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Abstract. We investigate the ab-initio phase diagram of ultraddib atoms in an one-
dimensional two-color superlattice. Using single-paetizand structure calculations we map
the experimental setup onto the parameters of the Bose-dfdihodel. This ab-initio ansatz
allows us to express the phase diagrams in terms of the ex@etal control parameters, i.e.,
the intensities of the lasers that form the optical supickt In order to solve the many-
body problem for experimental system sizes we adopt theitgemsitrix renormalization-
group algorithm. A detailed study of convergence and firize- éfects for all observables is
presented. Our results show that all relevant quantum ghase superfluid, Mott-insulator,
and quasi Bose-glass, can be accessed through intensétiiaaof the lasers alone. However,
it turns out that the phase diagram is strondgtgeted by the longitudinal trapping potential.

PACS numbers: 67.85.Hj; 03.75.Lm; 67.85.-d
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1. Introduction

Ultracold atomic gases in optical lattices have been a topiactive research for about a
decade now. One of the research thrusts is the use of thasensyas experimental quantum
simulators for a variety of lattice models and allow for dleth investigations of strongly
correlated quantum systems in a perfectly controllablérenient [1, 2]. By tuning the laser
intensities of the optical lattice alone, one can seamledisle a system through quantum
phase transitions like the superfluid to Mott-insulatonsigion [3, 4]. In so-called two-color
superlattices, additional lasers are used to introduegutar lattice topologies which give
rise to exotic quantum phases like a quasi Bose-glass phasg [

Strongly correlated particles in periodic potentials aedlwescribed by Hubbard-type
models. Together with powerful many-body methods thissléor theoretical studies of the
phase diagram of ultracold atomic gases in optical lat{i¢e8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25]. However, a one-to-one eoispn between experiment
and theory has rarely been done so far because these thabsttidies usually adopt the
generic parameters of the Hubbard model to span the phagenia Such a phase diagram
of ultracold bosonic atoms in a two-color superlattice isvgh in Fig. 1(a).

In this work we establish a closer link to experiments by catimg the phase diagrams
with respect to the natural experimental control paramsetghich are the intensitiesy s;)
of the two lasers generating the one-dimensional optigaésattice. Such an experiment-
specific phase diagram is shown in Fig. 1(b). In order to ptatiis type of phase diagram
we start with single-particle band structure calculatitsnextract the Hubbard parameters for
a specific experimental setup. Then, the many-body probsesolived using the density-
matrix renormalization group (DMRG) algorithm. Togetheittwquantum Monte Carlo
(QMC) methods [25], the DMRG is one of the most powerful mé@agy techniques for the
treatment of one-dimensional lattice problems. Afteradtricing and benchmarking our band
structure plus DMRG approach, we discuss the phase diagrtma ,, s;)-plane for diterent
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Figure 1. (color online) Contour plots of the energy gap computed gisdMRG for a
commensurate superlattice with= N = 30 as (a) a function of the generic Hubbard
parameters and (b) a function of the experimental lasengities. The labels mark the
domains of the superfluid (SF) phase, the homogeneous kmitator (MI) phase, and the
guasi Bose-glass (BG) phase (taken from Ref. [22]).
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observables in this strictly one-dimensional frameworke Taser wavelengths, longitudinal
and transverse trapping frequencies, and atomic speaeshassen from a range covering
recent experimental setups [4, 5, 6]. We focus on the deperdef the phase diagrams on
the transverse trapping frequenoy and the longitudinal trapping frequenay, which was
not discussed in detail before.

2. 1D Bose-Hubbard M oddl and Band Structure Calculations

The single-band Bose-Hubbard model [26] is a widely usetiénaork for studying the ultra-
low temperature physics of strongly correlated, neutrahmet in sdficiently deep optical
lattices. We assume a one-dimensional lattice Wihes and\N bosonic atoms. For each site
we define the creation (annihilation) operatq?s(é“i) with respect to the localized Wannier
states corresponding to the lowest Bloch band. The mearpation-number at each lattice
site is given by, = &'a. The Bose-Hubbard Hamiltonian

[
A L 1 ) ) )
H :Zl:{_‘]i’”l(aizlai"'air ai+1)+§Ui (-1)n+¢ ni} (1)

accounts for three basic processes: the tunneling of atoradjacent sites, the on-site two-
body interaction, and the on-site potential energy. The-d#pendent Hubbard parameters
Jiir1, Ui, andg define the relative strengths of the individual terms andaiarall information
about depth and topology of the optical potential, and tkeraction between the atoms. The
phase diagrams spanned directly by these parametersaltypisingJ;;,; = J, U; = U and
some ansatz fog to account for superlattice structures, are extensivedgutised in Refs.
[12, 13, 14, 15, 16, 19, 20, 21]. More recently, the on-sitergiese, were calculated directly
from the parameters of the optical superlattice to providéoaer connection to experiment
[23].

In this work, our aim is a discussion of the phase diagramgusie experimental
parameters directly and not the generic Hubbard paraméiethis end, an explicit treatment
of the underlying single-particle physics is necessaryeréfore, we start from the optical
potential generated by two orthogonal polarized staneiage laser-fields with wavelengths
A1 andA, and the respective potential depthsnds,. Furthermore, we consider an additional
harmonic potential with frequenay, accounting for the intensity variation of the optical

lattice through the focusing of the laser beams and a magtmapping potential. Using the
h2

recoil energyE,, = ;- of atoms with massn as a natural energy scale and a phase ghift
between the standing' waves, the potential along the x-aeesr
21 . o(2r 1
V(X) = s, S|n2(/l—x+¢)+ SE;, S|n2(/l—x)+ Emwixz. (2)
1 2

Throughout this work we consider a setup definedipy= 800 nm ands, for the primary

laser generating the optical lattice potential and= 1000 nm ands, for the secondary laser
generating the two-color superlattice topology with a ghstsft of¢p = 7/4.This leads to the
commensurate superlattice that was also used in previdigations [14, 15, 19, 20, 21, 22].
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Before we are able to extract the Hubbard parameters for engimtential, we have
to determine the localized Wannier functions via a singigiple band structure calculation.
For a periodic potentialy = 0, wyx = 0) with | sites, we numerically obtain the solutions for
the Bloch functiong(X) in the lowest energy band. The quasimomenta are quantizbd w
respect to the sizeof the optical lattice and are labeledbwithk = 0,1,---,1-1. A Fourier
transformation of the Bloch functions with respect to thagjmomenta in the subspace of the
lowest energy band leads to the Wannier functions

W) = \—} kZ: (e FHig 3)

The arbitrary phaseg, are chosen such that the resulting Wannier functions arennadly
localized at their individual lattice siie Using these maximally localized Wannier functions,
the Hubbard parameters are obtained via the matrix elenoént® individual terms of the
real-space Hamiltonian [27]

=Jij = fdx W ( )(—Enp +V(x))wj(x)
- [[axwo9(- g2 + Ve @

Ui :Zthasfdxlwi(x)l“.

The contact interaction is defined by the three-dimensis+vahve scattering lengthy. The
transverse directions are integrated out assuming Gaussigefunctions with frequencies
wy = w; = w, [2]. This one-dimensional description is valid as long as tiimneling in
the transverse directions is strongly suppressed, i.égn@sas the laser intensities in these
directions are dfticiently large. Following Refs. [5, 6] we consider a gas®G®b atoms
with s-wave scattering lengtl, = 109 g, and we assume a transverse trapping frequency
w, = 21 x 17 kHz. In the last part of this work we will discuss the changethe phase
diagram induced by a fierent value otv, .

As a first application of our band structure calculations vadéidate the single-band
approximation in the Hubbard model. As a by-product fromdakeulations of the Hubbard
parameters we obtain from the single-particle band straatalculation the energy gaxt
between the first and the second band of Bloch functions. leThwe list some values of
A& together with the Hubbard parametéfsaandJ in the relevant parameter range. Siice
is always about one order of magnitude larger tbaandJ, we conclude that excitations to
energetically higher Bloch bands induced by tunneling tererction can be neglected even
for shallow optical lattices.

As a second application of our band structure calculatioascteck for the validity
of the restriction to nearest-neighbor tunneling and ¢&-svo-body interactions. For the
weakly and the strongly interacting regime, we calculateréspective matrix elements of
the Hubbard Hamiltonian using Egs. (4) abd; = 2w, fas [dx [wi(X)Pw;(x)]? for the
interaction term. The results are shown in Table 2. Even énwibakly interacting regime
(s2 = 2), the nearest-neighbor tunneling exceeds more-distaneting processes by at least
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S 2 4 6 8 10 12 14 16
AE/E;, | 1.00 | 197 | 290 | 3.77 | 457 | 531 | 597 | 6.58
U/E;, | 0.143 | 0.205| 0.237 | 0.261 | 0.280 | 0.297 | 0.311 | 0.323
J/Er, | 0.143| 0.086 | 0.051| 0.031| 0.019 | 0.012 | 0.008 | 0.005
u/J 1.138 | 2407 | 4671 | 8480 | 1462 | 2422 | 38.84 | 60.64

Table 1. Calculations of the Hubbard parametérsand J and the energy gap& between
first and second Bloch band for a homogeneous latsge=(0, wyx = 0) with 2, = 800 nm,
w, =27 x 17 kHz,as = 109rgon, and massn of 8'Rb .

$ =2 Ui/Jis1 = 1.38)

i—j | o 1 2 3 2 5
Jij/Er, - 101428 -0.02 | 0.0048 | -0.0014| ~ 10
Ui i/E:, | 0.162| 0.0035| =~ 10 ~107° ~ 10 ~ 1077
S =10 Ui/ Jij+1 = 14.62)

i—j | o 1 2 3 2 5
Ji/En | - |00192|~-10%| ~10° | ~-10°% | ~107
Uij/E, | 028 | ~10° | ~10° | <102 | <102 | <102

Table 2. Higher order tunneling and interaction energies for a hoenegus latticeg, = 0,
wx = 0) with 2, = 800 nmw, = 21 x 17 kHz,as = 109rgoh,, and massn of 8'Rb .

one order of magnitude. The interaction matrix element &giboring lattice sites is already
two orders of magnitude smaller than the on-site interaatmatrix element. In the strongly
interacting regimeg, = 10) we already have two orders of magnitude betw&en andJ;;,»
and five orders of magnitude betweldn andU;;,;. Since we focus on the intermediate and
strong interaction regime, the restriction@,; andU; is well justified.

So far we have discussed the limit of a homogeneous optittadda As soon as the
secondary laser which generates the superlattice, or aiticedd harmonic potential are
taken into account, a straight-forward band structureutaiion is no longer doable, because
Bloch functions are only defined for strictly periodic paiafs. Therefore, in order to extract
site-dependent Hubbard parameters also for an inhomogsnattice we are limited to an
approximate scheme to obtain localized Wannier functidvis.use two dterent approaches
to extract the site-dependent Hubbard parameters.

As a simple ansatz, we consider the secondary laser as aljzitm of the strong
primary laser ¢ < s;). The Wannier functions are extracted from a conventioraidb
structure calculation for a homogeneous lattice definedhay drimary laser alone. In
this approximation the Wannier functions are identical éach lattice site. Using these
Wannier functions the Hubbard parameters of each site oktiperlattice are computed.
The site-dependence of the parameters thus results esadiuBiom the superlattice potential
V(x) entering into the matrix elements (4) and not from a siteethelence of the Wannier
functions themselves. As a result, the paramétecharacterizing the on-site interaction
remains constant for all lattice sites. An exemplary settefdependent Hubbard parameters
calculated in this scheme is shown in Fig. 2. Please notevibalways subtract a global
energy constant from the Hamiltonian to sgh, = min{e} = 0.
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Figure 2. Site-dependent Hubbard parameters obtained from baraistewcalculations for a
two-color superlattice. Simple ansatz (gray symbols) aicidations with individual Wannier
functions (black symbols), both f& = 10 ands; = 1 with 1, = 800 nm,A; = 1000 nm,
w, = 21 x 17 kHz,as = 109rgon, and massn of 8’Rb. Lines to guide the eye.

In a more sophisticated scheme we determine the site-dependannier functions
individually for each site of the inhomogeneous latticengsa standard band structure
calculation for a periodic lattice with a lattice amplitudefined by the local depth of the
inhomogeneous potential at that particular site. In thiy,whe shape of the Wannier
functions depends nontrivially on the local structure & guperlattice potential. The only
reason why the set of Wannier functions determined in thig eannot be considered as
an exact set of localized basis functions results from thanmmal violation of orthogonality
for the Wannier functions of neighboring sites. Their mlitmgerlap is nonzero but always
below 1% in the parameter regime considered in all our catmiis. Using these individual
localized Wannier functions all site-dependent Hubbardhip@ters are computed without
further approximations. An exemplary set of results is alsown in Fig. 2.

The comparison of the site-dependent Hubbard parametarsl J;;,; obtained by the
two schemes shows very littlefterence. This leads to the conclusion that the second and
superior scheme provides afciently accurate description of the Hubbard parameterisan t
parameter range under consideration.

The dominant fect on the Hubbard parameters induced by the superlattibe spatial
variation of the on-site energies. This is in agreement with the approximation of the
superlattice through this parameter alone [14, 15, 19, 2D,Rowever, the tunneling matrix
elementJ;;,1, which essentially depends on the potential barrier batvgées andi + 1, also
shows a significant variation. The on-site interaction maementU; exhibits only a weak
variation which is introduced by the site-dependence oMfa@nier functions in our second
scheme.
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Figure 3. Sketch of the DMRG cycle. The black dot in step 5 marks thetaudil site that
was attached without increasing the dimension of the Hillgace of the block. For details
see text.

3. Density-M atrix Renor malization-Group

We solve the many-body problem associated with the BoseébbiabHamiltonian via the
density-matrix renormalization-group (DMRG) algorith@8| 29] which is among the most
powerful quasi-exact methods available for one-dimeraditaitice models. The so-called
infinite-size DMRG algorithm is based on an iterative gragvprocedure. The algorithm
is schematically depicted in Fig. 3. The individual steps: af0) We start with a block
composed of, sites and up td\,, particles described in a Fock spagg of dimensionDy,.
Since the Hubbard Hamiltonian conserves the particle nuntbbe matrix representation of
the block Hamiltonian has a block-diagonal form. Each blo€khe matrix corresponds
to a Hilbert space with a fixed particle number. (1) To the klae attach an additional
lattice site with up toNs particles described in a Fock spaggto build the Fock space of
the systentfgys = ¥, ® Fs With dimensionDgys = DyDs. Again the matrix representation
of the system Hamiltonian is block diagonal. +® In order to simulate a larger lattice,
the system is coupled to an analogously constructed emaean yielding the superblock
Hsuper = Fsys ® Fenv Of dimensionDgyper Which is projected to a fixed total particle number,
satisfyingN/l = 1 in our case. (3) The ground stdig) is obtained by diagonalizing the
superblock Hamiltonian where one can exploit the sparsaofegbe Hamilton matrix and use
efficient Lanzcos or Jacobi-Davidson algorithms. (4) The redutensity-matrix is formed by
tracing out the environmept®® = Treny |¥oX¥o| . (4+5) The Dy, eigenvectors of the reduced
density-matrix for the largest eigenvalues are used to 8paRock space for a new blogi
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of length I, = I, + 1. These eigenvectors build a non-unitary transformatiatrisnO which
is employed to construct the new block Hamiltontdn = O'HsyO. All operators coupling
the system to the environment (which will later couple ther idock to the new site) and all
observables have to be transformed accordingly. This ¢galepeated until the final length
of the lattice is reached.

The key feature of this algorithm lies in the use of the eigetors with largest
eigenvalues of the reduced density-matrix as a new, traddadsis for the new block. One
can show that this procedure yields an optimized wavefancgiives the best approximation
to expectation values of observables, and preserves a maxiof entanglement between
system end environment [29].

The error in the DMRG algorithm is due to the loss of inforroatduring the non-unitary
basis transformations. It can be estimated by summing ugitienvalues of the discarded
eigenvectors. A smaller sum consequently means a smadigooinformation. In addition
one has to consider the restriction to a maximal number dfgbes maxn;} per lattice site.

In the complete Hilbert space this would be equal the totatlmer of particlesN. In general,
the stronger the correlations between the particles,the.largelﬂ, the smaller the sum of
the residual eigenvalues and the better the approximation.

If disorder is introduced, then only at the very last stephaf gjrowing procedure the
full information about the superlattice topology is avalito the Hamiltonian. This leads
to a poor approximation of the ground state when using thaitaefsize algorithm only. As
an improvement the finite-size DMRG is applied. After a costglrun of the infinite-size
algorithm up to the desired length of the lattice, the lergjtthe superblock is kept fixed and
the system grows on the expense of the environment and visa.vBuring a back and forth
sweeping, the superlattice topology is sampled while thailHanian always takes the whole
lattice into account. The sweeping continues until all osgles are converged.

The way the transformation matricésare constructed is not uniquely defined by the
DMRG algorithm. We would like to emphasize that the reducedsity-matrixp™ is
block diagonal and each block has a well defined particle mum®ne can either use the
eigenvectors with the largest eigenvalues for each subspie®?, or one can strictly use
the firstDy, eigenvectors with the largest eigenvalues not accounanghke block-diagonal
structure ofp". In the first scheme one might discard eigenvectors withbézeigenvalues
if the respective subspace has reached its preassignedgione In the second scheme one
might discard a complete subspace of a certain particle Bumixase it has no eigenvector
with corresponding eigenvalue among the largesteigenvalues. If in a subsequent step
of the finite size algorithm this subspace becomes impogdgatn, this might prevent the
algorithm from converging to the proper ground state. This lse overcome by adding noise
to the transformation matric&® during the first few sweeps in the finite-size algorithm with
the aim of recovering lost subspaces again [30]. As a thmatesy one can keep at least
one or a few eigenstates from each subspace even if themnvailges are not among the
largestDy, eigenvalues. We employ the first strategy because it is teglhyvery convenient.
However, we checked individual eigenspectra®f and confirmed that none of the discarded
eigenvectors had sizable eigenvalues.
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4. Observables

In this section, we introduce the set of observables we eymalalistinguish the dierent
guantum phases.

Maximum Number Fluctuation.The number fluctuation at lattice siteis given by the
variance of the occupation number

i = (D) — (2. (5)

The number fluctuation provides information about the looability of the atoms in the
optical lattice. In order to reduce the amount of informatwee only consider the maximum
number fluctuation through the lattice

Omax = MaXoi}. (6)

Condensate Fraction. In order to determine the fraction of atoms that undergo Heisstein
condensation we adopt the Onsager-Penrose criterion fRLtalculate the natural orbitals
via the eigensystem of the one-body density-matﬁjﬂ(: <é?éj>. The largest eigenvalus,

of the one-body density-matrix is associated with the nurobeondensed atoms and defines

the condensate fraction
N
f, = WC , (7)
Visibility. In the experiment, most information about the atoms in thecaplattice is
extracted from the interference pattern obtained by the-tiaflight method. The interference
patternf (¢) is intimately connected to the quasi-momentum structfitteomany-body state
and can be calculated from the Fourier transformation obtieebody density-matrix [12]

1O
I(5) = T.Zl gi-hop®. 8)
i,j=
The visibility of the interference fringes is obtained from the maxima and minima of the
interference pattern
. maxZ(6)} — min{Z(5)}
"~ maxZ(5)} + min{Z(6)} "

(9)

Energy Gap. Measuring the excitation spectrum of the system also pesvi sensitive
probe for the dterent quantum phases. In the experiment one employs twimplBragg
spectroscopy via an intensity modulation of the opticalidaf4, 6]. The width of the
central interference peak is used as a measure of the emarggfer into the atomic cloud
[4]. The detailed structure of the excitation spectrum hasnbinvestigated theoretically
[19, 20, 17, 18]. Basic information about the excitationctpen is given by the energy
gapAE, which is the minimum amount of energy needed to excite tkeesy. It is defined by
the diference between the energy of the first excited state and dhedistate

AE = El - EQ. (10)
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Figure 4. Benchmark of the convergence of the DMRG calculations. Flefinto right:

energy gapAE, maximum number fluctuatiooryax, condensate fractiof, and visibility v

foral = N = 30 lattice. Upper panels: SF-MI transition at fixeg/J = 0. Lower panels:
MI-BG transition at fixedJ/J = 30. All plots show three lines corresponding to &elient
basis choice: DMRG-A (dotted), DMRG-B (dashed), and DMRGsdalid).

An inherent complication in the DMRG framework is the caitidn of observables.
This is because a DMRG calculation does not yield eigerstdtde Hamiltonian in a simple
occupation-number basis representation which could beéttessompute observables directly.
Rather, the matrix representations of all observables talve dragged through all the cycles
of the DRMG algorithm, i.e., they have to undergo all the yossn-unitary basis rotations.
This is why we thoroughly test our DMRG calculations for cergence.

5. Benchmark of the DMRG algorithm

5.1. Convergence

Before we employ the DMRG algorithm to compute phase diagrmrealistic lattice sizes
and particle numbers, we have to assess the precision olutherical DMRG results. We
follow a twofold strategy.

First, we compare results for the various observables mbtiaby DMRG calculations
with results from an exact diagonalization scheme [14, dbfsmall system with = N =
10, where the latter calculations are feasible. In the pligsgram shown in Fig. 1(a) we
observed an error of the DMRG calculation below 1% for alleskables atJ/J > 3 already
for a small DMRG basis with dimensidDg,per = 338. The complete Hilbert space used in
the exact diagonalization scheme has a dimensidh6f92378 for thd = N = 10 system.

Second, in order to validate the results of our DMRG calooiest for larger lattices,
where no exact calculations in the complete Hilbert spaee asmilable, we study the
dependence of the DMRG results on basis sizes and partioidentruncations used in the
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Dy Ds Dsuper max{n;}
DMRG-A | 21 | 126 | 446 5
DMRG-B | 56 | 336 | 5073 5
DMRG-C | 210 | 1470 | 68356 6

Table 3. Bases used for studying the convergence of the DRMG calonkat See text for
details.

algorithm [28, 29]. If the results for all observables do nhange while the bases size is
increased further, the calculation is converged to thetexsalt. The diferent basis sets we
employ are summarized in Table 3, where fmgxis the maximum number of particles per
lattice site included in the basis.

For all following calculations we applied three sweeps i@ fimite-size algorithm. For
simplicity we consider straight lines through the paramptane shown in Fig. 1(a).

Superfluid to Mott-insulatoref,ox = 0). The upper row of images in Fig. 4 shows the
observables across the superfluid to Mott-insulator phrassition calculated using the three
bases specified in Tab. 3. Since the DMRG algorithm is tailldce describe strongly
correlated systems, we expect better agreement of the thffsent calculations with
increasingU/J. Apart from the energy gap this is confirmed by our calcutaioOnly for
U/J < 3 we observe small ffierences between the calculations éo4. and f.. For all
values ofU/J the energy gap is slightly larger when employing the DMRGa&ib. This is
because we do not explicitly target at the first excited dtat¢éhe calculation of the energy
gap. Although the ground state has already converged evéndemall DMRG-A basis, the
first excited state needs a larger basis to converge as well.

Mott-insulator to quasi Bose-glass (U = 30). We already pointed out the importance to
use the finite-size DMRG algorithm in order to obtain a cogeedrground state especially
when irregularities in the optical lattice are considerBle results of the observables through
the Mott-insulator to quasi Bose-glass transition deplictethe lower panel of Fig. 4 show
that the finite-size algorithm is perfectly converged fdrvalues ofenay/J already for the
DMRG-A basis.

Since, in this manuscript the focus is on the regime of ineshate and strong
interactions, we conclude from our findings that already DiMRG-A basis is suitable to
approximate all observables withfiaient precision. Nevertheless, we decided to use the
larger DMRG-B basis for all following calculations. Calatibns based on this basis are
still numerically feasible on a desktop PC while providingpg results also in the weakly
interacting limit.

5.2. Size dependence

We also have to address the dependence of the observablvaiiles on the size of the
system. Current experiments typically have betweé&n 10* to 2- 10° atoms in the optical
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Figure5. Finite size analysis for = N = 10 (dotted)| = N = 30 (dashed), and= N = 50
(solid) based on the DMRG-B basis. From left to right: eneggp AE, maximum number
fluctuationomax, condensate fractiofy, and visibility v. Upper panels: SF-MI transition at
fixed emax/J = 0. Lower panels: MI-BG transition at fixdd/J = 30.

lattices [5, 6], i.e., roughly between 25-60 atoms in eacrdimensional array of sites. Thus,
we will compare DMRG calculations fdr= N = 10,1 = N = 30, andl = N = 50 all using
the DMRG-B basis. In analogy to the above discussion, we giots through the superfluid
to Mott-insulator transition and the Mott-insulator to guBose-glass transition.

Superfluid to Mott-insulatore,.x/J = 0). The results are shown in the upper row of Fig. 5.
By definition, the maximum number fluctuation is a local olabte which is calculated at
one individual lattice site and is, therefore, practicatigependent of the size of the lattice.
The energy gap as well as the visibility show only smalietences between the small and the
two larger lattices indicating a minor dependence on lengthe lattice for those observables.
However, the condensate fraction depends systematiaallyeosize of the lattice. The larger
the lattice is, the steeper is the decreasé a@froundU/J ~ 5. One can easily show that for
U/J — oo andl = N the condensate fraction scales likex 1/1 [12] which is in-line with
our calculations.

We also performed an additional calculation for the large N = 50 lattice using
the DMRG-C basis. These results are not shown in the plotausecthere are no sizable
deviations to calculations with the DMRG-B basis. Only fbetcondensate fraction at
U/J < 3 the DMRG-C basis yields slightly larger values, efg= 0.68 instead off, = 0.63
atU/J = 1. This indicates the slower convergence of the DMRG alforiin the weakly
interacting regime. The results for all other observabéssain essentially unchanged when
going to the larger DMRG-C basis.
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Figure 6. (color online) Phase diagram in terms of energy gﬁ:ﬂ_ condensate fraction
fe, maximum number fluctuatioormay, and visibility v for | = N = 30, as = 109 rgonr,
w, =21 %x 17 kHz, andwy = 0 Hz.

Mott-insulator to quasi Bose-glass (U = 30). The lower row of Fig. 5 reveals that the
energy gap as well as the maximum number fluctuation do natgehavith the size of
the lattice across the Mott-insulator to quasi Bose-glemssition. The condensate fraction
exhibits the previously mentionedI1scaling which is characteristic for large valuedbfJ.
The visibility in the small lattice is again slightly smalleompared to the two larger lattices.
Considering this analysis, we conclude that calculatioctidingN = 30 particles on
| = 30 lattice sites are skicient to describe realistic experiments. Firstly, becdhisesystem
size is right in the experimental range. And secondly, wh@ngyto larger systems, there are
only small and predictable changes for the condensatedrasthereas all other observables
remain unchanged.

6. Ab-Initio Phase Diagrams

After the validation of our framework we now discuss the ekpent-specific phase diagram
motivated by the experiments [5, 6]. We consider an ult&®b gas with scattering length
as = 109 gy, in an optical lattice with wavelength, = 800 nm. The superlattice topology
is generated by an additional laser with wavelength 1000 nm and relative phase shift of
¢ = /4. The respective optical potential depth resulting fromttkio lasers are given by the
dimensionless parametessands;. The remaining transverse lasers of the optical trap enter
via the transverse trapping frequenoy which is chosen to be2x 17 kHz. Initially, the
longitudinal trapping frequenayy is set to 0 Hz.

We have already used these parameters in Fig. 1 to compaexieeiment-specific
phase diagram spanned By and s; with a generic phase diagram spannedUjd and
€max/J neglecting the site dependencelfand J. Both panels of Fig. 1 show the energy
gapAE for I = N = 30 obtained from a DMRG calculation using the DMRG-B basiac&
the variation ofs, and s; affects all Hubbard parameters simultaneously, #es() phase
diagram is distorted in comparison to the/(, emax/J) phase diagram. However, the(s;)
phase diagram reveals that all relevant quantum phasesassible through the variation of
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the intensity of the two longitudinal lasers alone, whilejing the other parameters fixed.

A detailed analysis of the phase diagram for this set of patars is given in Figs. 6(a)-
(d), where we show the energy gap, the condensate fradtiemaximum number fluctuation,
and the visibility, respectively.

The superfluid (SF) phase is characterized by a vanishinggigap, large condensate
fraction, large number fluctuations, and maximum visipilAlthough we do not compute the
most stringent order parameter for the SF phase — the suidefrfiction [8, 12, 23] — the
above signatures allow us to identify the SF phase in th@negfismalls, up tos, < 6 in the
whole range ok, shown here. Due to the shallow optical potential in thissadhe tunneling
term in the Hubbard Hamiltonian (1) dominates. This resulis coherent many-body state
which is a prerequisite for the SF phase. Bpe 6 along O< s; < 2 the mean interaction
energy isU/J ~ 4.5 which explains the presence of the SF phase in the whole rairsg.

In a homogeneous lattice;(= 0 or enax/J = 0) a transition from the SF phase to the
homogeneous Mott-insulating (MI) phase occurs ardupd ~ 5 [23, 12] which corresponds
to s, = 6.25. This is in-line with our results, because arowd: 6 the energy gap steeply
increases while the condensate fraction, the number fltiohs and the visibility decrease.
At s, = 16 ands; = 0 the ratio ofU/J is 60 and the system is deep in the homogeneous
MI phase showing the characteristic large energy gap andhiag number fluctuations,
condensate fraction, and visibility.

If we now increases; at fixeds, = 16, the modulation of the site-dependent Hubbard
parameters grows rapidly and saf 0.6 the spread of the on-site energies becomes
comparable to the average interaction energy, é:./J ~ U/J. Thus, despite the strong
repulsive interaction, it becomes advantageous to movéoam faom a site with large on-site
energy to an already occupied site with small on-site enel®ye to this redistribution of
particles the homogeneous MI phase is broken up and thattoan® the quasi Bose-glass
(BG) phase occurs. The commensurate superlattice defingg £y800 nm,1; = 1000 nm,
and¢ = n/4 exhibits only 5 diferent on-site energies. This small set of on-site energaass!
to extended domains in the phase diagram. Two of these demainvisible in Fig. 6(a).
Only in the transition region between them the energy gajshes.

We emphasize that the quasi Bose-glass phase emerging mraartsurate two-color
superlattice is not a gapless phase like the genuine B@sssglhich only occurs in an infinite
lattice with truly random on-site energies. Therefore, vge the term quasi Bose-glass.
Intuitively the genuine Bose-glass results from a contusudistribution of on-site energies
permitting the construction of excited states by movingipks to sites with infinitesimally
larger on-site energies associated with infinitesimallalkraxcitation energies. We have
approached this limit using an incommensurate supersitia previous publication [22].

X

7. Longitudinal Trapping Frequency wy

Since the aim of this manuscript is the calculation of an e@rpent specific phase diagram
for a realistic experimental setup, it is compulsory to ¢desan additional magnetic trapping
potential and the intensity variation of the optical latiihrough the focusing of the laser
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S 2 10 12 16

J/Ey, 0.1428 | 0.0192 0.0123 | 0.0053

U/E., 0.1624 | 0.2505 0.2966 | 0.3232

u/J 11378 | 14.623 24.222 | 60.636
wy = 21 x 25 Hz

€max/Er, || 0.02431| 0.02431 | 0.02431 | 0.02431

€max/J 0.17052| 1.26739 | 1.98446 | 4.55600
wx = 21 x50 Hz

€max/Er, || 0.09737| 0.09737 | 0.09737 | 0.09737

€max/J 0.68196| 5.06927 | 7.937412| 182389
wyx =21 X 75 Hz

€max/Er, || 0.21909| 0.21909 | 0.21909 | 0.21909

€max/J 1.53407| 114048 | 17.8576 | 41.0344
wy = 21 x 100 Hz

€max/Er, || 0.38950| 0.38950 | 0.38950 | 0.38950

€max/J 272634 | 20.27242| 317430 | 729423

Table 4. Comparison of the Hubbard parameters to analyiexeof the longitudinal trapping
potential. The parameters ar& = 800 nm,1; = 1000 nm¢ = n/4,s = 0, w, = 27 x 17
kHz, and mass and scattering lengti¥ Gb.

beams. To this end we have introduced a harmonic potentiblfregquencywy in Eq. (2).
Typical experimental parameters range framn= 2r x 10 Hz to Zr x 75 Hz [4, 5, 6].

To get a impression of the energy scales, we show some vatuethé Hubbard
parameters obtained by our band structure approach in TalBy4ettings; = 0 the on-
site energies are solely due to the additional harmonicnpiale At the outer rims of the
lattice (sites 1 and 30) they have the vatyg:.

Up to wy = 21 X 25 Hz, enax/J is an order of magnitude smaller thatyJ. For this
reason, the phase diagram remains practically unalterewtebawy, = 0 Hz and Z x 25
Hz as can be seen by comparing Figs. 6(a)-(d) and 7(a)-(d) wke= 27r x 50 Hz Tab. 4
showsenay/J is still about a factor 3 smaller thdn/J. As a consequence the onset of the
BG phase in Figs. 7(e)-(h) already appears;at 0.4 instead ofs; ~ 0.6 for wy = 0 Hz.
Besides the earlier onset of the BG phase also its grosdusteuchanges. The lobe around
s, = 0.6 in Fig. 7(e) is suppressed compared to the calculations,fer 2r x 50 Hz. Also the
maximum fluctuations indicate that the redistribution oftjgées becomes smoother. This is
because fowy = 0 Hz the superlattice topology exhibits only Stdrent on-site energies.
With the additional harmonic potential the number offelient on-site energies increases
and, therefore, the extended domains in the BG phase shmohb@come fragmented. For
wy = 21 X 75 Hz the parameteks,a/J andU/J become comparable and the phase diagram
changes dramatically. In Fig. 7(i) the homogeneous MI donsdirinks to a small region
(s, = 12- 16 ands; = 0 - 0.2). Furthermore, a clear detection of the BG phase becomes
difficult since the characteristic increase of the visibilityreg the Ml to BG transition is no
longer visible in Fig. 7(l). Table 4 reveals thataf = 27 x 100 Hz the on-site energies
€max Clearly dominate the energy scale. Thus, even the tranditcon the SF phase to the
MI phase is no longer observable in the investigated pammahge ofs,. The MI domain
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Figure 7. (color online) Phase diagram in terms of energy gﬁyJ—, condensate fraction
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w, = 2r x 40 kHz. While the gross structure of the phase diagram isiedéent ofv, , the
scales of thes, ands; axes change.

M
M\

has completely disappeared in Fig. 7(m) and the visibiétpains large throughout the whole
range ofs;, for s; < 0.2.

We note that the uneven contour lines visible in the plotshef maximum number
fluctuation oax for the larger values ofv, have a physical origin. First of allymax IS
particularly sensitive to changes in the intrinsic stroetof the many-body state. With
increasingwy the BG phase becomes more fragmented, i.e., as functioneotdhtrol
parameters the number states dominating the ground stateggehrapidly and féect the
maximum fluctuations. Moreover, since we plot the maximunhefset of all on-site number
fluctuations across the lattice, neighboring points in thase diagram can show the on-site
number fluctuations for completelyftirent lattice sites. Already this will generate kinks in
the contour lines. We have checked by increasing the DMR@ Is&ze that this is not an
artifact of the DMRG basis truncation.

From the above discussion we conclude that the smaller thgitlainal trapping
frequencywy, the easier is a clear distinction between the SF, Ml and B&@h Thus, any
experiment with a focus on the phase diagram of ultracolchatm an optical superlattice
should be designed such that the longitudinal trappingieaqy is kept small.

8. Transverse Trapping Frequency w,

Finally we study the dependence of tlsg &,) phase diagram on the intensity of the transverse
lasers through a variation of the transverse trapping #Bqyw, . For the sake of simplicity
we assumev, = 0 Hz.
From Eq. (4) it follows that the interaction enerly is proportional taw, while ¢ and

Ji are independent ab,. A larger value ofw, will, therefore, shift the SF to Ml transition
towards smalles,. Also the spread of the on-site energies must increase rcave energy
cost of a double occupancy and consequently the Ml to quagr&gition will shift towards
larger s;. In Fig. 8 we show the phase diagrams tor = 27 x 40 kHz and all other
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parameters unchanged. The gross structure of the phasardiagmains the same. However,
in accordance with our considerations, the energy gaxEsJ_: 60 already ats, = 125
instead ofs, = 16 forw, = 27 x 17 kHz (boths, = 0). Furthermore, the transition from the
homogeneous Ml to the quasi BG phase occurs ar@anrd1.5 as compared ts, = 0.6 for
w, =21 x 17 kHz.

As a consequence of the dependence of #aes{) phase diagram on the transverse
trapping frequency, the precise identification of the pHamendaries is intimately connected
to a well defined value ab , .

9. Summary & Conclusions

We have studied the experiment-specific phase diagram refcolti®’Rb atoms in an one-
dimensional two-color superlattice with respect to theapaters of the experiment. Band
structure calculations were employed to obtain the gemenameters of the Hubbard model
from the experiment-specific parameters. These band steucélculations were also used to
confirm the applicability of the Hubbard model in the invgated parameter range.

In order to solve the many-body problem for realistic |latiengths and particle numbers
we have used the density-matrix renormalization-grourélym. Through a thorough
benchmark of our DMRG calculations we demonstrated thaoladlervables are perfectly
converged and can practically be considered as exact sotutif the many-body problem.
Furthermore, a detailed finite-size analysis for all obakles has underlined the significance
of our results for realistic experimental system sizes.

Our calculations of the phase diagrams show that all reteyaantum phases can be
accessed by only varying the intensities of the two lasextsgénerate the optical superlattice.
For a longitudinal trapping frequenay, < 25 Hz all diferent quantum phases can be
clearly distinguished by means of the presented obserwablewever, larger values of the
longitudinal trapping frequency lead to radical changeth@structure of the phase diagram
and make a clear identification of the quasi Bose-glass phgsessible.

We also showed that the gross structure of the phase diago@s mbt depend on
the transverse trapping frequeneay,, i.e., the intensity of the lasers in the directions
perpendicular to the 1D lattice. However, due to the linegmeshdence of the interaction
energy on the transverse trapping frequency, the posifidimectransition lines in the phase
diagram crucially depend on that parameter.
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