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Abstract. We investigate the ab-initio phase diagram of ultracold87Rb atoms in an one-
dimensional two-color superlattice. Using single-particle band structure calculations we map
the experimental setup onto the parameters of the Bose-Hubbard model. This ab-initio ansatz
allows us to express the phase diagrams in terms of the experimental control parameters, i.e.,
the intensities of the lasers that form the optical superlattice. In order to solve the many-
body problem for experimental system sizes we adopt the density-matrix renormalization-
group algorithm. A detailed study of convergence and finite-size effects for all observables is
presented. Our results show that all relevant quantum phases, i.e., superfluid, Mott-insulator,
and quasi Bose-glass, can be accessed through intensity variation of the lasers alone. However,
it turns out that the phase diagram is strongly affected by the longitudinal trapping potential.

PACS numbers: 67.85.Hj; 03.75.Lm; 67.85.-d



Ab initio phase diagram of ultracold87Rb in a one-dimensional two-color superlattice 2

1. Introduction

Ultracold atomic gases in optical lattices have been a topicof active research for about a
decade now. One of the research thrusts is the use of these systems as experimental quantum
simulators for a variety of lattice models and allow for detailed investigations of strongly
correlated quantum systems in a perfectly controllable environment [1, 2]. By tuning the laser
intensities of the optical lattice alone, one can seamlessly drive a system through quantum
phase transitions like the superfluid to Mott-insulator transition [3, 4]. In so-called two-color
superlattices, additional lasers are used to introduce irregular lattice topologies which give
rise to exotic quantum phases like a quasi Bose-glass phase [5, 6].

Strongly correlated particles in periodic potentials are well described by Hubbard-type
models. Together with powerful many-body methods this allows for theoretical studies of the
phase diagram of ultracold atomic gases in optical lattices[7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25]. However, a one-to-one comparison between experiment
and theory has rarely been done so far because these theoretical studies usually adopt the
generic parameters of the Hubbard model to span the phase diagram. Such a phase diagram
of ultracold bosonic atoms in a two-color superlattice is shown in Fig. 1(a).

In this work we establish a closer link to experiments by computing the phase diagrams
with respect to the natural experimental control parameters, which are the intensities (s2, s1)
of the two lasers generating the one-dimensional optical superlattice. Such an experiment-
specific phase diagram is shown in Fig. 1(b). In order to predict this type of phase diagram
we start with single-particle band structure calculationsto extract the Hubbard parameters for
a specific experimental setup. Then, the many-body problem is solved using the density-
matrix renormalization group (DMRG) algorithm. Together with quantum Monte Carlo
(QMC) methods [25], the DMRG is one of the most powerful many-body techniques for the
treatment of one-dimensional lattice problems. After introducing and benchmarking our band
structure plus DMRG approach, we discuss the phase diagram in the (s2, s1)-plane for different
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Figure 1. (color online) Contour plots of the energy gap computed using DMRG for a
commensurate superlattice withI = N = 30 as (a) a function of the generic Hubbard
parameters and (b) a function of the experimental laser intensities. The labels mark the
domains of the superfluid (SF) phase, the homogeneous Mott-insulator (MI) phase, and the
quasi Bose-glass (BG) phase (taken from Ref. [22]).
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observables in this strictly one-dimensional framework. The laser wavelengths, longitudinal
and transverse trapping frequencies, and atomic species are chosen from a range covering
recent experimental setups [4, 5, 6]. We focus on the dependence of the phase diagrams on
the transverse trapping frequencyω⊥ and the longitudinal trapping frequencyωx, which was
not discussed in detail before.

2. 1D Bose-Hubbard Model and Band Structure Calculations

The single-band Bose-Hubbard model [26] is a widely used framework for studying the ultra-
low temperature physics of strongly correlated, neutral atoms in sufficiently deep optical
lattices. We assume a one-dimensional lattice withI sites andN bosonic atoms. For each site
we define the creation (annihilation) operators ˆa†i (âi) with respect to the localized Wannier
states corresponding to the lowest Bloch band. The mean occupation-number at each lattice
site is given by ˆni = â†i âi. The Bose-Hubbard Hamiltonian

Ĥ =
I

∑

i=1

{

− Ji,i+1 ( â†i+1 âi + â†i âi+1 ) +
1
2

Ui (n̂i − 1) n̂i + ǫi n̂i

}

(1)

accounts for three basic processes: the tunneling of atoms to adjacent sites, the on-site two-
body interaction, and the on-site potential energy. The site-dependent Hubbard parameters
Ji,i+1, Ui, andǫi define the relative strengths of the individual terms and contain all information
about depth and topology of the optical potential, and the interaction between the atoms. The
phase diagrams spanned directly by these parameters, typically usingJi,i+1 ≡ J, Ui ≡ U and
some ansatz forǫi to account for superlattice structures, are extensively discussed in Refs.
[12, 13, 14, 15, 16, 19, 20, 21]. More recently, the on-site energiesǫi were calculated directly
from the parameters of the optical superlattice to provide acloser connection to experiment
[23].

In this work, our aim is a discussion of the phase diagram using the experimental
parameters directly and not the generic Hubbard parameters. To this end, an explicit treatment
of the underlying single-particle physics is necessary. Therefore, we start from the optical
potential generated by two orthogonal polarized standing-wave laser-fields with wavelengths
λ1 andλ2 and the respective potential depthss1 ands2. Furthermore, we consider an additional
harmonic potential with frequencyωx accounting for the intensity variation of the optical
lattice through the focusing of the laser beams and a magnetic trapping potential. Using the
recoil energyEr i =

h2

2mλ2
i

of atoms with massm as a natural energy scale and a phase shiftφ

between the standing waves, the potential along the x-axes reads:

V(x) = s1Er1 sin2

(

2π
λ1

x+ φ

)

+ s2Er2 sin2

(

2π
λ2

x

)

+
1
2

mω2
xx

2 . (2)

Throughout this work we consider a setup defined byλ2 = 800 nm ands2 for the primary
laser generating the optical lattice potential andλ1 = 1000 nm ands1 for the secondary laser
generating the two-color superlattice topology with a phase shift ofφ = π/4.This leads to the
commensurate superlattice that was also used in previous publications [14, 15, 19, 20, 21, 22].
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Before we are able to extract the Hubbard parameters for a given potential, we have
to determine the localized Wannier functions via a single-particle band structure calculation.
For a periodic potential (s1 = 0,ωx = 0) with I sites, we numerically obtain the solutions for
the Bloch functionsψk(x) in the lowest energy band. The quasimomenta are quantized with
respect to the sizeI of the optical lattice and are labeled byk with k = 0, 1, · · · , I−1. A Fourier
transformation of the Bloch functions with respect to the quasimomenta in the subspace of the
lowest energy band leads to the Wannier functions

wi(x) =
1
√

I

I−1
∑

k=0

ψk(x)e−i 2π
I kieiϕk . (3)

The arbitrary phasesϕk are chosen such that the resulting Wannier functions are maximally
localized at their individual lattice sitei. Using these maximally localized Wannier functions,
the Hubbard parameters are obtained via the matrix elementsof the individual terms of the
real-space Hamiltonian [27]

−Ji, j =

∫

dx w∗i (x)

(

− ~
2

2m
∂2

∂x2
+ V(x)

)

wj(x)

ǫi =

∫

dx w∗i (x)

(

− ~
2

2m
∂2

∂x2
+ V(x)

)

wi(x) (4)

Ui = 2ω⊥~ as

∫

dx |wi(x)|4 .

The contact interaction is defined by the three-dimensionals-wave scattering lengthas. The
transverse directions are integrated out assuming Gaussian wavefunctions with frequencies
ωy = ωz = ω⊥ [2]. This one-dimensional description is valid as long as the tunneling in
the transverse directions is strongly suppressed, i.e., aslong as the laser intensities in these
directions are sufficiently large. Following Refs. [5, 6] we consider a gas of87Rb atoms
with s-wave scattering lengthas = 109 rBohr and we assume a transverse trapping frequency
ω⊥ = 2π × 17 kHz. In the last part of this work we will discuss the changes in the phase
diagram induced by a different value ofω⊥.

As a first application of our band structure calculations we validate the single-band
approximation in the Hubbard model. As a by-product from thecalculations of the Hubbard
parameters we obtain from the single-particle band structure calculation the energy gap∆E
between the first and the second band of Bloch functions. In Table 1 we list some values of
∆E together with the Hubbard parametersU andJ in the relevant parameter range. Since∆E
is always about one order of magnitude larger thanU andJ, we conclude that excitations to
energetically higher Bloch bands induced by tunneling or interaction can be neglected even
for shallow optical lattices.

As a second application of our band structure calculations we check for the validity
of the restriction to nearest-neighbor tunneling and on-site two-body interactions. For the
weakly and the strongly interacting regime, we calculate the respective matrix elements of
the Hubbard Hamiltonian using Eqs. (4) andUi, j = 2ω⊥~ as

∫

dx |wi(x)|2|wj(x)|2 for the
interaction term. The results are shown in Table 2. Even in the weakly interacting regime
(s2 = 2), the nearest-neighbor tunneling exceeds more-distant tunneling processes by at least



Ab initio phase diagram of ultracold87Rb in a one-dimensional two-color superlattice 5

s2 2 4 6 8 10 12 14 16
∆E/Er2 1.00 1.97 2.90 3.77 4.57 5.31 5.97 6.58
U/Er2 0.143 0.205 0.237 0.261 0.280 0.297 0.311 0.323
J/Er2 0.143 0.086 0.051 0.031 0.019 0.012 0.008 0.005
U/J 1.138 2.407 4.671 8.480 14.62 24.22 38.84 60.64

Table 1. Calculations of the Hubbard parametersU and J and the energy gap∆E between
first and second Bloch band for a homogeneous lattice (s1 = 0, ωx = 0) with λ2 = 800 nm,
ω⊥ = 2π × 17 kHz,as = 109 rBohr, and massm of 87Rb .

s2 = 2 (Ui,i/Ji,i+1 = 1.38)
|i − j| 0 1 2 3 4 5

Ji, j/Er2 - 0.1428 −0.02 0.0048 −0.0014 ≈ 10−4

Ui, j/Er2 0.162 0.0035 ≈ 10−4 ≈ 10−5 ≈ 10−6 ≈ 10−7

s2 = 10 (Ui,i/Ji,i+1 = 14.62)
|i − j| 0 1 2 3 4 5

Ji, j/Er2 - 0.0192 ≈ −10−4 ≈ 10−6 ≈ −10−8 ≈ 10−9

Ui, j/Er2 0.28 ≈ 10−5 ≈ 10−8 < 10−12 < 10−12 < 10−12

Table 2. Higher order tunneling and interaction energies for a homogeneous lattice (s1 = 0,
ωx = 0) with λ2 = 800 nm,ω⊥ = 2π × 17 kHz,as = 109rBohr, and massm of 87Rb .

one order of magnitude. The interaction matrix element for neighboring lattice sites is already
two orders of magnitude smaller than the on-site interaction matrix element. In the strongly
interacting regime (s2 = 10) we already have two orders of magnitude betweenJi,i+1 andJi,i+2

and five orders of magnitude betweenUi,i andUi,i+1. Since we focus on the intermediate and
strong interaction regime, the restriction toJi,i+1 andUi is well justified.

So far we have discussed the limit of a homogeneous optical lattice. As soon as the
secondary laser which generates the superlattice, or an additional harmonic potential are
taken into account, a straight-forward band structure calculation is no longer doable, because
Bloch functions are only defined for strictly periodic potentials. Therefore, in order to extract
site-dependent Hubbard parameters also for an inhomogeneous lattice we are limited to an
approximate scheme to obtain localized Wannier functions.We use two different approaches
to extract the site-dependent Hubbard parameters.

As a simple ansatz, we consider the secondary laser as a perturbation of the strong
primary laser (s1 ≪ s2). The Wannier functions are extracted from a conventional band
structure calculation for a homogeneous lattice defined by the primary laser alone. In
this approximation the Wannier functions are identical foreach lattice site. Using these
Wannier functions the Hubbard parameters of each site of thesuperlattice are computed.
The site-dependence of the parameters thus results exclusively from the superlattice potential
V(x) entering into the matrix elements (4) and not from a site-dependence of the Wannier
functions themselves. As a result, the parameterUi characterizing the on-site interaction
remains constant for all lattice sites. An exemplary set of site-dependent Hubbard parameters
calculated in this scheme is shown in Fig. 2. Please note thatwe always subtract a global
energy constant from the Hamiltonian to setǫmin = min{ǫi} = 0.



Ab initio phase diagram of ultracold87Rb in a one-dimensional two-color superlattice 6

5

15

25

.
ǫ i
/
J̄

0.8

1

1.2

.

J i
,i+

1
/
J̄

5 10 15 20 25
site i

14

14.4

14.8

.

U
i/

J̄

Figure 2. Site-dependent Hubbard parameters obtained from band structure calculations for a
two-color superlattice. Simple ansatz (gray symbols) and calculations with individual Wannier
functions (black symbols), both fors2 = 10 ands1 = 1 with λ2 = 800 nm,λ1 = 1000 nm,
ω⊥ = 2π × 17 kHz,as = 109 rBohr, and massm of 87Rb. Lines to guide the eye.

In a more sophisticated scheme we determine the site-dependent Wannier functions
individually for each site of the inhomogeneous lattice using a standard band structure
calculation for a periodic lattice with a lattice amplitudedefined by the local depth of the
inhomogeneous potential at that particular site. In this way, the shape of the Wannier
functions depends nontrivially on the local structure of the superlattice potential. The only
reason why the set of Wannier functions determined in this way cannot be considered as
an exact set of localized basis functions results from the minimal violation of orthogonality
for the Wannier functions of neighboring sites. Their mutual overlap is nonzero but always
below 1% in the parameter regime considered in all our calculations. Using these individual
localized Wannier functions all site-dependent Hubbard parameters are computed without
further approximations. An exemplary set of results is alsoshown in Fig. 2.

The comparison of the site-dependent Hubbard parametersǫi andJi,i+1 obtained by the
two schemes shows very little difference. This leads to the conclusion that the second and
superior scheme provides a sufficiently accurate description of the Hubbard parameters in the
parameter range under consideration.

The dominant effect on the Hubbard parameters induced by the superlattice isthe spatial
variation of the on-site energiesǫi. This is in agreement with the approximation of the
superlattice through this parameter alone [14, 15, 19, 20, 21]. However, the tunneling matrix
elementJi,i+1, which essentially depends on the potential barrier between sitesi andi +1, also
shows a significant variation. The on-site interaction matrix elementUi exhibits only a weak
variation which is introduced by the site-dependence of theWannier functions in our second
scheme.
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Figure 3. Sketch of the DMRG cycle. The black dot in step 5 marks the additional site that
was attached without increasing the dimension of the Hilbert space of the block. For details
see text.

3. Density-Matrix Renormalization-Group

We solve the many-body problem associated with the Bose-Hubbard Hamiltonian via the
density-matrix renormalization-group (DMRG) algorithm [28, 29] which is among the most
powerful quasi-exact methods available for one-dimensional lattice models. The so-called
infinite-size DMRG algorithm is based on an iterative growing procedure. The algorithm
is schematically depicted in Fig. 3. The individual steps are: (0) We start with a block
composed ofIb sites and up toNb particles described in a Fock spaceFb of dimensionDb.
Since the Hubbard Hamiltonian conserves the particle number, the matrix representation of
the block Hamiltonian has a block-diagonal form. Each blockof the matrix corresponds
to a Hilbert space with a fixed particle number. (1) To the block we attach an additional
lattice site with up toNs particles described in a Fock spaceFs to build the Fock space of
the systemFsys = Fb ⊗ Fs with dimensionDsys = DbDs. Again the matrix representation
of the system Hamiltonian is block diagonal. (2+3) In order to simulate a larger lattice,
the system is coupled to an analogously constructed environment yielding the superblock
Hsuper = Fsys⊗ Fenv of dimensionDsuper which is projected to a fixed total particle number,
satisfyingN/I = 1 in our case. (3) The ground state|ψ0〉 is obtained by diagonalizing the
superblock Hamiltonian where one can exploit the sparseness of the Hamilton matrix and use
efficient Lanzcos or Jacobi-Davidson algorithms. (4) The reduced density-matrix is formed by
tracing out the environment ˆρred = Trenv |ψ0〉〈ψ0 | . (4+5) TheDb eigenvectors of the reduced
density-matrix for the largest eigenvalues are used to spanthe Fock space for a new block̃Fb
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of length Ĩb = Ib + 1. These eigenvectors build a non-unitary transformation matrix O which
is employed to construct the new block HamiltonianH̃b = O†HsysO. All operators coupling
the system to the environment (which will later couple the new block to the new site) and all
observables have to be transformed accordingly. This cycleis repeated until the final length
of the lattice is reached.

The key feature of this algorithm lies in the use of the eigenvectors with largest
eigenvalues of the reduced density-matrix as a new, truncated basis for the new block. One
can show that this procedure yields an optimized wavefunction, gives the best approximation
to expectation values of observables, and preserves a maximum of entanglement between
system end environment [29].

The error in the DMRG algorithm is due to the loss of information during the non-unitary
basis transformations. It can be estimated by summing up theeigenvalues of the discarded
eigenvectors. A smaller sum consequently means a smaller loss of information. In addition
one has to consider the restriction to a maximal number of particles max{ni} per lattice site.
In the complete Hilbert space this would be equal the total number of particlesN. In general,
the stronger the correlations between the particles, i.e.,the largerŪ, the smaller the sum of
the residual eigenvalues and the better the approximation.

If disorder is introduced, then only at the very last step of the growing procedure the
full information about the superlattice topology is available to the Hamiltonian. This leads
to a poor approximation of the ground state when using the infinite-size algorithm only. As
an improvement the finite-size DMRG is applied. After a complete run of the infinite-size
algorithm up to the desired length of the lattice, the lengthof the superblock is kept fixed and
the system grows on the expense of the environment and vice versa. During a back and forth
sweeping, the superlattice topology is sampled while the Hamiltonian always takes the whole
lattice into account. The sweeping continues until all observables are converged.

The way the transformation matricesO are constructed is not uniquely defined by the
DMRG algorithm. We would like to emphasize that the reduced density-matrixρred is
block diagonal and each block has a well defined particle number. One can either use the
eigenvectors with the largest eigenvalues for each subspace of ρred, or one can strictly use
the firstDb eigenvectors with the largest eigenvalues not accounting for the block-diagonal
structure ofρred. In the first scheme one might discard eigenvectors with sizable eigenvalues
if the respective subspace has reached its preassigned dimension. In the second scheme one
might discard a complete subspace of a certain particle number in case it has no eigenvector
with corresponding eigenvalue among the largestDb eigenvalues. If in a subsequent step
of the finite size algorithm this subspace becomes importantagain, this might prevent the
algorithm from converging to the proper ground state. This can be overcome by adding noise
to the transformation matricesO during the first few sweeps in the finite-size algorithm with
the aim of recovering lost subspaces again [30]. As a third strategy one can keep at least
one or a few eigenstates from each subspace even if their eigenvalues are not among the
largestDb eigenvalues. We employ the first strategy because it is technically very convenient.
However, we checked individual eigenspectra ofρred and confirmed that none of the discarded
eigenvectors had sizable eigenvalues.
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4. Observables

In this section, we introduce the set of observables we employ to distinguish the different
quantum phases.

Maximum Number Fluctuation.The number fluctuation at lattice sitei is given by the
variance of the occupation number

σi =

√

〈n̂2
i 〉 − 〈n̂i〉2 . (5)

The number fluctuation provides information about the localmobility of the atoms in the
optical lattice. In order to reduce the amount of information we only consider the maximum
number fluctuation through the lattice

σmax = max{σi} . (6)

Condensate Fraction. In order to determine the fraction of atoms that undergo Bose-Einstein
condensation we adopt the Onsager-Penrose criterion [31] and calculate the natural orbitals
via the eigensystem of the one-body density-matrixρ

(1)
i j = 〈â

†
i â j〉. The largest eigenvalueNc

of the one-body density-matrix is associated with the number of condensed atoms and defines
the condensate fraction

fc =
Nc

N
. (7)

Visibility. In the experiment, most information about the atoms in the optical lattice is
extracted from the interference pattern obtained by the time-of-flight method. The interference
patternI(δ) is intimately connected to the quasi-momentum structure of the many-body state
and can be calculated from the Fourier transformation of theone-body density-matrix [12]

I(δ) =
1
I

I
∑

i, j=1

ei(i− j)δρ
(1)
i j . (8)

The visibility of the interference fringesν is obtained from the maxima and minima of the
interference pattern

ν =
max{I(δ)} −min{I(δ)}
max{I(δ)} +min{I(δ)} . (9)

Energy Gap. Measuring the excitation spectrum of the system also provides a sensitive
probe for the different quantum phases. In the experiment one employs two-photon Bragg
spectroscopy via an intensity modulation of the optical lattice[4, 6]. The width of the
central interference peak is used as a measure of the energy transfer into the atomic cloud
[4]. The detailed structure of the excitation spectrum has been investigated theoretically
[19, 20, 17, 18]. Basic information about the excitation spectrum is given by the energy
gap∆E, which is the minimum amount of energy needed to excite the system. It is defined by
the difference between the energy of the first excited state and the ground state

∆E = E1 − E0 . (10)
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Figure 4. Benchmark of the convergence of the DMRG calculations. Fromleft to right:
energy gap∆E, maximum number fluctuationσmax, condensate fractionfc, and visibility ν
for a I = N = 30 lattice. Upper panels: SF-MI transition at fixedǫmax/J = 0. Lower panels:
MI-BG transition at fixedU/J = 30. All plots show three lines corresponding to a different
basis choice: DMRG-A (dotted), DMRG-B (dashed), and DMRG-C(solid).

An inherent complication in the DMRG framework is the calculation of observables.
This is because a DMRG calculation does not yield eigenstates of the Hamiltonian in a simple
occupation-number basis representation which could be used to compute observables directly.
Rather, the matrix representations of all observables haveto be dragged through all the cycles
of the DRMG algorithm, i.e., they have to undergo all the lossy non-unitary basis rotations.
This is why we thoroughly test our DMRG calculations for convergence.

5. Benchmark of the DMRG algorithm

5.1. Convergence

Before we employ the DMRG algorithm to compute phase diagrams for realistic lattice sizes
and particle numbers, we have to assess the precision of the numerical DMRG results. We
follow a twofold strategy.

First, we compare results for the various observables obtained by DMRG calculations
with results from an exact diagonalization scheme [14, 15] for a small system withI = N =
10, where the latter calculations are feasible. In the phasediagram shown in Fig. 1(a) we
observed an error of the DMRG calculation below 1% for all observables atU/J > 3 already
for a small DMRG basis with dimensionDsuper = 338. The complete Hilbert space used in
the exact diagonalization scheme has a dimension ofD = 92378 for theI = N = 10 system.

Second, in order to validate the results of our DMRG calculations for larger lattices,
where no exact calculations in the complete Hilbert space are available, we study the
dependence of the DMRG results on basis sizes and particle number truncations used in the
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Db Ds Dsuper max{ni}
DMRG-A 21 126 446 5
DMRG-B 56 336 5073 5
DMRG-C 210 1470 68356 6

Table 3. Bases used for studying the convergence of the DRMG calculations. See text for
details.

algorithm [28, 29]. If the results for all observables do notchange while the bases size is
increased further, the calculation is converged to the exact result. The different basis sets we
employ are summarized in Table 3, where max{ni} is the maximum number of particles per
lattice site included in the basis.

For all following calculations we applied three sweeps in the finite-size algorithm. For
simplicity we consider straight lines through the parameter plane shown in Fig. 1(a).

Superfluid to Mott-insulator (ǫmax = 0). The upper row of images in Fig. 4 shows the
observables across the superfluid to Mott-insulator phase transition calculated using the three
bases specified in Tab. 3. Since the DMRG algorithm is tailored to describe strongly
correlated systems, we expect better agreement of the threedifferent calculations with
increasingU/J. Apart from the energy gap this is confirmed by our calculations. Only for
U/J . 3 we observe small differences between the calculations forσmax and fc. For all
values ofU/J the energy gap is slightly larger when employing the DMRG-A basis. This is
because we do not explicitly target at the first excited statefor the calculation of the energy
gap. Although the ground state has already converged even for the small DMRG-A basis, the
first excited state needs a larger basis to converge as well.

Mott-insulator to quasi Bose-glass (U/J = 30). We already pointed out the importance to
use the finite-size DMRG algorithm in order to obtain a converged ground state especially
when irregularities in the optical lattice are considered.The results of the observables through
the Mott-insulator to quasi Bose-glass transition depicted in the lower panel of Fig. 4 show
that the finite-size algorithm is perfectly converged for all values ofǫmax/J already for the
DMRG-A basis.

Since, in this manuscript the focus is on the regime of intermediate and strong
interactions, we conclude from our findings that already theDMRG-A basis is suitable to
approximate all observables with sufficient precision. Nevertheless, we decided to use the
larger DMRG-B basis for all following calculations. Calculations based on this basis are
still numerically feasible on a desktop PC while providing good results also in the weakly
interacting limit.

5.2. Size dependence

We also have to address the dependence of the observables observables on the size of the
system. Current experiments typically have between 1.5 · 104 to 2 · 105 atoms in the optical
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Figure 5. Finite size analysis forI = N = 10 (dotted),I = N = 30 (dashed), andI = N = 50
(solid) based on the DMRG-B basis. From left to right: energygap∆E, maximum number
fluctuationσmax, condensate fractionfc, and visibility ν. Upper panels: SF-MI transition at
fixed ǫmax/J = 0. Lower panels: MI-BG transition at fixedU/J = 30.

lattices [5, 6], i.e., roughly between 25-60 atoms in each one-dimensional array of sites. Thus,
we will compare DMRG calculations forI = N = 10, I = N = 30, andI = N = 50 all using
the DMRG-B basis. In analogy to the above discussion, we showplots through the superfluid
to Mott-insulator transition and the Mott-insulator to quasi Bose-glass transition.

Superfluid to Mott-insulator (ǫmax/J = 0). The results are shown in the upper row of Fig. 5.
By definition, the maximum number fluctuation is a local observable which is calculated at
one individual lattice site and is, therefore, practicallyindependent of the size of the lattice.
The energy gap as well as the visibility show only small differences between the small and the
two larger lattices indicating a minor dependence on lengthof the lattice for those observables.
However, the condensate fraction depends systematically on the size of the lattice. The larger
the lattice is, the steeper is the decrease offc aroundU/J ≈ 5. One can easily show that for
U/J → ∞ andI = N the condensate fraction scales likefc ∝ 1/I [12] which is in-line with
our calculations.

We also performed an additional calculation for the largeI = N = 50 lattice using
the DMRG-C basis. These results are not shown in the plots because there are no sizable
deviations to calculations with the DMRG-B basis. Only for the condensate fraction at
U/J < 3 the DMRG-C basis yields slightly larger values, e.g.fc = 0.68 instead offc = 0.63
at U/J = 1. This indicates the slower convergence of the DMRG algorithm in the weakly
interacting regime. The results for all other observables remain essentially unchanged when
going to the larger DMRG-C basis.
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Figure 6. (color online) Phase diagram in terms of energy gap∆E/J̄, condensate fraction
fc, maximum number fluctuationσmax, and visibility ν for I = N = 30, as = 109 rBohr,
ω⊥ = 2π × 17 kHz, andωx = 0 Hz.

Mott-insulator to quasi Bose-glass (U/J = 30). The lower row of Fig. 5 reveals that the
energy gap as well as the maximum number fluctuation do not change with the size of
the lattice across the Mott-insulator to quasi Bose-glass transition. The condensate fraction
exhibits the previously mentioned 1/I scaling which is characteristic for large values ofU/J.
The visibility in the small lattice is again slightly smaller compared to the two larger lattices.

Considering this analysis, we conclude that calculations includingN = 30 particles on
I = 30 lattice sites are sufficient to describe realistic experiments. Firstly, becausethis system
size is right in the experimental range. And secondly, when going to larger systems, there are
only small and predictable changes for the condensate fraction whereas all other observables
remain unchanged.

6. Ab-Initio Phase Diagrams

After the validation of our framework we now discuss the experiment-specific phase diagram
motivated by the experiments [5, 6]. We consider an ultracold 87Rb gas with scattering length
as = 109 rBohr in an optical lattice with wavelengthλ2 = 800 nm. The superlattice topology
is generated by an additional laser with wavelengthλ1 = 1000 nm and relative phase shift of
φ = π/4. The respective optical potential depth resulting from the two lasers are given by the
dimensionless parameterss2 ands1. The remaining transverse lasers of the optical trap enter
via the transverse trapping frequencyω⊥ which is chosen to be 2π × 17 kHz. Initially, the
longitudinal trapping frequencyωx is set to 0 Hz.

We have already used these parameters in Fig. 1 to compare theexperiment-specific
phase diagram spanned bys2 and s1 with a generic phase diagram spanned byU/J and
ǫmax/J neglecting the site dependence ofU and J. Both panels of Fig. 1 show the energy
gap∆E for I = N = 30 obtained from a DMRG calculation using the DMRG-B basis. Since
the variation ofs2 and s1 affects all Hubbard parameters simultaneously, the (s2, s1) phase
diagram is distorted in comparison to the (U/J, ǫmax/J) phase diagram. However, the (s2, s1)
phase diagram reveals that all relevant quantum phases are accessible through the variation of
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the intensity of the two longitudinal lasers alone, while keeping the other parameters fixed.
A detailed analysis of the phase diagram for this set of parameters is given in Figs. 6(a)-

(d), where we show the energy gap, the condensate fraction, the maximum number fluctuation,
and the visibility, respectively.

The superfluid (SF) phase is characterized by a vanishing energy gap, large condensate
fraction, large number fluctuations, and maximum visibility. Although we do not compute the
most stringent order parameter for the SF phase — the superfluid fraction [8, 12, 23] — the
above signatures allow us to identify the SF phase in the region of smalls2 up tos2 . 6 in the
whole range ofs1 shown here. Due to the shallow optical potential in this region the tunneling
term in the Hubbard Hamiltonian (1) dominates. This resultsin a coherent many-body state
which is a prerequisite for the SF phase. Fors2 = 6 along 0< s1 ≤ 2 the mean interaction
energy isŪ/J̄ ≈ 4.5 which explains the presence of the SF phase in the whole range of s1.

In a homogeneous lattice (s1 = 0 or ǫmax/J = 0) a transition from the SF phase to the
homogeneous Mott-insulating (MI) phase occurs aroundU/J ≈ 5 [23, 12] which corresponds
to s2 = 6.25. This is in-line with our results, because arounds2 ≈ 6 the energy gap steeply
increases while the condensate fraction, the number fluctuations, and the visibility decrease.
At s2 = 16 ands1 = 0 the ratio ofU/J is 60 and the system is deep in the homogeneous
MI phase showing the characteristic large energy gap and vanishing number fluctuations,
condensate fraction, and visibility.

If we now increases1 at fixed s2 = 16, the modulation of the site-dependent Hubbard
parameters grows rapidly and ats1 ≈ 0.6 the spread of the on-site energies becomes
comparable to the average interaction energy, i.e.,ǫmax/J̄ ≈ Ū/J̄. Thus, despite the strong
repulsive interaction, it becomes advantageous to move an atom from a site with large on-site
energy to an already occupied site with small on-site energy. Due to this redistribution of
particles the homogeneous MI phase is broken up and the transition to the quasi Bose-glass
(BG) phase occurs. The commensurate superlattice defined byλ2 = 800 nm,λ1 = 1000 nm,
andφ = π/4 exhibits only 5 different on-site energies. This small set of on-site energies leads
to extended domains in the phase diagram. Two of these domains are visible in Fig. 6(a).
Only in the transition region between them the energy gap vanishes.

We emphasize that the quasi Bose-glass phase emerging in a commensurate two-color
superlattice is not a gapless phase like the genuine Bose-glass, which only occurs in an infinite
lattice with truly random on-site energies. Therefore, we use the term quasi Bose-glass.
Intuitively the genuine Bose-glass results from a continuous distribution of on-site energies
permitting the construction of excited states by moving particles to sites with infinitesimally
larger on-site energies associated with infinitesimally small excitation energies. We have
approached this limit using an incommensurate superlattice in a previous publication [22].

7. Longitudinal Trapping Frequency ωx

Since the aim of this manuscript is the calculation of an experiment specific phase diagram
for a realistic experimental setup, it is compulsory to consider an additional magnetic trapping
potential and the intensity variation of the optical lattice through the focusing of the laser
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s2 2 10 12 16
J̄/Er2 0.1428 0.0192 0.0123 0.0053
Ū/Er2 0.1624 0.2505 0.2966 0.3232
Ū/J̄ 1.1378 14.623 24.222 60.636

ωx = 2π × 25 Hz
ǫmax/Er2 0.02431 0.02431 0.02431 0.02431
ǫmax/J̄ 0.17052 1.26739 1.98446 4.55600

ωx = 2π × 50 Hz
ǫmax/Er2 0.09737 0.09737 0.09737 0.09737
ǫmax/J̄ 0.68196 5.06927 7.937412 18.2389

ωx = 2π × 75 Hz
ǫmax/Er2 0.21909 0.21909 0.21909 0.21909
ǫmax/J̄ 1.53407 11.4048 17.8576 41.0344

ωx = 2π × 100 Hz
ǫmax/Er2 0.38950 0.38950 0.38950 0.38950
ǫmax/J̄ 2.72634 20.27242 31.7430 72.9423

Table 4. Comparison of the Hubbard parameters to analyze effect of the longitudinal trapping
potential. The parameters are:λ2 = 800 nm,λ1 = 1000 nm,φ = π/4, s1 = 0,ω⊥ = 2π × 17
kHz, and mass and scattering length of87Rb.

beams. To this end we have introduced a harmonic potential with frequencyωx in Eq. (2).
Typical experimental parameters range fromωx = 2π × 10 Hz to 2π × 75 Hz [4, 5, 6].

To get a impression of the energy scales, we show some values for the Hubbard
parameters obtained by our band structure approach in Tab. 4. By settings1 = 0 the on-
site energies are solely due to the additional harmonic potential. At the outer rims of the
lattice (sites 1 and 30) they have the valueǫmax.

Up to ωx = 2π × 25 Hz, ǫmax/J̄ is an order of magnitude smaller than̄U/J̄. For this
reason, the phase diagram remains practically unaltered betweenωx = 0 Hz and 2π × 25
Hz as can be seen by comparing Figs. 6(a)-(d) and 7(a)-(d). For ωx = 2π × 50 Hz Tab. 4
showsǫmax/J̄ is still about a factor 3 smaller than̄U/J̄. As a consequence the onset of the
BG phase in Figs. 7(e)-(h) already appears ats1 ≈ 0.4 instead ofs1 ≈ 0.6 for ωx = 0 Hz.
Besides the earlier onset of the BG phase also its gross structure changes. The lobe around
s1 = 0.6 in Fig. 7(e) is suppressed compared to the calculations forωx < 2π×50 Hz. Also the
maximum fluctuations indicate that the redistribution of particles becomes smoother. This is
because forωx = 0 Hz the superlattice topology exhibits only 5 different on-site energies.
With the additional harmonic potential the number of different on-site energies increases
and, therefore, the extended domains in the BG phase shrink and become fragmented. For
ωx = 2π × 75 Hz the parametersǫmax/J̄ andŪ/J̄ become comparable and the phase diagram
changes dramatically. In Fig. 7(i) the homogeneous MI domain shrinks to a small region
(s2 = 12− 16 ands1 = 0 − 0.2). Furthermore, a clear detection of the BG phase becomes
difficult since the characteristic increase of the visibility along the MI to BG transition is no
longer visible in Fig. 7(l). Table 4 reveals that atωx = 2π × 100 Hz the on-site energies
ǫmax clearly dominate the energy scale. Thus, even the transition from the SF phase to the
MI phase is no longer observable in the investigated parameter range ofs2. The MI domain
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Figure 7. (color online) Phase diagram in terms of energy gap∆E/J̄, condensate fraction
fc, maximum number fluctuationσmax, and visibility ν for I = N = 30, as = 109 rBohr,
ω⊥ = 2π × 17 kHz. First row:ωx = 2π × 25 Hz, second row:ωx = 2π × 50 Hz, third row:
ωx = 2π × 75 Hz, fourth row:ωx = 2π × 100 Hz.
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Figure 8. (color online) Same parameter set as in Fig. 6 but with transverse trapping frequency
ω⊥ = 2π × 40 kHz. While the gross structure of the phase diagram is independent ofω⊥, the
scales of thes2 ands1 axes change.

has completely disappeared in Fig. 7(m) and the visibility remains large throughout the whole
range ofs2 for s1 < 0.2.

We note that the uneven contour lines visible in the plots of the maximum number
fluctuationσmax for the larger values ofωx have a physical origin. First of all,σmax is
particularly sensitive to changes in the intrinsic structure of the many-body state. With
increasingωx the BG phase becomes more fragmented, i.e., as function of the control
parameters the number states dominating the ground state change rapidly and affect the
maximum fluctuations. Moreover, since we plot the maximum ofthe set of all on-site number
fluctuations across the lattice, neighboring points in the phase diagram can show the on-site
number fluctuations for completely different lattice sites. Already this will generate kinks in
the contour lines. We have checked by increasing the DMRG basis size that this is not an
artifact of the DMRG basis truncation.

From the above discussion we conclude that the smaller the longitudinal trapping
frequencyωx, the easier is a clear distinction between the SF, MI and BG phases. Thus, any
experiment with a focus on the phase diagram of ultracold atoms in an optical superlattice
should be designed such that the longitudinal trapping frequency is kept small.

8. Transverse Trapping Frequency ω⊥

Finally we study the dependence of the (s1, s2) phase diagram on the intensity of the transverse
lasers through a variation of the transverse trapping frequencyω⊥. For the sake of simplicity
we assumeωx = 0 Hz.

From Eq. (4) it follows that the interaction energyUi is proportional toω⊥ while ǫi and
Ji are independent ofω⊥. A larger value ofω⊥ will, therefore, shift the SF to MI transition
towards smallers2. Also the spread of the on-site energies must increase to overcome energy
cost of a double occupancy and consequently the MI to quasi BGtransition will shift towards
larger s1. In Fig. 8 we show the phase diagrams forω⊥ = 2π × 40 kHz and all other
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parameters unchanged. The gross structure of the phase diagram remains the same. However,
in accordance with our considerations, the energy gap is∆E/J̄ = 60 already ats2 = 12.5
instead ofs2 = 16 forω⊥ = 2π × 17 kHz (boths1 = 0). Furthermore, the transition from the
homogeneous MI to the quasi BG phase occurs arounds1 ≈ 1.5 as compared tos2 = 0.6 for
ω⊥ = 2π × 17 kHz.

As a consequence of the dependence of the (s2, s1) phase diagram on the transverse
trapping frequency, the precise identification of the phaseboundaries is intimately connected
to a well defined value ofω⊥.

9. Summary & Conclusions

We have studied the experiment-specific phase diagram of ultracold87Rb atoms in an one-
dimensional two-color superlattice with respect to the parameters of the experiment. Band
structure calculations were employed to obtain the genericparameters of the Hubbard model
from the experiment-specific parameters. These band structure calculations were also used to
confirm the applicability of the Hubbard model in the investigated parameter range.

In order to solve the many-body problem for realistic lattice lengths and particle numbers
we have used the density-matrix renormalization-group algorithm. Through a thorough
benchmark of our DMRG calculations we demonstrated that allobservables are perfectly
converged and can practically be considered as exact solutions of the many-body problem.
Furthermore, a detailed finite-size analysis for all observables has underlined the significance
of our results for realistic experimental system sizes.

Our calculations of the phase diagrams show that all relevant quantum phases can be
accessed by only varying the intensities of the two lasers that generate the optical superlattice.
For a longitudinal trapping frequencyωx < 25 Hz all different quantum phases can be
clearly distinguished by means of the presented observables. However, larger values of the
longitudinal trapping frequency lead to radical changes inthe structure of the phase diagram
and make a clear identification of the quasi Bose-glass phaseimpossible.

We also showed that the gross structure of the phase diagram does not depend on
the transverse trapping frequencyω⊥, i.e., the intensity of the lasers in the directions
perpendicular to the 1D lattice. However, due to the linear dependence of the interaction
energy on the transverse trapping frequency, the position of the transition lines in the phase
diagram crucially depend on that parameter.
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