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We combine a recently developedab initio many-body approach capable of describing simultaneously both
bound and scattering states, theab initio NCSM/RGM, with an importance truncation scheme for the cluster
eigenstate basis and demonstrate its applicability to nuclei with mass numbers as high as 17. Using soft simi-
larity renormalization group evolved chiral nucleon-nucleon interactions, we first calculate nucleon-4He phase
shifts, cross sections and analyzing powers. Next, we investigate nucleon scattering on7Li, 7Be,12C and16O in
coupled-channel NCSM/RGM calculations that include low-lying excited states of these nuclei. We check the
convergence of phase shifts with the basis size and studyA = 8, 13, and 17 bound and unbound states. Our
calculations predict low-lying resonances in8Li and 8B that have not been experimentally clearly identified yet.
We are able to reproduce reasonably well the structure of theA = 13 low lying states. However, we find that
A = 17 states cannot be described without an improved treatmentof 16O one-particle-one-hole excitations and
α clustering.

I. INTRODUCTION

Nuclei are quantum many-body systems with both bound
and unbound states. A realisticab initio description of light
nuclei with predictive power must have the capability to de-
scribe both classes of states within a unified framework. Over
the past decade, significant progress has been made in our un-
derstanding of the properties of the bound states of light nuclei
starting from realistic nucleon-nucleon (NN) interactions, see
e.g. Ref. [1] and references therein, and more recently also
from NN plus three-nucleon (NNN) interactions [2–4]. The
solution of the nuclear many-body problem becomes more
complex when scattering or nuclear reactions are considered.
For A = 3 and 4 nucleon systems, the Faddeev [5] and
Faddeev-Yakubovsky [6] as well as the hyperspherical har-
monics (HH) [7] or the Alt, Grassberger and Sandhas (AGS)
[8] methods are applicable and successful. However,ab ini-
tio calculations for unbound states and scattering processes
involving more than four nucleons in total are quite challeng-
ing. The firstab initio many-body neutron-4He scattering cal-
culations were performed within the Green’s Function Monte
Carlo method using the ArgonneNN potential and the Illi-
nois NNN interaction [9]. Also, resonances in He isotopes
were investigated within the coupled-cluster method usingthe
Gamow basis [10].

In a new development, we have recently combined theab
initio no-core shell model (NCSM) [11] and the resonating-
group method (RGM) [12–17], into a new many-body ap-
proach [18, 19] (ab initio NCSM/RGM) capable of treating
bound and scattering states of light nuclei in a unified for-
malism, starting from fundamental inter-nucleon interactions.
The NCSM is anab initio approach to the microscopic cal-
culation of ground and low-lying excited states of light nuclei
with realistic two- and, in general, three-nucleon forces.The
RGM is a microscopic cluster technique based on the use ofA-
nucleon Hamiltonians, with fully anti-symmetric many-body
wave functions built assuming that the nucleons are grouped
into clusters. Although most of its applications are based on
the use of binary-cluster wave functions, the RGM can be for-
mulated for three (and, in principle, even more) clusters in

relative motion [13]. The use of the harmonic oscillator (HO)
basis in the NCSM results in an incorrect description of the
wave-function asymptotic and a lack of coupling to the con-
tinuum. By combining the NCSM with the RGM, we com-
plement the ability of the RGM to deal with scattering and
reactions with the use of realistic interactions, and a consis-
tentab initio description of the nucleon clusters, achieved via
the NCSM. Presently the NCSM/RGM approach has been for-
mulated for processes involving binary-cluster systems only.
However, extensions of the approach to include three-body
cluster channels are feasible, also in view of recent develop-
ments on the treatment of both three-body bound and con-
tinuum states (see, e.g., Refs. [20–24]). As described in de-
tail in Refs. [18, 19], theab initio NCSM/RGM approach has
been already applied to study then -3H, n -4He, n -10Be, and
p -3,4He scattering processes, and address the parity inversion
of the 11Be ground state, using realisticNN potentials. In
that work, we demonstrated convergence of the approach with
increasing basis size in the case of theA = 4 andA = 5
scattering. Then -10Be calculations were, on the other hand,
performed only in a limited basis due to the computational
complexity of the NCSM calculations of the10Be eigenstates.

It is the purpose of the present paper to expand the appli-
cability of the NCSM/RGM beyond the lightest nuclei by us-
ing sufficiently largeN~Ω HO excitations to guarantee con-
vergence of the calculation with the HO basis expansion of
both the cluster wave functions and the localized RGM inte-
gration kernels. The use of largeN~Ω values is now feasi-
ble due to the recent introduction of the importance truncated
(IT) NCSM scheme [25, 26]. It turns out that many of the
basis states used in the NCSM calculations are irrelevant for
the description of any particular eigenstate, e.g., the ground
state or a set of low-lying states. Therefore, if one were able
to identify the important basis states beforehand, one could
reduce the dimension of the matrix eigenvalue problem with-
out losing predictive power. This can be done using an im-
portance truncation scheme based on many-body perturbation
theory [25].

We make use of the IT NCSM wave functions for the clus-
ter eigenstates, in particular the eigenstates of the target nu-
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cleus of the binary nucleon-nucleus system, and calculate the
one- and two-body densities that are then used to obtain the
NCSM/RGM integration kernels. We benchmark the IT ap-
proach in basis sizes accessible by the full calculation and
apply it within still larger basis sizes until convergence is
reached for target nuclei as heavy as12C or 16O. In this study,
we employ a similarity renormalization group (SRG) [27–
29] evolved chiral N3LO NN potential [30] (SRG-N3LO) that
is soft enough to allow us reach convergence within about
14− 16~Ω HO excitations in the basis expansion.

In Sect. II, we briefly overview the NCSM/RGM formal-
ism and present for the first time the IT NCSM scheme that
includes both ground and low-lying excited states in the set
of reference states. Next, we present scattering calculation
results for then-4He andp-4He systems in Sect. III. In par-
ticular, we compare the calculated phase shifts to an R-matrix
analysis of experimental data and, further, calculated differen-
tial cross sections and analyzing powers in the energy range
6-19 MeV to the corresponding experimental data. Neutron
elastic and inelastic scattering on7Li and proton elastic and
inelastic scattering on7Be are investigated in Sect. IV. We
present phase shifts, cross sections and scattering lengths. We
predict resonances in8Li and 8Be that have not been clearly
identified in experiments yet. In Sect. V, we discuss nucleon-
12C results for both bound and unbound states of13C and13N,
obtained including two12C bound states, the ground and the
first 2+ state, in the NCSM/RGM coupled-channel calcula-
tions. In Sect. VI, we present results for the nucleon-16O sys-
tem. In the NCSM/RGM coupled-channel calculations, we
take into account the16O ground state and up to the low-
est three16O negative-parity states. Conclusions are given in
Sect. VII.

II. FORMALISM

A. NCSM/RGM

The ab inito NCSM/RGM approach was introduced in
Ref. [18] with details of the formalism given in Ref. [19].
Here we give a brief overview of the main points.

In the present paper, we limit ourselves to a two-cluster
RGM, which is based on binary-cluster channel states of total
angular momentumJ, parityπ, and isospinT,

|ΦJπT
νr 〉 =

[

(

∣

∣

∣A−aα1I π1
1 T1

〉 ∣

∣

∣aα2I π2
2 T2

〉

)(sT)

×Yℓ
(

r̂A−a,a
)

](JπT) δ(r − rA−a,a)

rr A−a,a
. (1)

In the above expression,
∣

∣

∣A−aα1I π1
1 T1

〉

and
∣

∣

∣aα2I π2
2 T2

〉

are
the internal (antisymmetric) wave functions of the first and
second cluster, containingA−a anda nucleons (a<A), respec-
tively. They are characterized by angular momentum quan-
tum numbersI1 andI2 coupled together to form channel spin
s. For their parity, isospin and additional quantum numbers
we use, respectively, the notationsπi,Ti , andαi , with i = 1, 2.
The cluster centers of mass are separated by the relative coor-

dinate

~rA−a,a = rA−a,ar̂A−a,a =
1

A− a

A−a
∑

i=1

~r i −
1
a

A
∑

j=A−a+1

~r j , (2)

where {~r i , i = 1, 2, · · · ,A} are theA single-particle coordi-
nates. The channel states (1) have relative angular momentum
ℓ. It is convenient to group all relevant quantum numbers into
a cumulative indexν = {A−aα1I π1

1 T1; aα2I π2

2 T2; sℓ}.
The former basis states can be used to expand the many-

body wave function according to

|ΨJπT〉 =
∑

ν

∫

dr r2 gJπT
ν (r)

r
Âν |Φ

JπT
νr 〉 . (3)

As the basis states (1) are not anti-symmetric under ex-
change of nucleons belonging to different clusters, in order
to preserve the Pauli principle one has to introduce the ap-
propriate inter-cluster antisymmetrizer, schematicallyÂν =
√

(A−a)!a!
A!

∑

P(−)pP , where the sum runs over all possible per-
mutationsP that can be carried out among nucleons pertaining
to different clusters, andp is the number of interchanges char-
acterizing them. The coefficients of the expansion (3) are the
relative-motion wave functionsgJπT

ν (r), which represent the
only unknowns of the problem. To determine them one has to
solve the non-local integro-differential coupled-channel equa-
tions

∑

ν

∫

dr r2
[

H JπT
ν′ν (r ′, r) − EN JπT

ν′ν (r ′, r)
] gJπT
ν (r)

r
= 0 , (4)

where the two integration kernels, the Hamiltonian kernel,

H JπT
ν′ν (r ′, r) =

〈

ΦJπT
ν′r ′

∣

∣

∣ Âν′HÂν
∣

∣

∣ΦJπT
νr

〉

, (5)

and the norm kernel,

N JπT
ν′ν (r ′, r) =

〈

ΦJπT
ν′r ′

∣

∣

∣ Âν′Âν
∣

∣

∣ΦJπT
νr

〉

, (6)

contain all the nuclear structure and anti-symmetrization
properties of the problem. In particular, the non-localityof
the kernels is a direct consequence of the exchanges of nucle-
ons between the clusters. We have used the notationE andH
to denote the total energy in the center-of-mass frame, and the
intrinsic A-nucleon microscopic Hamiltonian, respectively.

The formalism presented above is combined with theab
initio NCSM in two steps:

First, we note that the Hamiltonian can be written as

H = Trel(r) +Vrel + V̄C(r) + H(A−a) + H(a) , (7)

whereH(A−a) and H(a) are the (A−a)- and a-nucleon intrin-
sic Hamiltonians, respectively,Trel(r) is the relative kinetic
energy andVrel is the sum of all interactions between nucle-
ons belonging to different clusters after subtraction of the av-
erage Coulomb interaction between them, explicitly singled
out in the termV̄C(r) = Z1νZ2νe2/r (Z1ν and Z2ν being the
charge numbers of the clusters in channelν). We use identi-
cal realistic potentials in both the cluster’s Hamiltonians and
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inter-cluster interactionVrel. Accordingly,
∣

∣

∣A−aα1I π1
1 T1

〉

and
∣

∣

∣aα2I π2
2 T2

〉

are obtained by diagonalizingH(A−a) andH(a), re-
spectively, in the model space spanned by the NCSMNmax~Ω

HO basis. Note that in the present paper we use soft SRG
evolvedNN potentials. Therefore, there is no need to derive
any further effective interaction tailored to the model space
truncation as with these soft interactions our calculations con-
verge in the model spaces we are able to reach.

Second, we replace the delta functions in the localized parts
of the Hamiltonian (5) and the norm (6) kernels with their
representation in the HO model space. We use identical HO
frequency as for the cluster eigenstate wave functions and a
consistent model space size (Nmax). We emphasize that this
replacement is performed only for the localized parts of the
kernels. The diagonal parts coming from the identity opera-
tor in the antisymmetrizers, the kinetic term and the average
Coulomb potential are treated exactly.

In this paper, we apply the NCSM/RGM formalism in
the single-nucleon projectile basis, i.e., for binary-cluster
channel states (1) witha = 1 (with channel indexν =
{A−1α1Iπ1

1 T1; 1 1
2

1
2; sℓ}). As an illustration, let’s discuss in

more detail the norm kernel that is rather simple in this basis:

N JπT
ν′ν (r ′, r) =

〈

ΦJπT
ν′r ′

∣

∣

∣1−
A−1
∑

i=1

P̂iA

∣

∣

∣ΦJπT
νr

〉

(8)

= δν′ ν
δ(r ′ − r)

r ′ r
− (A− 1)

∑

n′n

Rn′ℓ′(r
′)Rnℓ(r)

×
〈

ΦJπT
ν′n′

∣

∣

∣ P̂A−1,A

∣

∣

∣ΦJπT
νn

〉

. (9)

We can easily recognize a direct term, in which initial and fi-
nal state are identical (corresponding to diagram (a) of Fig. 1),
and a many-body correction due to the exchange part of the
inter-cluster antisymmetrizer (corresponding to diagram(b)
of Fig. 1). We note that in calculating the matrix elements
of the exchange operator̂PA−1,A we replaced the delta func-
tion of Eq. (1) with its representation in the HO model space
as discussed above. This is appropriate as the transposition
P̂A−1,A operator acting on the target wave function is short-to-
medium range. On the contrary, theδ-function coming from
the identity is treated exactly. The presence of the inter-cluster
antisymmetrizer affects also the Hamiltonian kernel, and, in
particular, the matrix elements of the interaction. For aNN
potential one obtains a direct term involving interaction and
exchange of two nucleons only (see diagrams (c) and (d) of
Fig. 1), and an exchange term involving three-nucleons. Di-
agram (e) of Fig. 1 describes this latter term, in which the
last nucleon is exchanged with one of the nucleons of the first
cluster, and interacts with yet another nucleon. For more de-
tails on the integration kernels in the single-nucleon projectile
basis we refer the readers to Ref. [19].

Being translationally-invariant quantities, the norm and
Hamiltonian kernels can be “naturally” derived working
within the NCSM Jacobi-coordinate basis. However, by in-

(a) (b)

ν, r

ν′, r′

1

1

2

2

A-2

A-2

A-1

A-1

A

A

· · ·

· · ·

· · ·· · ·

(c) (d) (e)

· · ·· · · · · ·

FIG. 1: Diagrammatic representation of: (a) “direct” and (b) “ex-
change” components of the norm kernel; (c andd) “direct” and (e)
“exchange” components of the potential kernel. The group ofcir-
cled black lines represents the target cluster, a state ofA−1 nucleons.
The separate red line represents the projectile, a single nucleon. Bot-
tom and upper part of the diagram represent initial and final states,
respectively.

troducing Slater-determinant channel states of the type

|ΦJπT
νn 〉SD =

[

(

|A−aα1I1T1〉SD |aα2I2T2〉
)(sT)

×Yℓ(R̂
(a)
c.m.)
](JπT)

Rnℓ(R
(a)
c.m.) , (10)

in which the eigenstates of the (A−a)-nucleon fragment are
obtained in the SD basis (while the second cluster is still a
NCSM Jacobi-coordinate eigenstate), it can be easily demon-
strated that translationally invariant matrix elements can be
extracted from those calculated in the SD basis of Eq. (10) by
inverting the following expression:

SD

〈

ΦJπT
ν′n′

∣

∣

∣ Ôt.i.

∣

∣

∣ΦJπT
νn

〉

SD =

∑

n′rℓ′r ,nrℓr ,Jr

〈

Φ
Jπrr T
ν′r n′r

∣

∣

∣

∣

Ôt.i.

∣

∣

∣

∣

Φ
Jπrr T
νrnr

〉

×
∑

NL

ℓ̂ℓ̂′ Ĵ2
r (−1)(s+ℓ−s′−ℓ′)

{

s ℓr Jr

L J ℓ

} {

s′ ℓ′r Jr

L J ℓ′

}

×〈nrℓr NLℓ|00nℓℓ〉 a
A−a
〈n′rℓ

′
r NLℓ|00n′ℓ′ℓ′〉 a

A−a
. (11)

Here Ôt.i. represents any scalar and parity-conserving
translational-invariant operator (Ôt.i. = Â, ÂHÂ, etc.) and
〈nrℓrNLℓ|00nℓℓ〉 a

A−a
are generalized HO brackets for two par-

ticles with the mass ratioa/(A−a). We exploited both Jacobi-
coordinate and SD channel states to verify our results. The
use of the SD basis is computationally advantageous and al-
lows us to explore reactions involvingp-shell nuclei, as done
in the present work. In order to calculate the parts of the inte-
gration kernels depicted in Fig. 1 (b), (c) and (d), all informa-
tion that we need from the SD basis calculation are one-body
densities of the target eigenstates. For the (e) part of the in-
tegration kernel in Fig. 1, we need two-body densities of the
target eigenstates obtained in the SD basis.
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Due to the presence of the norm kernelN JπT
ν′ν (r ′, r), Eq. (4)

does not represent a system of multichannel Schrödinger
equations, andgJπT

ν (r) do not represent Schrödinger wave
functions. The short-range non-orthogonality, induced bythe
non-identical permutations in the inter-cluster antisymmetriz-
ers, can be removed by introducing normalized Schrödinger
wave functions

χJπT
ν (r)

r
=
∑

γ

∫

dy y2N
1
2
νγ(r, y)

gJπT
γ (y)

y
, (12)

whereN
1
2 is the square root of the norm kernel, and applying

the inverse-square root of the norm kernel,N−
1
2 , to both left

and right-hand side of the square brackets in Eq. (4). This
procedure, explained in more detail in Ref. [19], leads to a
system of multichannel Schrödinger equations

[T̂rel(r) + V̄C(r) − (E − E
I
π1
1 T1
α1
− E

I
π2
2 T2
α2

)]
χJπT
ν (r)

r

+
∑

ν′

∫

dr′ r ′ 2 WJπT
νν′ (r, r ′)

χJπT
ν′ (r ′)

r ′
= 0, (13)

whereE
I
πi
i Ti
αi

is the energy eigenvalue of thei-th cluster (i =
1, 2), andWJπT

ν′ν (r ′, r) is the overall non-local potential between
the two clusters, which depends on the channel of relative mo-
tion, while it does not depend on the energy. These are the
equations that we finally solve to obtain both our scattering
and bound-state results.

B. Importance truncated NCSM with excited states

The primary limitation for the range of applicability of the
NCSM in terms of particle numberA and model spaces size
Nmax results from the factorial growth of the dimension of the
Nmax~Ω space. Except for light isotopes, it is hardly possible
to obtain a converged result using a ’bare’ Hamiltonian within
theNmax~Ω spaces that are computationally tractable.

At this point the importance truncation offers a solution.
The importance truncation in connection with the NCSM was
introduced in Ref. [25] and discussed in detail in Ref. [26].
In the following we summarize a few key features of the IT-
NCSM and generalize the approach to the simultaneous de-
scription of excited states.

The motivation for the importance truncation results from
the observation that the expansion of any particular eigenstate
of the Hamiltonian in a fullm-scheme NCSM space typically
contains a large number of basis states with extremely small
or vanishing amplitudes. The amplitudes define an adaptive
truncation criterion, which takes into account the properties
of the Hamiltonian and the structure of the eigenstate un-
der consideration. If those amplitudes were known—at least
approximately—before actually solving the eigenvalue prob-
lem, one could reduce the model space to the most relevant
basis states by imposing a threshold on the amplitude. The
amplitude of a particular basis state|Φν〉 in the expansion of

a specific eigenstate can be estimated using first-order multi-
configurational perturbation theory. In order to set up a per-
turbation series we need an initial approximation of the target
state, the so-called reference state|Ψref〉. In practice this ref-
erence state will be a superposition of basis states|Φµ〉 ∈ Mref

from a reference spaceMref:

|Ψref〉 =
∑

µ∈Mref

C(ref)
µ |Φµ〉 . (14)

The reference state and the amplitudesC(ref)
µ are typically ex-

tracted from a previous NCSM calculation. Based on|Ψref〉

as unperturbed state, we can evaluate the first-order perturba-
tive correction to the target state resulting from basis states
|Φν〉 < Mref. Their first-order amplitude defines the so-called
importance measure

κν = −
〈Φν|H|Ψref〉

ǫν − ǫref
= −

∑

µ∈Mref

C(ref)
µ

〈Φν|H|Φµ〉

ǫν − ǫref
. (15)

The energy denominatorǫν − ǫref in a Møller-Plesset-type
partitioning is simply given by the unperturbed harmonic-
oscillator excitation energy of the basis state|Φν〉 (see
Ref. [26] for details).

Imposing an importance thresholdκmin, we construct an im-
portance truncated model space including all basis states with
importance measure|κν| ≥ κmin. Since the importance measure
is zero for all basis states that differ from all of the states in
Mref by more than a two-particle-two-hole excitation, we have
to embed the construction of the importance truncated space
into an iterative update cycle. After constructing the impor-
tance truncated space and solving the eigenvalue problem in
that space, we obtain an improved approximation for the tar-
get state that defines a reference state for the next iteration. In
order to accelerate the evaluation of the importance measure
(15), we typically do not use the complete eigenstate as new
reference state, but project it onto a reference space spanned
by the basis states with|Cν| ≥ Cmin, whereCν are the coeffi-
cients resulting from the solution of the eigenvalue problem.
The second thresholdCmin will be chosen sufficiently small so
as not to affect the results for a givenκmin threshold.

Simple iterative update schemes can be devised for any type
of full model spaces, as discussed in Refs. [26, 31]. Specif-
ically for the Nmax~Ω space of the NCSM, however, there
is an efficient sequential update scheme leading to the IT-
NCSM(seq) approach. It is based on the fact that all states
of an (Nmax + 2)~Ω space can be generated from the basis
states of anNmax~Ω space using two-particle-two-hole excita-
tions at most. Thus a single importance update starting froma
reference state in anNmax~Ω space gives access to all relevant
states in an (Nmax+ 2)~Ω space. Making use of this property,
in the IT-NCSM(seq) we start with a full NCSM calculation
in, e.g., 2~Ω and use this eigenstate after applying theCmin

threshold as reference state for constructing the importance
truncated 4~Ω space. After solving the eigenvalue problem
for this importance truncated 4~Ω space we use the resulting
eigenstate as reference state to construct the 6~Ω space, and
so on. Thus only one importance update is required for each
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value ofNmax, which makes this scheme very efficient com-
putationally. Moreover, in the limit of vanishing thresholds,
(κmin,Cmin) → 0, this scheme recovers the fullNmax~Ω space
at each step of the sequence, i.e., the IT-NCSM(seq) would
recover the full NCSM result.

Based on this limiting property, we can obtain a numeri-
cal approximation to the full NCSM result by extrapolating
the IT-NCSM(seq) observables obtained for a set of differ-
ent importance thresholdsκmin (and in principle alsoCmin) to
κmin → 0. Through this extrapolation, the contribution of dis-
carded basis states, i.e. those with importance measures|κν|
below the smallest threshold considered, is effectively recov-
ered. Because the control parameterκmin is tied to the physical
structure of the eigenstate, we observe a smooth threshold de-
pendence for all observables, which allows for a robust thresh-
old extrapolation. In the case of the energy we can improve
the quality of the extrapolation further by considering a per-
turbative second-order estimate for the energy of the excluded
basis states. While setting up the importance truncated space,
all second-order energy contributions

ξν = −
|〈Φν|H|Ψref〉|

2

ǫν − ǫref
. (16)

for the discarded states with|κν| < κmin are summed up to
provide a correction∆excl(κmin) to the energy eigenvalue. By
construction this correction goes to zero in the limitκmin → 0.
We use this additional information for a constrained simulta-
neous extrapolation of the energy to vanishing threshold with
and without perturbative correction for the excluded states as
described in detail in Ref. [26].

The whole concept can be generalized to the description of
excited states. For the present application in connection with
the NCSM/RGM, we aim at an importance truncated model
space that is equally well suited for the description of the low-
estM eigenstates of the Hamiltonian for given parity and to-
tal angular momentum projection. Instead of using a single
reference state, we employ different reference states|Ψ(m)

ref 〉,
with m = 1, ...,M, for each of theM target states. For each
reference state we define a separate importance measureκ

(m)
ν

following Eq. (15). A basis state|Φν〉 is included in the im-
portance truncated space if at least one of the importance mea-
sures|κ(m)

ν | is above the thresholdκmin, i.e., if it is relevant for
the description of at least one of theM target states it will
be included. Because the different eigenstates are typically
dominated by different basis states, the dimension of the im-
portance truncated space grows linearly withM.

In the IT-NCSM(seq) scheme we start with a full NCSM
calculation in 2~Ω and use the lowestM eigenstates as ini-
tial reference states|Ψ(m)

ref 〉. Based on the corresponding im-

portance measuresκ(m)
ν the importance truncated 4~Ω space is

constructed and the lowestM eigenvectors in this space serve
as new reference states (after application of theCmin thresh-
old) for the construction of the 6~Ω space, and so on. From
a sequence of IT-NCSM(seq) calculations we obtain a set of
M eigenvectors for each value ofNmax which can be used to
evaluate other observables.

By default we compute the expectation values of~J2 and

~T2 as well as the expectation values ofHint and Hcm. In-
deed, since we use an importance truncated space in them-
scheme without explicit angular momentum projection, the
eigenstates are not guaranteed to have good angular momen-
tum and isospin. We therefore monitor the expectation values
of ~J2 and~T2 and find values which typically differ by less then
10−3 from the exact quantum numbers. As in the full NCSM
we separate spurious center-of-mass (CM) excitations from
the physical spectrum by adding a Lawson termβHcm to the
translationally invariant intrinsic HamiltonianHint (with the
typical choiceβ = 10). The use of this modified Hamiltonian
provides at the same time a diagnostic for potential CM con-
taminations of the intrinsic states induced by the importance
truncation. As discussed in Refs. [26, 32], the independence
of the intrinsic energies〈Hint〉 onβ and the smallness of〈Hcm〉

demonstrate that the IT-NCSM(seq) solutions are free of CM
contaminations.

Eventually, the wave functions obtained in the IT-
NCSM(seq) together with the threshold extrapolated intrinsic
energies form the input for the NCSM/RGM calculations dis-
cussed in the following.

III. NUCLEON-4HE SCATTERING

The purpose of the nucleon-4He calculations presented in
this paper is two-fold. First, we want to check the predic-
tive power of the SRG evolved chiral interaction in theA = 5
system, where a lot of experimental scattering data exist and
where our calculations can be easily converged with respect
to the size of the basis expansion. Second, we want to bench-
mark the importance truncation scheme with the full-space
calculations all the way up to very largeNmax~Ω spaces.

The first ab initio A = 5 scattering calculations was re-
ported in Ref. [9]. Then-α low-lying Jπ = 3/2− and 1/2−

P-wave resonances as well as the 1/2+ S-wave non-resonant
scattering below 5 MeV c.m. energy were obtained using the
AV18 NN potential with and without the three-nucleon force,
chosen to be either the Urbana IX or the Illinois-2 model. The
results of these Green’s function Monte Carlo (GFMC) cal-
culations revealed sensitivity to the inter-nucleon interaction,
and in particular to the strength of the spin-orbit force.

Soon after, the development of theab initio NCSM/RGM
approach allowed us to calculate bothn- and (for the first
time) p-α scattering phase shifts for energies up to the in-
elastic threshold [18, 19], using several realisticNN poten-
tials, including the chiral N3LO [30], the Vlowk [33] and the
CD-Bonn [34] NN potentials. Nucleon-α scattering pro-
vides one of the best-case scenarios for the application of the
NCSM/RGM approach. This process is characterized by a
single open channel up to thed+3H threshold, which is fairly
high in energy. In addition, the low-lying resonances of the
4He nucleus are narrow enough to be reasonably reproduced
diagonalizing the four-body Hamiltonian in the NCSM model
space. In the present work we include the first excited state
of 4He, the 0+0 state, as a closed channel in our NCSM/RGM
basis space.
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first 0+0 excited states were included. The SRG-N3LO NN potential
with Λ = 2.02 fm−1 and the HO frequency~Ω = 20 MeV were used.

A. Convergence with the size of the HO basis expansion

We performed extensive nucleon-4He calculations with the
SRG-N3LO NN potential withΛ = 2.02 fm−1 to check con-
vergence of our NCSM/RGM calculations. In Fig. 2, we
presentn-4He phase shift results for theS- andP-waves ob-
tained using an HO basis expansion up toNmax = 17 for for
the localized parts of the NCSM/RGM integration kernels and
for the 4He ground- and the first-excited 0+0 wave functions
(since these states have positive parity, theNmax − 1 expan-
sion is in fact used for the4He eigenstates). As seen in the
figure, the phase-shift convergence is excellent. In particular,
the Nmax = 17 and theNmax = 15 curves lie on top of each
other. The convergence rate demonstrated here is quite simi-
lar to that obtained using theVlowk NN potential in our earlier
study (compare the present Fig. 2 to the left panel of Fig. 13
in Ref. [19]).

B. Benchmark of importance-truncated calculations

As shown in the previous subsection, for theA = 5 system
we are able to reach complete convergence with4He wave
functions obtained within full, non-truncated, NCSM calcu-

lations. We can, therefore, test the performance of the IT-
NCSM scheme in this system all the way up to very large
Nmax values and see how well the IT-NCSM scheme repro-
duces the completely converged results. It should be noted
that for heavierA = 8, 13 andA = 17 systems investigated
later, full, non-truncated NCSM calculations for theA = 7
(A = 12, 16) target nuclei are feasible only up toNmax = 10
(Nmax = 8). It is, therefore, desirable and important to bench-
mark the IT-NCSM calculations in a lighter system likeA = 5
in Nmax > 10 calculations.

In Fig. 3, we comparen-4He phase shifts calculated within
the NCSM/RGM with 4He wave functions obtained in a full
Nmax = 16 NCSM calculation and those obtained using4He
wave functions obtained within anNmax = 16 IT-NCSM cal-
culation. The agreement of the two sets of phase shifts is
excellent. It should be noted that the dimension of the full
Nmax = 16 4He NCSM basis is 6344119. The dimension of
the IT-NCSM basis used here to calculate the4He wave func-
tions was just 992578, more than a factor of six smaller. Trun-
cation parametersκmin = 10−5 andCmin = 2×10−4 were used.
The ground state energy from the full NCSM calculation is
−28.224 MeV. Theκmin → 0 extrapolated ground state en-
ergy from the IT-NCSM calculation is−28.217(5) MeV with
a difference from the full result less than 10 keV. The 0+0
excitation energy obtained in the full NCSM calculation was
21.58 MeV. The corresponding extrapolated IT-NCSM result
was 21.4(1) MeV. The slightly lower accuracy of the excited
state reproduction in the IT-NCSM calculation is manifested
in a very small deviation of theS-wave phase shift at ener-
gies above 12 MeV (less than 1 degree at 16 MeV). It should
be noted that the excited 0+0 state is not bound for small
Nmax. Consequently, it is challenging to reproduce the excited
state as well as the ground state in a sequential importance-
truncated calculation. It should be also pointed out that un-
like for the energies, no phase shift extrapolation was per-
formed. The needed one- and two-body densities were cal-
culated from the wave functions obtained in the IT-NCSM
calculation with the truncation parameters described above.
The excellent agreement of the full and the IT-NCSM phase
shifts demonstrates that no extrapolation was actually neces-
sary. Obviously, we can check the dependence of observables
like phase shifts on theκmin andCmin and perform an extrapo-
lation to vanishing values of these parameters if needed.

C. Comparison with experimental data

Our calculatedn-4He andp-4He phase shifts are compared
to those obtained from anR-matrix analysis ofN−4He exper-
imental data [35] in Fig. 4. The agreement is quite reason-
able for theS-wave,D-wave and2P1/2-wave. The2P3/2 reso-
nance is positioned at higher energy in the calculation and the
corresponding phase shifts are underestimated with respect to
theR-matrix results, although the disagreement becomes less
and less pronounced starting at about 8 MeV. While the inclu-
sion of negative-parity excited states of theα−particle would
likely increase somewhat the2P3/2 phase shifts [18, 19], the
observed difference is largely due to a reduction in spin-orbit
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strength caused by the neglect of the three-nucleon interaction
in our calculations. The importance of the three-nucleon force
in reproducing theR-matrix 2P3/2 phase shifts was demon-
strated in the GFMCn-4He calculations of Ref. [9]. Overall,
the present results obtained with the SRG-N3LO NN inter-
action agree better with experiment than our earlier calcula-
tions [18, 19] with theVlowk, N3LO and CD-BonnNN poten-
tials. The only exception is theS-wave phase shift which is
best described using the CD-BonnNN potential. The larger
spin-orbit strength of the employed SRG-N3LO potential with
respect to N3LO itself is the likely responsible for the im-
proved agreement.

As our calculated phase shifts agree with the experimen-

tal ones reasonably well above the center-of-mass energy of8
MeV, we expect a similar behavior for cross section and ana-
lyzing power in that energy range. This is indeed the case as
shown in Fig. 5, where the calculated differential cross section
and analyzing power are compared to experimental data from
Karlsruhe [36] with polarized neutrons ofEn =17 MeV labo-
ratory energy. For the cross section experimental data see also
references in [36]. The cross section is reproduced remark-
ably well at all angles and the analyzing power is in reason-
able agreement with the data, particularly at backward angles.
The same quality of agreement can be found for all energies
far from the low-lying resonances, as shown in the right panel
of Fig. 5 for the analyzing power atEn = 15 MeV and 19
MeV.

A better display of the dependence of our calculated cross
section and analyzing power upon the incident nucleon energy
is provided by Fig. 6, where thep−4He results for these ob-
servables are compared to the data of Ref. [37] at the proton
laboratory energies ofEp = 5.95, 7.89, 9.89, and 11.99 MeV.
As expected from the behavior of the phase shifts described
earlier, for energies relatively close to the resonance region
we find a rather poor agreement with experiment, particularly
noticeable in the analyzing power overall and in the cross sec-
tion at backward angles. However, starting at about 10 MeV,
the agreement improves substantially and data are once again
reproduced in a quite satisfactory way at higher energies, as
shown in Fig. 7, where the NCSM/RGM p−4He results are
compared to various experimental data sets [37–40] in the en-
ergy rangeEp ∼ 12− 17 MeV.

IV. NEUTRON-7LI AND PROTON-7BE SCATTERING

The7Be(p,γ)8B capture reaction plays a very important role
in nuclear astrophysics as it serves as an input for understand-
ing the solar neutrino flux [41]. While the experimental de-
termination of the neutrino flux from8B has an accuracy of
about 9% [42], the theoretical predictions have uncertainties
of the order of 20% [43, 44]. The theoretical neutrino flux
depends on the7Be(p,γ)8B S-factor. Significant experimen-
tal and theoretical effort has been devoted to studying this re-
action. The S-factor extrapolation to astrophysically relevant
energies depends among other things on the scattering lengths
of the proton scattering on7Be. Experimental determination
of these lengths was performed recently [45] with precisionof
the order of 30%. The proton-7Be elastic scattering was also
investigated in Ref. [46]. To benchmark the theoretical calcu-
lations used for S-factor extrapolations, an investigation of the
mirror capture reaction,7Li(n,γ)8Li, as well as then+7Li scat-
tering is important. For example, then+7Li scattering lengths
are known with a higher accuracy [47].

The first applications of the NCSM approach to the de-
scription of the7Be(p,γ)8B capture reaction [48] required
a phenomenological correction of the asymptotic behavior
of the overlap functions and, further, the scatteringp+7Be
wave function was calculated from a phenomenological po-
tential model. The present investigation within theab ini-
tio NCSM/RGM approach paves the way for a complete first
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principles calculation of this capture reaction. Here, we limit
ourselves to scattering calculations and postpone the capture
reaction calculations to a forthcoming paper.

Our current limit on the unrestricted NCSM calculations
for 7Li and 7Be is Nmax = 10. To improve the convergence
of our scattering calculations, we utilize wave functions ob-
tained within the IT-NCSM. In that scheme, we are able to

reachNmax = 18 model spaces and calculate both ground
as well as low-lying excited states. This is demonstrated in
Fig. 8. With the SRG-N3LO NN potential withΛ = 2.02
fm−1 employed in the present study we reach convergence
already aroundNmax = 12 − 14. Also, as seen in the fig-
ure, the agreement between the unrestricted NCSM and the
IT-NCSM is perfect up to the highest accessible unrestricted
space,Nmax = 10. Our calculated ground-state energies of3H,
4He, 7Li and 7Be obtained with the SRG-N3LO NN potential
with Λ = 2.02 fm−1 are summarized in Table I.

A. n-7Li

The NCSM/RGM coupled-channel calculations performed
for the A = 8 system include the7Li (7Be) ground state, the
first excited 1/2− state as well as the second excited 7/2− state.
It is essential to include the 7/2− state in order to reproduce
the low-lying 3+ resonance in8Li and 8B. Using these three
states, we are able to reach model spaces up toNmax = 12,

Eg.s. [MeV] 3H 4He 7Li 7Be

Calc. -8.32 -28.22 -39.4(2) -37.8(2)
Expt. -8.48 -28.30 -39.24 -37.60

TABLE I: Calculated ground state energies of3H, 4He, 7Li and 7Be
obtained using the SRG-N3LO NN potential withΛ = 2.02 fm−1

compared to experimental values.
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FIG. 9: (Color online)P-wave diagonal phase shifts of then-7Li elas-
tic scattering (top panel), elastic7Li(n,n)7Li cross section (middle
panel), and inelastic7Li(n,n′)7Li(1/2−) cross section (bottom panel).
The NCSM/RGM calculation that included the7Li ground state and
the 1/2− and 7/2− excited states were done using the SRG-N3LO
NN potential withΛ = 2.02 fm−1. Wave functions from IT-NCSM
calculations in theNmax = 12 basis and the HO frequency of~Ω = 20
MeV were employed. Experimental data are from Ref. [52].

which is sufficient concerning the HO basis expansion conver-
gence as can be judged from Fig. 8. The coupled channel cal-
culation described above gives two bound states for then-7Li
system, a 2+ corresponding to the experimentally observed8Li
ground state, bound by 2.03 MeV [49], and a 1+ correspond-
ing to the8Li first excited state atEx = 0.98 MeV, bound by
1.05 MeV [49]. The calculated states are bound by 1.16 MeV
and 0.17 MeV, respectively, i.e. less than in experiment. This
is in part due to the fact that higher excited states of7Li were
omitted. In Fig. 9, we present our results for the diagonalP-

wave phase shifts of then+7Li elastic scattering as well as the
elastic7Li(n,n)7Li and inelastic7Li(n,n′)7Li(1/2−) cross sec-
tions. At low energies, we can identify four resonances two of
which can be associated with the experimentally known8Li
states: 3+ at Ex = 2.255 MeV and 1+ at Ex = 3.21 MeV [49].
The other two resonances, 0+ and 2+ are not present in the8Li
evaluation of Ref. [49]. They do appear in many theoretical
calculations including the GFMC [3], NCSM [48] and recoil-
corrected continuum shell model (RCCSM) [50]. The 0+ reso-
nance also appears in the GCM calculations of Ref. [51]. Con-
tributions of different resonances to the cross sections can be
deduced from Fig. 9. The elastic cross section is dominated
by the 3+ resonance with some contributions from the 2+ res-
onance at higher energy. The inelastic cross section shows a
peak just above the threshold due to the 0+ resonance and also
a contribution from the 1+ resonance. The appearance of a 0+

peak just above threshold of the7Li(n,n′)7Li(1/2−) reaction
was also discussed in Ref. [50] (see Fig. 10 in that paper).
The data of Ref. [52] seem to be inconclusive concerning a 0+

state close to the threshold, see the bottom panel of Fig. 9. It
is known, however, that the position of the 0+ state is sensitive
to the strength of the spin-orbit interaction [3, 48, 50]. The
three-nucleon interaction, that would increase the strength of
the spin-orbit force, was not included in our present calcu-
lations. Consequently, our predicted 0+ state energy may be
underestimated. We note that no fit to the experimental tresh-
old was done in the present NCSM/RGM calculations. Still,
as seen in the bottom panel of Fig. 9, the calculated inelastic
cross section is very close to the experimental data just above
the threshold.

B. p-7Be

In the mirror system,p-7Be, we do not find a bound state in
the same type of coupled-channel NCSM/RGM calculation as
described above forn-7Li. As seen in the top and the middle
parts of Fig. 10, the lowest 2+ resonance corresponding to the
8B ground state lies at about 200 keV above the threshold. In
experiment,8B is bound by 137 keV [49]. Our calculated low-
est 1+ resonance appears at about 1 MeV. It corresponds to the
experimental8B 1+ state atEx = 0.77 MeV (0.63 MeV above
the p-7Be threshold). This resonance dominates the inelastic
cross section as seen in the bottom part of Fig. 10. The higher
lying resonances follow similar patterns as those found inn-
7Li (Fig. 9). Again, we find 0+ and 2+ resonances not included
in the recent8B evaluation [49]. We note that experimental ef-
forts are now under way to find these resonances [46, 53]. In
particular, the very recent Ref. [54] does claim observation
of the low-lying 0+ and 2+ resonaces based on the R-matrix
analysis of thep-7Be scattering experiment performed in the
energy range between 1.6 to 2.8 MeV in the c.m. Their sug-
gested 0+ resonance at 1.9 MeV is quite close to our calculated
0+ energy in the present work. We further note that our cal-
culated 1+2 states in8Li and8B appear at a significantly higher
energies than the corresponding 1+

2 states obtained within the
microscopic cluster model in Ref. [55].

The middle panel of Fig. 10 demonstrates once again the
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FIG. 10: (Color online) P-wave diagonal phase shifts of the
p-7Be elastic scattering (top and middle panel) and inelastic
7Be(p,p′)7Be(1/2−) cross section (bottom panel). The NCSM/RGM
calculation that included the7Be ground state and the 1/2− and 7/2−

excited states were done using the SRG-N3LO NN potential with
Λ = 2.02 fm−1. Wave functions from IT-NCSM calculations in the
Nmax = 12 basis and the HO frequency of~Ω = 20 MeV were em-
ployed. In the middle panel, the full-space NCSM (solid lines) and
the IT-NCSM (dashed lines) results in theNmax = 10 basis are com-
pared.

good accuracy of the importance truncated calculations fora
high N~Ω, Nmax = 10, model space. The IT calculation re-
duced the7Be basis from 43.6 million to 11.9 million in the
present case.

The elasticp-7Be scattering was measured at 148o and an-
alyzed by the R-matrix approach [46]. Cross section calcu-
lations within the RCCSM at that angle were then published
in Ref. [56] and also in Ref. [50]. Further, elastic and in-
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FIG. 11: (Color online) Elastic7Be(p,p)7Be (top panel) and inelas-
tic 7Be(p,p′)7Be(1/2−) (bottom panel) differential cross section at
Θc.m. = 1480 calculated within the NCSM/RGM with SRG-N3LO
NN potential withΛ = 2.02 fm−1.

elastic cross sections at this angle were analyzed within the
time-dependent approach to the continuum shell model (TD-
CSM) [57]. Our elastic and inelastic differential cross section
results at 148o are presented in Fig. 11. In the elastic cross
section, the first 1+ state is visible and beyond the minimum
of the cross section, we can see the dominant peak due to the
3+ state. At higher energies, the 2+ state contributes as well.
The inelastic cross section at 148o has a similar shape as the
reaction cross section shown in Fig. 10. The first 1+ state peak
dominates at low energy with contributions from the 0+ and
the second 1+ at higher energies. Our findings are in line with
the RCCSM results. However, we remind the reader that there
is no fitting in our calculations, all results being predictions
based on the SRG-N3LO NN potential. Because of this, the
positions of our calculated resonances, e.g., 1+, 3+ do not ex-
actly reproduce experiment. We do not include the experimen-
tal data in the figure as they would be shifted compared to the
calculated peaks. There are at least two reasons why our pre-
dictions do not match the experimental resonances accurately.
First, our nuclear Hamiltonian is incomplete, e.g. no three-
nucleon interaction is included. Second, we omitted higher
resonances of7Li and 7Be due to numerical reasons. Most
likely, the omitted resonances would produce some shifts in
the calculated peaks.

To address the issue of convergence of our results with
the number of included excited states of7Be (or 7Li), we
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FIG. 12: (Color online) Dependence of theP-wave diagonal phase
shifts of thep-7Be elastic scattering on the number of included ex-
cited states of7Be. TheNmax = 12 basis (top panel) andNmax = 6
basis (middle and bottom panel) were used with the the SRG-N3LO
NN potential withΛ = 2.02 fm−1 and the HO frequency of~Ω = 20
MeV.

performed smaller-space calculations with up to four excited
states of7Be. It can be anticipated that the impact of excited
states depends on the investigated energy range and the spin
and parity of the partial wave. This is demonstrated in Fig. 12.
In the top panel, we repeat ourNmax = 12 results for the 0+

and 1+ P-waves from Fig. 10 compared to calculations with
just the ground state and the g.s. plus the lowest 1/2− state.
Clearly, the impact of the 7/2− state is minimal. We con-
firmed in small-spaceNmax = 6 calculations that the impact of
the third and the fourth excited states of7Be (and7Li), both
of which are 5/2− states, on these partial waves is minimal as
well. It is a different situation for the 2+ and the 3+ partial
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FIG. 13: (Color online)S-wave phase shifts of then+7Li (solid lines)
and thep+7Be (dashed lines) elastic scattering. The calculations as
described in Figs. 9 and 10.

waves as seen in the middle and the bottom panels of Fig. 12.
Even the 2+ ground state is shifted to a lower energy by the
7/2− state (close to zero in the presentedNmax = 6 calculation,
invisible in the figure) and the8B becomes weakly bound once
the 5/2− states are included (this does not necessarily mean
that the converged, or large-spaceNmax = 12 calculation will
produce a bound state with the 5/2− states included). The 2+

and the 3+ resonances do not appear until the 7/2− state is in-
cluded and their position is shifted due to the 5/2− states by
about 1 MeV for the 2+ and 0.5 MeV for the 3+, respectively.
After the shifts, their positions are much closer to their exper-
imental excitation energies of 2.28 MeV (3+) and 2.55 MeV
(2+) from Ref. [54].

Both the inclusion of the three-nucleon interaction and the
addition of more excited states of the target will be addressed
in the future. The effect of higher excited states of7Be (7Li)
can be, in fact, most efficiently included by coupling the
presently used NCSM/RGM basis with the8B (8Li) NCSM
eigenstates as outlined in Ref. [59]. Still, our current results
contain the bulk of the physics behind the investigated scatter-
ing processes.

7Li 7Be
Calc. Expt. Calc. Expt.

a01 [fm] +1.23 +0.87(7) -1.2 25(9)
a02 [fm] -0.61 -3.63(5) -10.2 -7(3)

TABLE II: The n-7Li and thep-7BeS-wave scattering lengths. The-
oretical values correspond to calculations as described inFigs. 9
and 10. Experimental values are from Refs. [45, 47].
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C. S-wave scattering lengths of n-7Li and p-7Be

In Fig. 13, we present our calculatedn-7Li and thep-7Be
S-wave phase shifts. We do not find any evidence for a 2−

resonance advocated in Ref. [46] and discussed in Ref. [58].
The corresponding scattering lengths together with the exper-
imental values are given in Table II. With the exception of
thep-7Bea01, which has a large experimental uncertainty, our
calculated scattering lengths do agree with experimental data
as to their signs, there are however differences in the absolute
values. Again, as discussed above, the results presented here
serve only as a first step towards theab initio investigation
of then-7Li and thep-7Be reactions. Prospects for a realistic
calculation of the7Be(p,γ)8B capture are excellent. Here we
found the8B unbound by only 200 keV. It is quite possible
that8B will become bound (with theNN potential employed
here: SRG-N3LO with Λ = 2.02 fm−1) by including more ex-
cited states of7Be in the coupled-channel NCSM/RGM cal-
culations. See also the discussion at the end of the previous
subsection. Even if the8B would not be bound or, most likely,
the threshold energy will not agree with the experiment, we
have the possibility to explore a variation of the SRGNN po-
tential evolution parameterΛ and tune this parameter to fit
the experimental threshold. We note that for anyΛ the SRG-
evolvedNN potential will describe all two-nucleon properties
as accurately as the original startingNN potential, here the
chiral N3LO potential of Ref. [30]. It should be noted that by
adding the three-nucleon interaction, omitted in the present
calculations due to computational reasons, the need for a fine-
tuning should be significantly reduced, i.e. the results should
becomeΛ independent.

V. NUCLEON-12C SCATTERING

For nucleon scattering calculations on12C or heavier targets
within the NCSM/RGM, the use of the importance truncation
becomes essential. For12C, the full-space NCSM calculations
are currently limited toNmax = 8 (although successful runs
were already performed forNmax = 10 on the biggest super-
computers with the latest version of the code MFD [60]). This
is insufficient for reaching or approaching convergence of the
12C NCSM calculations as seen from Fig. 14 and even more so
of the NCSM/RGM scattering calculations. The importance-
truncated calculations, on the other hand, are feasible up to
Nmax = 18, where convergence is reached for both the ground
state as well excited states. Our12C calculations are per-
formed with the SRG-N3LO NN potential with the evolution
parameterΛ = 2.66 fm−1, a higher value (i.e. shorter evo-
lution, less soft) than that used for the lighter nuclei. The
use of a smallΛ results in large overbinding of heavier nu-
clei and a significant underestimation of their radii. As seen
in Fig. 14, our converged12C binding energy is about 84.5(8)
MeV, smaller than the experimental value of 92 MeV and, fur-
ther, the agreement of the full-space and importance-truncated
results is perfect all the way up toNmax = 8. Our calculated
ground-state energies of3H, 4He, 12C and16O obtained with
the SRG-N3LO NN potential withΛ = 2.66 fm−1 are summa-
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FIG. 14: (Color online) Ground-state and the first excited 2+ state
energy dependence on the model-space sizeNmax for 12C, obtained
within the importance-truncated NCSM, using the SRG-N3LO NN
potential withΛ = 2.66 fm−1. The HO frequency~Ω = 24 MeV
was employed. The calculation is variational. No NCSM effective
interaction was used. The full NCSM results were obtained with the
code Antoine [61].

rized in Table III.

A. p-12C

Our low-energyp-12C phase shift results are shown in
Fig. 15. The comparison of theNmax = 16 andNmax = 14 re-
sults demonstrates good convergence with respect to the HO
basis expansion. The12C ground state and the first 2+ state
were included in the coupled-channels NCSM/RGM equa-
tions. We note that we also performed a phase shift compar-
ison of the full-space and the importance-truncated calcula-
tions up toNmax = 6 and found a similarly perfect agreement
as presented in Fig. 3 forn-4He. In the presentp-12C calcu-
lations, we found a single bound state, 1/2− at -2.98 MeV,
corresponding to the13N ground state, bound experimentally
by 1.94 MeV [62]. The lowest resonance in our calculation is
3/2−, barely visible at 0.25 MeV above threshold. In experi-
ment, this resonance is at 1.56 MeV. Our calculated 1/2+ res-
onance appears at about 1.5 MeV above threshold (in experi-
ment at 0.42 MeV above threshold) and the 5/2+ resonance at
about 4.9 MeV (in experiment at 2.61 MeV).

Eg.s. [MeV] 3H 4He 12C 16O

Calc. -8.18 -27.26 -84.5(8) -139.0(8)
Expt. -8.48 -28.30 -92.16 -127.62

TABLE III: Calculated ground state energies of3H, 4He,12C and16O
obtained using the SRG-N3LO NN potential withΛ = 2.66 fm−1

compared to experimental values.
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FIG. 15: (Color online) Thep-12C eigenphase shifts calculated
within the NCSM/RGM using the SRG-N3LO NN potential with
Λ = 2.66 fm−1 and the HO frequency~Ω = 24 MeV. Full lines (dot-
ted lines) correspond to results obtained in theNmax = 16 (Nmax = 14)
model space. The ground state and the first excited 2+ state of12C
was included. The12C wave functions were obtained within the IT
NCSM.

B. n-12C

In the mirror system,n-12C, our NCSM/RGM calculations
produce three bound states: 1/2− at -5.34 MeV corresponding
to the 13C ground state experimentally bound by 4.95 MeV
with respect to then-12C threshold, 3/2−, bound by 2.23 MeV
(experimentally bound by 1.26 MeV), and 1/2+ bound by just
0.03 MeV (experimentally bound by 1.86 MeV). In exper-
iment, there is also a 5/2+ state bound by 1.09 MeV. Our
present NCSM/RGM calculations including the lowest 0+ and
and the lowest 2+ 12C states do not produce any bound 5/2+

state.
Our low-energyn-12C diagonal phase shifts are shown in

Fig. 16. The 5/2+ resonance is found at 2.8 MeV (experimen-
tally at 1.92 MeV with respect to then-12C threshold). The
steep drop of the 1/2+ phase shift is due to the presence of the
very weakly bound 1/2+ state. We note that similarly as in the
case of11Be, discussed in Ref. [18], we observe a significant
decrease of the 1/2+ state energy in then-12C NCSM/RGM
calculation when compared to the standard NCSM calculation
for 13C. We were able to make these comparisons in model
spaces up toNmax = 6 where we found this drop to be about 3
MeV.

Analyzing powers were measured for proton and neutron
scattering on12C [63–65] and scattering experiments on polar-
ized proton target are under way [66]. In Fig. 17, we present
our calculated analyzing power below and above the energy
of the 5/2+ resonance. We note that our calculated 5/2+ res-
onance appears at 2.8 MeV in the center of mass (experimen-
tally at 1.92 MeV). Below the resonance, the analyzing power
is positive atΘCM < 90o and negative atΘCM > 90o. At
energies above the resonance, the analyzing power reverses
its sign. Similar observations were made in calculations per-
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FIG. 16: (Color online) Then-12C phase shifts calculated within the
NCSM/RGM using the SRG-N3LO NN potential withΛ = 2.66
fm−1. The HO frequency~Ω = 24 MeV and the model-spaces size of
Nmax = 16 were used. The ground state and the first excited 2+ state
of 12C was included. The12C wave functions were obtained within
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formed within the multichannel algebraic scattering (MCAS)
theory [67, 68]. See in particular Fig. 5 of Ref. [68].

Our calculated13N and 13C bound-state levels and reso-
nances are more spread than the experimental ones. This is a
consequence of an underestimation of the12C radius found to
be 2.05 fm with the SRG-N3LO NN potential. To remedy this,
one would have to calculate three-nucleon interaction terms
induced due to the SRG evolution. This can be done as de-
scribed in Ref. [69]. However, we still need to further develop
the NCSM/RGM formalism in order to handle three-nucleon
interactions in the scattering calculations.
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FIG. 18: (Color online) Ground-state energy dependence on the
model-space sizeNmax for 16O, obtained within the importance-
truncated NCSM, using the SRG-N3LO NN potential withΛ = 2.66
fm−1. The HO frequency~Ω = 24 MeV was employed. The calcu-
lation is variational. No NCSM effective interaction was used. The
full NCSM results were obtained with the code Antoine [61].

VI. NUCLEON-16O SCATTERING

The calculation of nucleon scattering on16O is the most
challenging among the systems we investigate in this paper.
The α clustering plays an important role in the structure of
16O, in particular for the first excited 0+ state that is known
to be almost impossible to reproduce in NCSM or coupled-
cluster calculations. Our present calculations do not include
theα clustering yet.

As in the case of12C, we rely on the importance-truncated
NCSM calculations for obtaining the16O wave functions as
the full-Nmax NCSM calculations are possible only up to
Nmax = 8. In Fig. 18, we show the ground-state conver-
gence within the IT-NCSM and a comparison to the full-
space results. Again, up to the largest accessible model space,
the agreement between the importance-truncated and the full-
space calculations is perfect.

A. n-16O

It is straightforward to converge nucleon-16O scattering cal-
culations within the NCSM/RGM using the HO expansion up
to Nmax = 18. Our calculatedn-16O phase shifts are shown in
Fig. 19 and the HO-basis expansion convergence is checked
for theS- and theD-wave in Fig. 20. These calculations in-
cluded the16O ground state only. We find two bound states,
1/2+ at -0.88 MeV and 5/2+ at -0.41 MeV with respect to
the n-16O threshold. In experiment, the17O ground state is
5/2+, bound by 4.14 MeV, and the 1/2+ state is the first ex-
cited state bound by 3.27 MeV. There are also two additional
bound states: 1/2− and 3/2−. Those are unbound in our cal-
culations.

Clearly, it is insufficient to consider only the ground state
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FIG. 19: (Color online) Then−16O phase shifts calculated within
the NCSM/RGM using the SRG-N3LO NN potential withΛ = 2.66
fm−1 and the HO frequency~Ω = 24 MeV in theNmax = 18 model
space. The ground state of16O was included. The16O wave functions
were obtained within the IT NCSM.

of 16O in the coupled-channel NCSM/RGM scattering calcu-
lations. We, therefore, include in addition the three lowest
16O negative parity states: 3−, 1−, and 2−. Due to computa-
tional limitations, in this case we used HO basis expansion
up to Nmax=13. Comparing Fig. 21 to Fig. 19, the 1p − 1h
negative-parity excited states of16O generate negative-parity
resonances in17O. These resonances do appear, however, at
much higher energy than in experiment. The reason for this is
the fact that our calculated16O 1p− 1h states have too large
excitation energy. In particular, our calculated 3− excited state
has an excitation energy of 15.99 MeV while experimentally
it lies at just 6.13 MeV. One reason for the discrepancy is the
softness of the SRG-N3LO NN potential we use that results
in an overall overbinding of the16O ground state and in an
underestimation of its radius. Another aspect is the challeng-
ing problem of the IT-NCSM extrapolations of the indepen-
dent positive and negative-parity state calculations. Theun-
certainties of the relative excitation energies are higherthan
in same-parity calculations. On the positive side our calcula-
tion with the negative-parity states, even though with overesti-
mated excitation energies, results in the proper ordering of the
17O bound states. The ground state is 5/2+ at -1.32 MeV and
the 1/2+ state gains binding as well, appearing at -1.03 MeV.

B. p-16O

We also investigated thep-16O scattering and17F states.
When the NCSM/RGM calculations are restricted to the chan-
nels involving only the16O ground state, we find a 1/2+ reso-
nance at 1.0 MeV and a 5/2+ resonance at 2.2 MeV. These res-
onances correspond to the17F 1/2+ first excited state, bound
by 0.105 MeV, and the17F 5/2+ ground state bound by 0.6
MeV with respect to thep+16O threshold. By coupling chan-
nels involving the 1p−1h 16O 3−, 1− and 2− excited states, the
calculated 1/2+ and 5/2+ states are still unbound resonances
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FIG. 20: (Color online) Basis size dependence of then−16O phase
shifts calculated within the NCSM/RGM using the SRG-N3LO NN
potential withΛ = 2.66 fm−1. The HO frequency of~Ω = 24 MeV
was used. TheJπ = 1/2+(3/2+) channel is shown in the top (bot-
tom) panel. Model space sizes up toNmax = 18 were considered.
The ground state of16O was included. The16O wave functions were
obtained within the IT NCSM.

but their energy moves significantly closer to the threshold:
the 1/2+ appears at+0.7 MeV and the 5/2+ at+1.2 MeV.

The 17F low-lying states were recently investigated within
the coupled-cluster approach with the Gamow-Hartree-Fock
basis [70]. In those calculations with the N3LO NN potential,
the 1/2+ state is weakly bound while the 5/2+ state remains
unbound by about 0.1 MeV. Using the SRG evolved interac-
tion, the 5/2+ state became bound with the decrease of the
SRG-parameterΛ. We note that our calculated16O ground
state energy, -139.0(8) MeV (Fig. 18) obtained with the SRG-
N3LO NN potential withΛ = 2.66 fm−1, compares well with
the CCSD coupled-cluster16O calculations: -137.6 MeV with
the SRG-N3LO NN potential withΛ = 2.8 fm−1 [71]. The
differences in the positions of the 1/2+ and the 5/2+ are due to
deficiencies in our description of the negative parity 1p− 1h
states, which could be related to the two-body Hamiltonian
used here as well as the uncertainties of the threshold extrapo-
lations for the excitation energies. The inclusion of additional
16O excited states would increase the absolute energy of our
calculated17F states. The most efficient way to do this is by
coupling the presently used NCSM/RGM basis with the17F
NCSM eigenstates in as outlined in Ref. [59].
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FIG. 21: (Color online) Then-16O phase shifts calculated within the
NCSM/RGM using the SRG-N3LO NN potential withΛ = 2.66
fm−1 and the HO frequency~Ω = 24 MeV in theNmax = 13 model
space. The ground state and and the lowest 3−, 1− and 2− excited
states of16O were included. The16O wave functions were obtained
within the IT NCSM.

VII. CONCLUSIONS

By combining the importance truncation scheme for the
cluster eigenstate basis with theab initio NCSM/RGM ap-
proach, we were able to perform many-body calculations for
nucleon scattering on nuclei with mass number as high as
A = 16. With the soft SRG-evolved chiralNN potentials,
convergence of the calculations with respect to the HO ba-
sis expansion of the target eigenstates and the localized parts
of the NCSM/RGM integration kernels can be reached using
Nmax = 12− 16.

We first benchmarked the IT-NCSM results with the full-
space NCSM results for theA = 5 system. Our neutron-4He
and proton-4He calculations compare well with an R-matrix
analysis of the data in particular at energies above 8 MeV, and
describe well measured cross sections and analyzing powers
for those energies.

Our calculations ofn-7Li and p-7Be scattering predict low-
lying 0+ and 2+ resonances in8Li and 8B that have not
been experimentally clearly identified yet. We found that the
prospects of a realisticab initio calculation of the7Be(p,γ)8B
capture within our approach are very good. In the present
calculations we found the8B unbound by only 200 keV. It is
quite possible that8B will become bound (with theNN po-
tential employed here: SRG-N3LO with Λ = 2.02 fm−1) by
including more excited states of7Be in the coupled-channel
NCSM/RGM calculations. Even if the8B will still not be
bound or, most likely, the threshold energy will not agree with
the experiment, we have the possibility to explore a variation
of the SRGNN potential evolution parameterΛ and tune this
parameter to fit the experimental threshold.

The use of the importance-truncated basis becomes essen-
tial in calculations with12C or 16O targets as the full-space
NCSM calculations are limited toNmax = 8. Ourn-12C andp-
12C investigations included12C ground and the first excited 2+
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states. We found a single bound state, 1/2+ in 13N as in exper-
iment. In13C, we found three bound states with the 5/2+ state
still unbound contrary to experiment. Our calculated spec-
trum of A = 13 states is more spread than in experiment due
to the underestimation of the12C radius, a consequence of the
softness of the SRG-evolvedNN interaction.

The description of nucleon scattering on16O within our for-
malism was the most challenging. Theα clustering that plays
an important role in the structure of16O is not yet included
in our present calculations. Further, the 1p − 1h 16O excited
states are more difficult to treat in the IT-NCSM approach,
as the extrapolations of excitation energies are done from the
independent ground state and the negative-parity state calcu-
lations. We found a strong impact of the 1p−1h 16O states on
the positions of the lowestA = 17 states. For example, correct
ordering of the 5/2+ and the 1/2+ states in17O was obtained
only when the 1p− 1h states were included.

Overall, we find that the inclusion of additional excited
states of the target nuclei would be beneficial in all studied
systems and more significant with the increase ofA. Coupled-
channel NCSM/RGM calculations with many excited states of
the target are computationally challenging. The most efficient
way of including the effects of such states is by coupling the
presently used NCSM/RGM basis, consisting of just a few
lowest excited states, with the NCSM eigenstates of the com-
posite system as outlined in Ref. [59]. Work on this coupling
is under way.

The use of the SRG-evolvedNN interaction facilitates con-
vergence of the NCSM/RGM calculations with respect to the

HO basis expansion. On the other hand, due to the softness
of these interactions, radii of heavier nuclei become underes-
timated. To remedy this, one would have to calculate three-
nucleon interaction terms induced due to the SRG evolution.
This can be done as described in Ref. [69]. It is essential to
further develop the NCSM/RGM formalism in order to han-
dle three-nucleon interactions, both genuine and the SRG-
evolution induced, in the scattering calculations.

In the present paper, we limited ourselves to single-nucleon
projectile scattering. Extensions of the NCSM/RGM formal-
ism to include deuteron,3H and3He projectiles are under way.
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[43] S. Couvidat, S. Turck-Chièze, and A. G. Kosovichev, Astro-

phys. J.599, 1434 (2003).
[44] J. N. Bahcall and M. H. Pinsonneault, Phys. Rev. Lett.92,

121301 (2004).
[45] C. Anguloet al., Nucl. Phys. A716, 211 (2003).
[46] G. V. Rogachevet al., Phys. Rev. C64, 061601(R) (2001).
[47] L. Koester, K. Knopf, and W. Waschkowski, Z. Phys. A - Atoms

and Nuclei312, 81 (1983).
[48] P. Navratil, C. A. Bertulani and E. Caurier, Phys. Lett B634,

191 (2006); Phys. Rev. C73, 065801 (2006).
[49] D. R. Tilley et al., Nuclear Physics A745, 155 (2004).
[50] D. Halderson, Phys. Rev. C73, 024612 (2006).
[51] P. Descouvemont and D. Baye, Nucl. Phys. A567, 341 (1994).

[52] J. M. Freeman, A. M. Lane, and B. Rose, Phil. Mag.46, 17
(1955).

[53] U. Greifeet al., Nucl. Instrum. Methods B261, 1089 (2007).
[54] J. P. Mitchell, G. V. Rogachev, E. D. Johnson, L. T. Baby,K.

W. Kemper, A. M. Moro, P. N. Peplowski, A. Volya, and I.
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