈V [3]

NNN〉
(3)
134 + 〈V [3]

NNN〉
(3)
234 ,

6= 〈V [2,3]
NN+NNN〉(4) .

As we can see the two-body interaction part of 〈V [2,3]
NN+NNN〉(4) scales with another factor

than the 3-body interaction part. Therefore we have to isolate these parts from each

other. To investigate nuclei with A > 3.
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