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Abstract
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recent developments in nuclear structure theory aiming at the description of these interaction-
induced correlations by unitary transformations. We focuson the Unitary Correlation Operator
Method (UCOM), which offers a very intuitive, universal and robust approach for the treatment of
short-range correlations. We discuss the UCOM formalism in detail and highlight the connections
to other methods for the description of short-range correlations and the construction of effective
interactions. In particular, we juxtapose UCOM with the Similarity Renormalization Group (SRG)
approach, which implements the unitary transformation of the Hamiltonian through a very flexi-
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1. Introduction

Recent years have seen substantial progress in theoretical methods describing the many-body
problem of low energy nuclear structure in anab initio sense.Ab initio means from the beginning,
without further assumptions or uncontrolled approximations. At present for a system of particles
interacting by the strong interaction, the most elementarydegrees of freedom are considered to
be the point-like quarks and gluons, whose dynamics is derived from the Lagrangian of Quantum
Chromo Dynamics (QCD). However, in the low-energy regime QCD cannot be treated by per-
turbation theory because of the confinement phenomenon. Thelowest bound states of QCD are
baryons and mesons, which are the natural degrees of freedomat low energies. In a system at
very low energy, below about 50 MeV per baryon, only the proton and neutron are left. Other
baryons like the∆-resonance appear only as intermediate virtual excitations. Also the mesons,
among which the pions are the lightest ones, do not occur as real particles on their mass shell, but
may be regarded as bosons mediating the interaction among the baryons.

Recent QCD lattice simulations [1] give hope that in the near future the baryon-baryon inter-
action might be “measured” on the lattice with sufficient precision. This would complement the
scattering data, which can give only indirect information on the interaction in form of the phase
shifts measured at large distances, where the particles do not interact anymore.

For proton and neutron precise scattering data exist that allow to fit the parameters of nucleon-
nucleon potential models. Using global symmetries the formof the potential can be written as a
sum of central, spin-orbit, and tensor interactions. Precise fits to scattering phase shifts reveal that
the nucleon-nucleon potential cannot be assumed to be localin coordinate space, which means the
potential depends not only on the relative distance and the spin orientations but also on the relative
momentum. The minimal momentum dependence besides the spin-orbit terms is of~L2 type (as
in the Argonne V18 potential [2]) or terms like~q2V(r) + V(r)~q2 (as in the Bonn A/B potentials
[3]). Recent developments use the approximate chiral symmetry in the light quark sector of QCD
to establish for the nucleon-nucleon interaction a perturbation scheme in terms of diagrams con-
tributing to the so called chiral potentials [4, 5, 6]. By adding higher-order terms to the expansion
they can be improved systematically. However, with increasing number of contributions more
and more parameters have to be fixed by experimental data. Onegreat advantage of the chiral
potentials is that two- and three-body forces are treated onequal footing.

The nuclear structure problem consists in solving the stationary many-body Schrödinger equa-
tion for A nucleons

H |Ψ̃n〉 = En |Ψ̃n〉 (1)

and in investigating the properties of theA-body eigenstates|Ψ̃n〉 by computing observable quan-
tities as expectation values or transition matrix elements. The subset of the discrete eigenvalues
En represents the excitation spectrum of a nucleus and can be compared to data directly. The con-
tinuous part of the spectrum corresponds to scattering states which usually have a rich resonance
structure.

As the Schr̈odinger equations already indicates, solving the many-body problem requires two
main ingredients, the Hamiltonian H and a representation for the many-body eigenstates|Ψ̃n〉 or a
basis in theA-body Hilbert space.
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For more than about 6 particles Slater determinants|Φ[ν]〉 provide the most convenient basis
for treating the many-body problem numerically. They are usually constructed as eigenstates of
a one-body mean-field Hamiltonian H0. Matrix elements of one-, two-, or three-body operators
in A-body space can be calculated easily using an occupation number representation. Modern
computers and numerical techniques can tackleA-body Hilbert spaces dimensions up to about
1010. These numbers are impressive but by far not sufficient. The dilemma is that realistic nuclear
potentials, which fit the scattering data at low energy and induce the high momentum components
observed in bound states of nuclei, possess a strong repulsion at short distances and a strong
tensor force. Figure 2 illustrates that for the Argonne V18 potential. These properties of the
nuclear Hamiltonian induce short- and long-range correlations in the many-body eigenstate|Ψ̃n〉.
Especially the short-range repulsive and tensor correlations cannot be properly represented by
Slater determinants. The reason is that a Slater determinant is an antisymmetrized product of
single-particle states (A antisymmetrization operator):

〈ξ1, ξ2, . . . , ξA|Φ[ν]〉 = A φν1(ξ1) φν2(ξ2), . . . , φνA(ξA), ξi = (~xi , σi , τi) (2)

describing the motion of independent particles and as such cannot describe correlations in the
relative distances (~xi − ~xj) between particles. Of course, Slater determinants form a complete
basis and thus can in principle represent any state. However, as we show in Sec. 4 the number of
Slater determinants needed to describe the ground state that includes the short-range correlations
exceeds soon any numerically tractable number forA > 4. The Hamiltonian represented in Slater
determinants results in matrices with large matrix elements even far off the diagonal. In physical
terms, in this basis the Hamiltonian scatters to very high lying H0 eigenstates. Therefore, one
introduces an effective Hamiltonian based on the following concepts.

Common to many conventional derivations of effective Hamiltonians is that one first divides
the many-body Hilbert space into a so called P-space or modelspace and a Q-space. The projection
operators P and Q= 1−P are defined with the eigenstates of a Hamiltonian H0, which is usually a
one-body operator like kinetic energy or the harmonic oscillator Hamiltonian. One is then looking
for an effective Hamiltonian Heff that should have the same eigenvaluesEn as the full Hamiltonian
H

Heff |Φn〉 = En |Φn〉 (3)

and its eigenstates should be contained in the model-space,i.e. they can be represented as a finite
sum of H0 eigenstates that span the P-space,

|Φn〉 = P |Φn〉 =
P−space∑

[ν]

|Φ[ν]〉〈Φ[ν] |Φn〉 . (4)

Therefore, Heff should not connect P- and Q-space, PHeffQ = 0. Usually one is satisfied with a few
low lying eigenvalues and eigenstates of Eq. (3) and regardsthe higher eigenstates as orthogonal
rest that carries less and less physics. Therefore, in practice only the decoupling of the lowest
eigenstates is needed, i.e.〈Φn|HeffQ = 0 for few low lying En. A sharp separation between P-
and Q-space, as given in the mathematical definition of Eq. (4), is difficult to identify on physical
arguments anyhow.
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As the P-space consists of many-body product states that cannot describe short-range correla-
tions or high relative momentaq, it is regarded as a low-momentum Hilbert space. Sometimes one
also speaks of a low-energy Hilbert space, but here energy refers to H0 and its eigenvalues and not
to the true Hamiltonian H, which is the physical energy operator. To avoid confusion we prefer to
speak of low or high momentum states.

As a unitary transformation leaves eigenvalues invariant it is quite natural to perform a suitable
unitary transformation of the uncorrelated many-body states |Φ[ν]〉 to another basis|Φ̃[ν]〉, which
already includes correlations to a certain extent so that the Hamiltonian matrix becomes more
band-diagonal and is not scattering to high momentum statesanymore. Whenever many-body
states include short-range correlations we mark them by˜ like the fully correlated eigenstates
|Ψ̃n〉 of the Hamiltonian H which includes short-range repulsive and tensor potentials.

In this contribution we discuss in depth the Unitary Correlation Operator Method (UCOM)
which tries to achieve this goal by an explicitly given unitary operator that transforms the Hamil-
tonian and all other observables to effective operators that include the effects of the short-range
correlations.

Before discussing effective interactions in general and UCOM in particular, we would like to
address a few more general issues related to the nuclear potential and effective interactions.

1.1. Many-body potentials

In recent years it has become clear that the nuclear many-body problem needs at least three-
body forces to reproduce data with sufficient precision

H = T[1] + V[2]
NN + V[3]

NNN + · · · =
A∑

i=1

Ti +

A∑

j>i=1

V i j +

A∑

k> j>i=1

V i jk + . . . . (5)

An irreducible three-body potential V[3]
NNN is the remaining part of the Hamiltonian acting in three-

body space that cannot be described by a sum over one-body kinetic energies and two-body poten-
tials. Likewise, irreducible four-body potentials are theremaining parts of the Hamiltonian acting
in four-body space that cannot be described by a sum over two-body and three-body potentials and
so on.

A typical example of an irreducible or genuine three-body potential is the Fujita-Miyazawa
interaction [7], which arises from the restriction to proton and neutron as elementary degrees of
freedom. Due to the strong coupling with the pion, a nucleon can be converted into a∆-resonance,
which then has to decay back into a nucleon, because the energy of the total system is not sufficient
to produce a∆ on its mass shell. This intermediate virtual excitation is not contained in the
nucleonic Hilbert space, but is effectively already included in a two-body potential that is fitted to
data. The left-hand graph displayed in Fig. 1, where the third nucleon is only a spectator, therefore,
is a contribution that makes the two-body potential an effective one with respect to excluded∆-
degrees of freedom from the nucleonic Hilbert space. In the right-hand graph the pion is coupling
to a third nucleon. Thus this interaction cannot be written as an effective two-body potential. It
has to be seen as a genuine three-body potential.

Already from Fig. 1 it is obvious that two-body and three-body forces cannot be treated inde-
pendently as they may originate from the same physical process. Furthermore, this simple example
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Figure 1:∆-resonance as intermediate off-shell excitation in a three-body system.

shows that omitting parts of the many-body Hilbert space that are in principle reachable with the
strong interaction leads to effective operators and induces many-body forces. This effect will also
occur, and is of major concern, in the following sections when the nucleonic Hilbert space itself is
truncated to low-energy states.

1.2. Off-shell properties

The elastic nucleon-nucleon scattering cross section is represented in terms of phase shifts
and mixing angles as a function of energy. As cross sections are measured far away from the
interaction region, these quantities give only indirect information about the nuclear forces and
cannot determine the potential in a unique way. In a stationary scattering state the two nucleons
have a sharp energyEq and the modulus of the asymptotic relative momentumq of the ingoing
wave has to come back on-shell to the same momentumq in the outgoing wave, both related to
the eigenenergy byEq = q2/(2µ).

In an interacting many-body system the total energyEn corresponding to an eigenstate of the
Hamiltonian is sharp but a pair of particles within the system has neither a sharp relative energy
nor a sharp momentum. While they feel their mutual interaction they are also interacting with
other particles exchanging energy and momentum. Therefore, the interaction is tested for different
in- and outgoing momentaq and q′ that are not connected by any on-shell relation. Studying
many-body systems will, therefore, give information on theoff-shell behavior of the nuclear force.

As we will see in Sec. 2 a unitary transformation that acts only at short distances and does
not affect the asymptotic behavior, like the UCOM correlator, leaves the phase shifts untouched
but creates a new potential that is not distinguishable fromthe original one by measurements of
the elastic cross section. As one can devise an infinite number of such transformations, there are
infinitely many phase-shift equivalent potentials. These,however, differ in their off-shell behavior.
Therefore, scattering data will never be able to determine the nuclear force uniquely. In Sec. 4 and
5 we show that phase-shift equivalent potentials with different off-shell properties can produce very
different results when applied in many-body systems. One of themproduces with increasing mass
number a dramatic overbinding in a variational calculation, where the calculated binding energy
is, anyhow, only an upper limit. In order to be sure that the limited Hilbert space used is not
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the reason that the other potentials are not overbinding as well one needs many-body approaches
models that can solve the many-body problem exactly for a given Hamiltonian.

One goal of modern nuclear structure theory is to disentangle as much as possible the off-
shell nature of the potential from effects originating in the use of restricted many-body Hilbert
spaces. However, one should always keep in mind that in any theory, not only in nuclear structure,
any interaction is an effective low-momentum interaction in the sense that it is constructed for
the degrees of freedom and Hilbert space one is using. With increasing momentum transfer one
always opens up new degrees of freedom not contained in the original model space.

Exact benchmark calculations for the three- and four-body system [8, 9, 10, 11, 12] were very
helpful in this respect. They also showed that three-body forces are needed, though different
ones for different phase-shift equivalent two-body potentials. For example the contribution to the
binding energy of4He coming from three-body terms complementing the Argonne V18 potential
are about 50% larger than those accompanying the CD Bonn potential [13], see Fig. 21. The CD
Bonn potential has a softer short-range repulsion than the AV18 but contains a radial momentum
dependence which is absent in Argonne V18. Glöckle and collaborators have shown in a quite
general way that off-shell properties of two-body interactions can be traded against three-body
forces [14]. We will encounter this effect again when we perform the UCOM and SRG similarity
transformations of the Hamiltonian.

1.3. Effective potentials

Besides the conceptual problems of deriving and defining the nuclear interaction there is also
the already mentioned technical problem that the solution of the many-body Schrödinger equa-
tion (1) requires a representation of the many-body eigenstates. Since realistic nuclear interac-
tions induce various kinds of correlations, in particular short-range correlations, one possibility is
to work with many-body states that can represent the correlations. In that case the main numerical
effort goes into calculating the matrix elements of the Hamiltonian. Examples are the exact Fad-
deev and Faddeev-Yakubovsky equations for the 3- and 4-bodysystem [15], the hyperspherical
harmonics basis [16], or the Green’s Function Monte Carlo method (GFMC) [17, 18, 19, 20, 21].
The other possibility is to represent the eigenstates of theHamiltonian with many-body basis
states|Φ[ν]〉 which are chosen such that the numerical effort for calculating the matrix elements
〈Φ[ν] |T[1] |Φ[µ]〉, 〈Φ[ν] |V[2]

NN |Φ[µ]〉, 〈Φ[ν] |V[3]
NNN |Φ[µ]〉 of one-, two-, and three-body operators is min-

imized. In that respect the best choice are antisymmetrizedproduct states (Slater determinants).
However, the strong short-range correlations induced by realistic nuclear forces cannot be repre-
sented in a reasonable way by a product state basis. For example the four-body system4He, when
represented in harmonic oscillator states, needs a three-body Hilbert space of dimension more than
108 to get a converged ground-state energy with the Argonne V18 potential, see Sec. 4. Therefore,
so called effective interactions for truncated Hilbert spaces are introduced. At present there is no
other possibility for mass numbers larger than about 12.

1.4. Unitary approaches

In a product basis representation the nucleon-nucleon interaction scatters to energetically very
high-lying basis states. Or in other words, the short-rangerepulsive and tensor correlations imply
components in the many-body state with large relative momenta, which necessitate very large
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many-body Hilbert spaces in order to accommodate the correlations in this basis. To still work with
the numerically convenient product basis one uses so calledeffective interactions. The effective
interaction should decouple the Hilbert space containing high momenta from the one with low
momenta, which can be represented more easily by product states.

The most straightforward and intuitive way is to consider a unitary transformation of the prod-
uct basis|Φ[ν]〉

|Φ̃[ν]〉 = U |Φ[ν]〉 (6)

to render the Hamiltonian matrix into a more diagonal form not connecting low and high momenta.
The new basis|Φ̃[ν]〉 should contain already the main properties of the short-range correlations like
a depletion of the many-body wave function

〈ξ1, ξ2, . . . , ξA|Φ̃[ν]〉 with ξi = (~xi , σi , τi) (7)

whenever the distance|~xi − ~xj | between two nucleons of the many-body system is within the range
of the repulsive core of the interaction. Similarly their spins ~σi, ~σ j should be aligned with~r i j =

~xi − ~xj if their isospin is in theT = 0 configuration, because this correlation produces binding
energy, see Fig. 2.

This unitary transformation can be used to define an effective Hamiltonian through the simi-
larity transformation

Heff = U−1H U = U†H U . (8)

The unitary transformation fulfills the principal requirement formulated in Eq. (3) that the eigen-
values for the energy are invariant. Later approximations should be checked regarding this aspect.
Another advantage is that orthonormality relations between eigenstates of H or between basis
states are not changed.

〈Ψ̃n|Ψ̃m〉 = 〈Ψn|U−1U |Ψm〉 = 〈Ψn|Ψm〉 = δn,m
〈Φ̃[ν] |Φ̃[µ]〉 = 〈Φ[ν] |U−1U |Φ[µ]〉 = 〈Φ[ν] |Φ[µ]〉 = δ[ν],[µ] (9)

Any unitary transformation can be written in terms of a hermitian generator G as

U = e−i G . (10)

If G =
∑A

j=1 gj is a one-body operator no correlations are induced because in that case U=∏A
j=1 e−i g j just transforms each single-particle state in|Φ[ν]〉 independently. Therefore, the gen-

erator G has to be at least a two-body operator. This implies that the unitary transformation of a
one-body operator T[1] yields [22, 23, 24].

U† T[1] U = T[1] + T̃[2] + T̃[3] + . . . (11)

The transformation of a two-body operator V[2]
NN

U† V[2]
NN U = Ṽ[2]

NN + Ṽ[3]
NN + Ṽ[4]

NN + . . . (12)

yields a new two-body operator̃V[2]
NN and additional operators of higher-order. Likewise a trans-

formed three-body operator results in a new irreducible three-body operator with its higher-body
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companions. Thẽ above the operators indicates that effects from short-range correlations are
now moved to the operators in the sense that the potentialṼ[2]

NN is softer or less repulsive at short
distances than the original V[2]

NN. This “taming” of the potential comes at the expense of introducing
two-, three- and more-body terms originating from the kinetic energy as well as from the potential.
The different contributions will be discussed and shown in Sec. 2.

An important message that holds for any method of deriving effective interactions is that the
effective Hamiltonian contains irreduciblen-body interactions, wheren goes in principle from 1
to A. For example, if we start from a Hamiltonian with two- and three-body forces like in Eq. (5),
we obtain

U−1 HU = T[1] +
(
T̃[2] + Ṽ[2]

NN

)
+

(
T̃[3] + Ṽ[3]

NN + Ṽ[3]
NNN

)
+ . . . (13)

The hope is to keep then > 2 body terms small in order to reduce the numerical effort.
One important advantage of formulating the effective Hamiltonian through a unitary similarity

transformation is that any other observable B can and shouldbe transformed the same way. An
arbitrary matrix element of B between two eigenstates of theHamiltonian can be written as

〈Ψ̃n|B |Ψ̃m〉 = 〈Ψn|U†B U |Ψm〉 = 〈Ψn|Beff |Ψm〉 (14)

which implies the definition of Beff as

Beff = U†B U . (15)

Again Beff becomes a many-body operator even if B is an one-body operator, see Eq. (11). In
section 2 and 3 approximations in the calculations of Heff are introduced. The same approximations
can also be applied to calculate Beff.

1.5. Jastrow ansatz

An early attempt to incorporate short-range correlations in the many-body state was proposed
by Jastrow [25, 26]

|Φ̃, J〉 = S
A∏

i< j

f (~ri j , ~σi , ~σ j , ~τi , ~τ j) |Φ〉 (16)

where in modern applications the Jastrow correlation functions f contain besides the relative dis-
tances~ri j = ~xi − ~x j, also operators depending on spins and isospins to account for correlations
other than the short-range repulsion, like the tensorial ones. For distances|~r i j | much larger than
the range of the interactionf (~r i j , . . . ) approaches one. As the symmetrized product runs over all
particle pairs, the transformation from the uncorrelated state |Φ〉 to the correlated|Φ̃, J〉 is anA-
body operator, like in all other approaches. Even three bodyproductsf (~xi , ~x j , ~xk, . . . ) are being
used [17, 20, 26].

Although very intuitive, the Jastrow ansatz implies a huge numerical effort in calculating ex-
pectation values and matrix elements. Even the norm of|Φ̃, J〉 cannot be calculated analytically.
As the transformation is not unitary, configuration mixing calculations encounter even greater nu-
merical challenges.
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1.6. Projective approaches

In the past and still nowadays many effective interactions are based on projection methods. In
this case one is looking for an effective Hamiltonian that should have the same eigenvaluesEn as
the full Hamiltonian H and its eigenstates should be the projections of the exact eigenstates|Ψ̃n〉
onto the model space:

P Heff |Φn〉
!
= En |Φn〉 and |Φn〉 = P |Ψ̃n〉 . (17)

To simplify the equations one writes the Hamiltonian H= H0 + V and the effective Hamiltonian
Heff = H0 + Veff as a sum of H0 and a residual interaction V and Veff, respectively. The formal
solution for Heff that fulfills the requirement (17) is actually energy-dependent and given by

Veff(E) = V + V
Q

(E − H0)
Veff(E) , (18)

where the energyE has to be taken as the unknown eigenvalueEn of the full problem. This means
that each eigenstate in principle corresponds to a different effective Hamiltonian. As the difference
betweenE and eigenvalues of H0 that belong to the Q-space enters Eq. (18), the energy dependence
will be weak if the lowest Q-space eigenvalue is far away fromthe consideredEn. Note that Veff(E)
in this equation is not restricted to the P-space but connects P- and Q-space. However, the effective
interaction is actually PVeff(E)P. The full Veff(E) is needed when one calculates other effective
observables (see below). Again Eq. (18) yields an effective Hamiltonian that contains many-body
operators.

When solving this equation in two-body space one obtains the Brueckner G-matrix

G(ω) = V + V
q

(ω − H0)
G(ω) , (19)

where the choice of the starting energyω and the Pauli projection operator q acting in two-body
space is not uniquely defined. After having solved the G-matrix equation (19) one uses G(ω) in
theA-body space, which constitutes a low density approximation.

Although Eq. (18) appears to be suited for a perturbation expansion, this is not possible if the
strong short-range correlations of the nuclear interaction have to be renormalized. At least infinite
partial summations are needed. The Brueckner G-matrix is such a partial summation, namely over
the so called ladder diagrams.

Another task (often not considered) is that not only the Hamiltonian should be transformed to
an effective one, but also all other observables B such that

〈Φn|Beff |Φm〉
〈Φn|Φn〉1/2〈Φm|Φm〉1/2

=
〈Ψ̃n|PBeffP|Ψ̃m〉

〈Φn|Φn〉1/2〈Φm|Φm〉1/2
!
= 〈Ψ̃n|B |Ψ̃m〉 (20)

for the low lying many-body states of interest. This could inprinciple be done by using theA-body
Bethe-Goldstone equation

|Ψ̃n〉 =
(

1+
Q

(En − H0)
Veff(En)

)
|Φn〉 , (21)
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which also follows from Eq. (17). It reconstructs the correlated many-body state|Ψ̃n〉 from its
projected part|Φn〉 = P |Ψ̃n〉. When inserting Eq. (21) into Eq. (20) to obtain the effective op-
erator one does not need much imagination to see that this is arather impracticable method and
susceptible to errors in approximations of the matrix elements of Veff(En) that connect P- and Q-
space. Within the G-matrix approximation one uses the analoguous Bethe-Goldstone equation,
where Veff(E) is replaced by G(ω) andQ by q. The G-matrix method is not discussed further in
this contribution.

Unitary approaches are more transparent and not energy dependent. A unitary approach is
more robust as there is some freedom in the choice of U, because only a few low lying eigenvalues
and eigenstates of PHeffP= PU−1H UP are needed. A not so optimal choice of U can be compen-
sated by a larger P-space. Unitary approaches can even generate effective interactions that are by
construction phase-shift equivalent with the original interaction.

1.7. Plan of the review

In Section 2, the concept of the Unitary Correlation OperatorMethod (UCOM) is laid out.
Central and tensor correlators are introduced and their properties are illustrated with descriptive
examples. Section 3 discusses the relation to the Similarity Renormalization Group (SRG) ap-
proach, which is more general, but in its application to nuclear effective interactions it is based on
the same physical assumptions. From SRG we deduce a set of optimal correlation functions for
UCOM and compare the resulting effective low-momentum interactions. Section 4 steps into the
many-body Hilbert space using the No-Core Shell Model (NCSM) to probe the effective interac-
tions developed in the preceding sections. Properties, like masses, spectra, radii, magnetic dipole
and quadrupole moments, are investigated for nuclei with mass numbersA = 3−7. In Section 5 we
move on to nuclei along the whole nuclear chart by means of theHartree-Fock approximation and
low-order many-body perturbation theory. We show that the UCOM concept is very versatile not
only for the understanding of the nuclear many-body system but provides a general method to treat
short-range correlations in a quantitative way. We also discuss evidence for missing three-body
forces or density dependences, which seem to be needed to obtain the correct nuclear saturation
properties for large systems. Finally we close with summarizing conclusions.
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Figure 2: Argonne V18 potential in theS = 1,T = 0 channel. The lower curve is obtained when the spins are
aligned parallel to the distance vector of two nucleons whereas the upper curve is obtained when the spins are oriented
perpendicular to the distance vector. This spin dependenceof the potential is caused by the tensor force. The relative
momentum~q is chosen to be zero, therefore, the spin-orbit force does not contribute.

2. Unitary Correlation Operator Method (UCOM)

As discussed in the introduction, short-range central and tensor correlations pose a major chal-
lenge for the solution of the nuclear many-body problem. These correlations are induced by cor-
responding features of realistic nucleon-nucleon forces that are illustrated in Fig. 2, where the
Argonne V18 potential is plotted as a function of the distance of the nucleons and the orientation
of the spins relative to the distance vector. At short distances,r < 0.5 fm, the potential is strongly
repulsive, it has a repulsive “core” which induces short-range central correlations. At larger dis-
tances the potential shows a pronounced dependence on the orientation of the spins. If the spins
are aligned perpendicular to the distance vector the potential is almost flat, whereas the potential
is attractive with a minimum atr ≈ 1.0 fm if the spins are aligned parallel to the distance vector.
This difference is caused by the tensor force, which originates mainly from the one-pion exchange
part of the potential.

In the Unitary Correlation Operator Method [27, 24, 23, 22] these correlations are imprinted
into a many-body state by means of a unitary correlation operator C:

|Ψ̃〉 = C |Ψ〉 . (22)

Here the uncorrelated many-body state|Ψ〉 is a “simple” state that cannot represent the short-range
correlations. This can be a Hartree-Fock Slater determinant or a basis state of the No-Core Shell
Model.

Short-range correlations are important when the particlescome close. If the density is low
enough, the probability for finding three nucleons within the correlation volume defined by the
correlation range will be small. In that case the assumptionthat the short-range correlations are of
two-body nature will be a good approximation. At nuclear saturation densityρ0 = 0.17 fm−3 the
mean distance between nucleons is 1.8 fm while the repulsive core sets in around 0.5 fm. There-
fore, we assume that the correlations are essentially independent of the environment and we use
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a state-independent ansatz for the correlation operator C. This implies that the short-range cor-
relations for low-lying states are very similar in all nuclei. The unitary correlation operator C
describing this transformation is given in an explicit operator form, independent of a particular
representation or model space. The correlation operator isoptimized for the lowest orbital angular
momentumL in each spin-isospin channel but it does not explicitly depend on L. The UCOM
approach can, therefore, be also used in many-body approaches that do not use basis states of
good angular momentum. Alternatively, one could define different correlation operators for each
partial-wave channel. In theS-wave UCOM approach proposed by Myo and Toki [28] only central
correlations inL = 0 channels are considered.

When calculating expectation values or matrix elements of some operator A we can either
evaluate the bare operator A in the correlated states|Ψ̃〉 or we can use a correlated operatorÃ
defined through a similarity transformation

Ã = C−1A C = C†A C (23)

with the uncorrelated states.

〈Ψ̃|A |Ψ̃′〉 = 〈Ψ|C†AC |Ψ′〉 = 〈Ψ| Ã |Ψ′〉 . (24)

Due to the unitarity of C, the notions of correlated states andcorrelated operators are equivalent
and we may choose the form that is technically more advantageous.

In the case of the nuclear many-body problem, the unitary correlation operator C has to account
for short-range central and tensor correlations as explained above. In the UCOM approach we
explicitly disentangle these different types of correlations and define the correlation operator as a
product of two unitary operators,

C = CΩCr , (25)

where CΩ describes short-range tensor correlations and Cr central correlations. Each of these
unitary operators is expressed with hermitian two-body generators

CΩ = exp
[
− i

∑

i< j

gΩ,i j
]
, Cr = exp

[
− i

∑

i< j

gr,i j

]
. (26)

The details of the generators gr and gΩ will depend on the particular nucleon-nucleon interaction
under consideration.

2.1. Central correlations

The central correlations are induced by the repulsive core of the central part of the interaction
which tries to keep the nucleons apart from each other. The two-body density in the correlated
many-body state will be strongly suppressed at short interparticle distances, i.e. in the range of
the repulsive core, and it will be enhanced at larger distances, where the potential is attractive.
This can be achieved by a distance-dependent shift in the relative wave function for each pair of
nucleons. The generator gr is constructed such that it performs these shifts in a unitary way. The
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shifts are generated by the projection of the relative momentum~q = 1
2[~p1 − ~p2] onto the distance

vector~r = ~x1 − ~x2 of two nucleons:

qr =
1
2

(~r
r
· ~q+ ~q · ~r

r

)
(27)

with r = |~r|. The amplitude of the shift—large shifts at small distanceswithin the core, small or no
shifts outside the core—is described by a functionsS T(r) for each spin-isospin channel. The de-
tailed form of the functionsS T(r) will depend on the potential. Its determination will be discussed
in detail in Sec. 2.5. The full generator for the central correlations is written in a hermitized form
as

gr =
∑

S,T

1
2

[qr sS T(r) + sS T(r) qr ] ΠS T , (28)

whereΠS T is the projection operator onto two-body spinS and isospinT. Similar generators were
already used by Ristig et al. [29, 30, 31] for the description of the central correlations induced by
hard-core potentials.

2.2. Tensor correlations

The correlations induced by the tensor force entangle the orientation of the spins with the spa-
tial distribution of the nucleons to optimize the contribution of the tensor force. We construct the
tensor correlation operator in such a way that it will only act on the orbital part of the relative wave
function of two nucleons. This can be achieved by using only the “orbital part”~qΩ of the relative
momentum operator, which is obtained by subtracting the radial part of the relative momentum
operator (used in the generator for the central correlations) from the full relative momentum oper-
ator

~qΩ = ~q−
~r
r
· qr =

1
2r2

(~L ×~r −~r × ~L) (29)

with ~L = ~r × ~q. Like the tensor operator S12(~rr ,
~r
r ) in the tensor force, the generator for the tensor

correlations is the scalar product of an operator of rank 2 incoordinate space (constructed from the
relative distance vector~r and the “orbital momentum”~qΩ) with the operator of rank 2 in spin-space
[23]. As for the central correlator the amplitude of the shifts will depend on the distance of the
nucleons and the potential under consideration. The amplitude is given by the tensor correlation
functionϑT(r). In cartesian notation we can write the full generator as

gΩ =
∑

T

ϑT(r) S12(~r, ~qΩ) Π1T (30)

using the general definition for a tensor operator of rank 2

S12(~a, ~b) = 3
2

[
(~σ1· ~a)(~σ2· ~b)+ (~σ1· ~b)(~σ2· ~a)

] − 1
2(~σ1·~σ2)(~a · ~b+ ~b · ~a) . (31)
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2.3. Correlated wave functions
As explained above, because the correlation operator acts only on the relative motion of a nu-

cleon pair, the center-of-mass motion of the nucleon pair isnot affected. When discussing corre-
lated two-body wave functions we can, therefore, restrict ourselves to the relative wave functions.
For the uncorrelated relative wave function we assumeLS-coupled angular momentum eigenstates
|φ(LS)JM T MT〉 with the radial wave functionφ(r). The correlation operators do not depend on
M andMT and we will omit these quantum numbers in the following.

The central correlator Cr = exp(−i gr) affects only the radial part of the wave function and
leaves the orbital part of the wave function and the spin and isospin unchanged. In coordinate rep-
resentation the correlated wave function can be rewritten as a norm-conserving coordinate trans-
formation [22]

〈r(L′S)JT|Cr |φ(LS)JT〉 = R−(r)
r

√
R′−(r) φ(R−(r))δL′L

〈r(L′S)JT|C†r |φ(LS)JT〉 = R+(r)
r

√
R′+(r) φ(R+(r))δL′L ,

(32)

whereR+(r) andR−(r) are mutually inverse,R±(R∓(r)) = r. The correlation functionsR+(r) and
R−(r) are related to the functions(r) used in the generator (28) through the integral equation

∫ R±(r)

r

dξ
s(ξ)
= ±1 . (33)

For illustrative purposes the correlation functions can beapproximated asR±(r) ≈ r ± s(r).
In the LS-coupled basis the application of the tensor correlator CΩ can be expressed easily.

The tensor operator S12(~r, ~qΩ) used in the generator has only off-diagonal matrix elements in the
LS-coupled basis

〈(J ± 1,1)JT|S12(~r, ~qΩ) |(J ∓ 1,1)JT〉 = ±3i
√

J(J + 1) . (34)

Within a subspace of fixedJ one can, therefore, calculate the matrix exponential and thus the
matrix elements of the full tensor correlator CΩ.

The tensor correlation operator will have no effect for states withL = J, whereas states with
L = J ± 1 will be connected to states withL = J ∓ 1. The strength of the mixing is governed by
ϑ(r)

〈r(L′S)JT|CΩ |φ(LS)JT〉 =



φ(r) ; L′ = L = J

cosθJ(r)φ(r) ; L′ = L = J ± 1

± sinθJ(r)φ(r) ; L′ = J ± 1, L = J ∓ 1

, (35)

where we use the abbreviation
θJ(r) = 3

√
J(J + 1) ϑ(r) . (36)

Combining central and tensor correlations we end up with the following expression for the
fully correlated wave function in coordinate space:

〈r(L′S)JT|CΩCr |φ(LS)JT〉 =



R−(r)
r

√
R′−(r) φ(R−(r)) ; L′ = L = J

cosθJ(r)
R−(r)

r

√
R′−(r) φ(R−(r)) ; L′ = L = J ± 1

± sinθJ(r)
R−(r)

r

√
R′−(r) φ(R−(r)) ; L′ = J ± 1, L = J ∓ 1

. (37)
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Figure 3: Central and tensor correlations in the deuteron channel. Starting from an uncorrelated trial wave function (a),
first the central (b) and then also the tensor correlated wavefunctions (c) are shown together with the corresponding
central (d) and tensor correlation functions (e).

The wave function in momentum space can be obtained by Fourier transformation of the coor-
dinate space wave function (37)

〈q(L′S)JT|CΩCr |φ(LS)JT〉 =
√

2
π

iL
′
∫

drr2 jL′(qr)〈r(L′S)JT|CΩCr |φ(LS)JT〉 , (38)

where we use momentum eigenstates normalized as〈q(LS)JT|q′(L′S)JT〉 = 1
q2δ(q− q′)δL′L.

The deuteron wave function provides an illuminating example for the role of central and tensor
correlations. We will start from an uncorrelated state|φ0(LS)JT〉 = |φ0(01)10〉, which is a pure
S-wave state with the spin-isospin quantum numbers of the deuteron. The radial wave function
φ0(r) shall not contain short-range correlations induced by therepulsive core. Figure 3 shows the
uncorrelatedL = 0 radial wave function. Applying the central correlator Cr with the correlation
functionR+(r) leads to a wave function with a correlation hole at short interparticle distances. The
application of the tensor correlation operator CΩ in a second step generates theD-wave compo-
nent in the wave function, which depends on the tensor correlation functionϑ(r). If we assume
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an uncorrelated wave function that is purelyS-wave, the entireD-wave component has to be gen-
erated by the tensor correlator. This can be achieved using avery long-ranged tensor correlation
function (as given by the dashed curves in Fig. 3). But this is not the idea of the unitary correlation
operator method, where we only want to describe the state-independent short-range correlations
by means of the correlation operators. Long-range correlations, like those governing the outer
part of the deuteron wave function, should be described explicitly by the many-body approach.
The solid curves show theD-wave component obtained with such a short-range tensor correlator
(Iϑ = 0.09 fm3 as discussed in Sec. 2.5).

2.4. Correlated operators

Correlated Hamiltonian – Central Correlations
In the two-body system the unitary transformation with the central correlator Cr can be ex-

pressed analytically for any operator that can be written asa function of relative distance~r and
relative momentum~q.

The most important example is a Hamiltonian consisting of kinetic energy and a realistic
nucleon-nucleon interaction given in a generic operator form

V =
∑

p

1
2

[Vp(r)Op +OpVp(r)] (39)

with

Op = {1, (~σ1·~σ2), q2
r , q2

r (~σ1·~σ2), ~L
2, ~L2(~σ1·~σ2),

(~L · ~S), S12(~rr ,
~r
r ), S12(~L, ~L)} ⊗ {1, (~τ1·~τ2)} .

(40)

Here we only consider non-local terms up to quadratic momentum dependence. Such terms appear,
e.g., in the Nijmegen [32] or operator representations of the Bonn A/B potentials [3]. A quadratic
momentum dependence of the form~q2 can be expressed by the q2

r and~L2 terms contained in (39).
Charge dependent terms in the interaction are not explicitlydiscussed, but are included in the
calculation of matrix elements and the many-body calculations based on them.

For the formulation of the correlated Hamiltonian in two-body space, we start with an initial
Hamiltonian given by

H = Hint + Tcm = Tint + V + Tcm = Tr + TΩ + V + Tcm , (41)

where we have decomposed the kinetic energy operator T into acenter of mass contribution Tcm

and an intrinsic contribution Tint which in turn is written as a sum of a radial and an angular part

Tr =
1
2µ

q2
r , TΩ =

1
2µ

~L2

r2
. (42)

Applying the central correlator Cr in two-body space leads to a correlated Hamiltonian consisting
of the one-body kinetic energy T and two-body contributionsfor the correlated radial and angular
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relative kinetic energy,̃T[2]
r andT̃[2]

Ω
, respectively, as well as the correlated two-body interaction

Ṽ[2]

C†r H Cr = T + T̃[2]
r + T̃[2]

Ω
+ Ṽ[2] . (43)

The explicit operator form of the correlated terms can be derived from a few basic identities. The
unitary transformation for the relative distance operatorr results in the operator-valued function
R+(r)

C†r r Cr = R+(r) . (44)

Because of the unitarity of the correlation operator Cr an arbitrary function of r transforms as

C†r f (r) Cr = f (C†r r Cr) = f (R+(r)) . (45)

The interpretation of the unitary transformation in terms of a norm-conserving coordinate trans-
formation r 7→ R+(r) is evident. For the radial momentum operator qr one finds the following
correlated form [22]

C†r qr Cr =
1

√
R′+(r)

qr
1

√
R′+(r)

. (46)

With this we can express q2
r which enters the radial part of the relative kinetic energy as

C†r q2
r Cr =

1
2

(
q2

r

1
R′+(r)2

+
1

R′+(r)2
q2

r

)
+W(r) , (47)

which consists of a transformed momentum dependence plus anadditional local term depending
only on the correlation functionR+(r)

W(r) =
7R′′+(r)

2

4R′+(r)4
− R′′′+ (r)

2R′+(r)3
. (48)

All other basic operators, such as~L2, (~L · ~S), S12(~rr ,
~r
r ) commute with the correlation operator Cr

and are, therefore, unchanged by the central correlations.
Based on these elementary relations we can explicitly construct the two-body contributions to

the correlated kinetic energy. For the radial part we obtainusing (47)

T̃[2]
r = C†r TrCr − Tr =

1
2

(
q2

r

1
2µr(r)

+
1

2µr(r)
q2

r

)
+

1
2µ

W(r) (49)

with a distance-dependent effective mass term

1
2µr(r)

=
1
2µ

( 1
R′+(r)2

− 1
)
. (50)

The two-body contribution to the correlated angular part ofthe kinetic energy involves only the
basic relation (46) and gives

T̃[2]
Ω
= C†r TΩCr − TΩ =

1
2µΩ(r)

~L2

r2
(51)
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with a distance-dependent angular effective mass term

1
2µΩ(r)

=
1
2µ

( r2

R+(r)2
− 1

)
. (52)

The momentum dependent terms of the nucleon-nucleon interaction (39) transform in a similar
manner like the kinetic energy. Using (46) and (47) we obtain

C†r
1
2

(
q2

r V(r)+V(r)q2
r

)
Cr =

1
2

(
q2

r

V(R+(r))
R′+(r)2

+
V(R+(r))
R′+(r)2

q2
r

)
+V(R+(r)) W(r)−V′(R+(r))

R′′+(r)
R′+(r)2

. (53)

For all other terms of the NN-interaction (39) the operatorsOp commute with the generator qr and
we only have to transform the radial dependencies

C†r V(r) Op Cr = V(R+(r)) Op . (54)

Many of the other relevant operators, e.g. the quadratic radius or transition operators, can be
transformed just as easily.

Correlated Hamiltonian – Tensor Correlations
The transformation of the Hamiltonian with the tensor correlation operator CΩ is more in-

volved. In general, it can be evaluated via the Baker-Campbell-Hausdorff expansion

C†
Ω

A CΩ = A + i[gΩ,A] +
i2

2
[gΩ, [gΩ,A]] + · · · . (55)

In some cases the series expansion will terminate after a finite number of terms. A trivial case is
the distance operator r, which commutes with the tensor generator gΩ and is thus unchanged by
the transformation

C†
Ω

r CΩ = r . (56)

For the radial momentum operator qr , the expansion (55) terminates after the first order commuta-
tors and we obtain the simple expression

C†
Ω

qr CΩ = qr − ϑ′(r) S12(~r, ~qΩ) . (57)

For the tensor correlated quadratic radial momentum operator the series terminates after the first
two terms and we obtain

C†
Ω

q2
r CΩ = q2

r − [ϑ′(r) qr + qr ϑ
′(r)] S12(~r, ~qΩ) + [ϑ′(r) S12(~r, ~qΩ)]2 , (58)

where S12(~r, ~qΩ)2 = 9[~S2 + 3(~L · ~S)+ (~L · ~S)2]. By applying the tensor correlator to the kinetic
energy we have generated momentum-dependent tensor operators as well as “conventional” spin-
orbit and tensor terms (from the (~L · ~S)2 term). The correlated kinetic energy is no longer a central
operator.
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For all other operators of the interaction (39) that depend on angular momentum, the Baker-
Campbell-Hausdorff series does not terminate. Through the commutators additional tensor opera-
tors are generated. At first order we obtain

[gΩ,S12(~rr ,
~r
r )] = iϑ(r)[−24Π1 − 18 (~L · ~S)+ 3 S12(~rr ,

~r
r )]

[gΩ, (~L · ~S)] = iϑ(r)[−S̄12(~qΩ, ~qΩ)]

[gΩ, ~L
2] = iϑ(r)[2 S̄12(~qΩ, ~qΩ)]

[gΩ,S12(~L, ~L)] = iϑ(r)[7 S̄12(~qΩ, ~qΩ)] ,

(59)

where we use the abbreviation

S̄12(~qΩ, ~qΩ) = 2r2S12(~qΩ, ~qΩ) + S12(~L, ~L) − 1
2 S12(~rr ,

~r
r ) . (60)

The next order generates terms of higher order in orbital angular momentum, e.g., a~L2(~L · ~S)
term. In practice we have to truncate the Baker-Campbell-Hausdorff expansion to some finite set
of operators [24]. In principle the contributions of the higher-order operators will become more
important with increasing angular momenta. On the other hand the contributions of the correlated
Hamiltonian, which are of short range, will be overwhelmed by the centrifugal barrier from the
one-body kinetic energy for large angular momenta.

Note that matrix elements of the correlated Hamiltonian using angular momentum eigenstates
are calculated by applying the tensor correlation operatoronto the basis states (see Sec. 2.3), which
does not require approximations.

2.5. Optimal correlation functions
The central and tensor correlators depend on the correlation functionss(r) andϑ(r) in the dif-

ferent spin- and isospin-channels. We now have to determinethese correlation functions for a
given nuleon-nucleon potential. One important question, that was already raised in the discussion
of the deuteron wave function, is the separation between state-independent short-range correla-
tions, which we want to describe by the correlation operator, and long-range correlations that
should be described explicitly by the many-body approach.

The most convenient procedure to determine the correlationfunctions is based on an energy
minimization in the two-body system [27, 23]. For each combination of spinS and isospinT we
compute the expectation value of the correlated energy using a trial state with the lowest possible
orbital angular momentumL. The uncorrelated radial wave function should not contain any of
the short-range correlations, i.e., it should resemble theshort-range behavior of a non-interacting
system. In the following we will use a free zero-energy scattering solutionφL(r) ∝ rL. Other un-
correlated trial wave functions, e.g. harmonic oscillatoreigenfunctions, give very similar results.

For practical reasons the correlation functions are represented by parametrizations with typ-
ically three variational parameters. The drop-off can be well-described by a double-exponential
decay with variable range. For the short-range behavior, several different parametrizations have
been compared. For the Argonne V18 potential, the followingtwo parametrizations for the central
correlation functions have proven appropriate:

RI
+(r) = r + α (r/β)η exp[−exp(r/β)] ,

RII
+(r) = r + α [1 − exp(−r/γ)] exp[−exp(r/β)] .

(61)
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S T Param. α [fm] β [fm] γ [fm] η

0 0 II 0.7971 1.2638 0.4621 —
0 1 I 1.3793 0.8853 — 0.3724
1 0 I 1.3265 0.8342 — 0.4471
1 1 II 0.5665 1.3888 0.1786 —

Table 1: Parameters of the central correlation functionsR+(r) specified in (61) for the Argonne V18 potential obtained
from two-body energy minimization.

Which of these parametrizations is best suited for a particular channel will be decided on the basis
of the minimal energy alone. All parametrizations allow only outward shifts by construction. This
is different from the correlation functions that are obtained by the SRG mapping procedure (see
Sec. 3.6). For the tensor correlation functions the following parametrization is used

ϑ(r) = α [1 − exp(−r/γ)] exp[−exp(r/β)] . (62)

The S = 0 channels are only affected by the central correlators. Their parameters are de-
termined by minimizing the energy for the lowest possible orbital angular momentum state, i.e.,
L = 1 for T = 0 andL = 0 for T = 1, respectively,

E00 = 〈φ1(10)10|C†r Hint Cr |φ1(10)10〉 ,
E01 = 〈φ0(00)01|C†r Hint Cr |φ0(00)01〉 .

(63)

For S = 0,T = 1 the minimization ofE01 by variation of the parameters of the central correlation
function is straightforward. The resulting parameters aresummarized in Table 1. ForS = 0,T = 0
the potential is purely repulsive and, therefore, the energy minimization leads to central correlation
functions of very long range. In order to avoid this pathology we employ a constraint on the
strength of the correlation function given by

IR+ =

∫
dr r 2 (R+(r) − r) . (64)

The value of this constraint on the central correlation function for theS = 0, T = 0 channel is
fixed to IR+ = 0.1fm4 in accordance with typical values in other channels.

ForS = 1 we also have to consider tensor correlations and the parameters of the central and the
tensor correlation functions have to determined simultaneously. ForT = 0 the energy is defined
by the matrix element withL = 0 states

E10 = 〈φ0(01)10|C†r C†ΩHint CΩCr |φ0(01)10〉 . (65)

In the T = 1 channel the lowest possible orbital angular momentum isL = 1. From angular
momentum coupling we obtain 0,1, and 2 as possible values forJ. Therefore, we define the
energy functional used for the minimization procedure by averaging over the angles, which is the
sum over all three possibilities with relative weights given by 2J + 1

E11 =
1
9〈φ1(11)01|C†r Hint Cr |φ1(11)01〉

+ 3
9〈φ1(11)11|C†r Hint Cr |φ1(11)11〉
+ 5

9〈φ1(11)21|C†r C†ΩHint CΩCr |φ1(11)21〉 .
(66)
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Figure 4: Optimal central correlation functionsR+(r) − r for the Argonne V18 potential according to the parameters
given in Tab. 1. The curves correspond to the different spin-isospin channels:S = 0,T = 1 ( ), S = 1,T = 0
( ), S = 0,T = 0 ( ), andS = 1,T = 1 ( ).

T = 0 T = 1
Iϑ [fm3] α β [fm] γ [fm] Iϑ [fm3] α β [fm] γ [fm]

0.03 491.32 0.9793 1000.0 -0.01 -0.1036 1.5869 3.4426
0.04 521.60 1.0367 1000.0 -0.02 -0.0815 1.9057 2.4204
0.05 539.86 1.0868 1000.0 -0.03 -0.0569 2.1874 1.4761
0.06 542.79 1.1360 1000.0 -0.04 -0.0528 2.3876 1.2610
0.07 543.21 1.1804 1000.0 -0.05 -0.0463 2.6004 0.9983
0.08 541.29 1.2215 1000.0 -0.06 -0.0420 2.7984 0.8141
0.09 536.67 1.2608 1000.0 -0.07 -0.0389 2.9840 0.6643
0.10 531.03 1.2978 1000.0 -0.08 -0.0377 3.1414 0.6115
0.11 524.46 1.3333 1000.0 -0.09 -0.0364 3.2925 0.5473
0.12 517.40 1.3672 1000.0 -0.10 -0.0353 3.4349 0.4997
0.15 495.99 1.4610 1000.0
0.20 450.67 1.6081 1000.0
0.30 408.40 1.8240 1000.0

Table 2: Parameters of the tensor correlation functionsϑ(r) defined in (62) for the Argonne V18 potential with different
valuesIϑ for the range constraint obtained from two-body energy minimization.
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As mentioned earlier, the long-range character of the tensor force leads to long-range tensor
correlations. However, long-range tensor correlation functions are not desirable for several rea-
sons: (i) The optimal long-range behavior would be strongly state-dependent. Therefore, our goal
of extracting the state-independent, universal correlations forbids long-range correlation functions.
(ii ) The two-body approximation would not be applicable for long-range correlators. (iii ) Effec-
tively, higher order contributions of the cluster expansion lead to a screening of long-range tensor
correlations between two nucleons through the presence of other nucleons within the correlation
range [24]. For these reasons, we constrain the range of the tensor correlation functions in our
variational procedure. We use the following integral constraint on the “volume” of the tensor
correlation functions

Iϑ =
∫

dr r 2 ϑ(r) . (67)

The constrained energy minimization for theS = 1,T = 0 and theS = 1,T = 1 channels with
different values of the tensor correlation volumeIϑ leads to optimal parameters reported in Table
2. The optimal parameters for the central correlation functions change only marginally with the
tensor constraint. Therefore, we adopt a fixed set of parameters for the central correlators given in
Table 1.

The optimal central correlation functions for the Argonne V18 potential are shown in Fig. 4.
In the even channels, the correlation functions decrease rapidly and vanish beyondr ≈ 1.5 fm. The
central correlators in the odd channels are weaker and of slightly longer range due to the influence
of the centrifugal barrier. For the tensor correlation functions the constraints on the range are
important. Fig. 5 shows the triplet-even (a) and triplet-odd (b) tensor correlation functionsϑ(r)
for differentIϑ. Because the tensor interaction is significantly weaker forT = 1 than forT = 0,
the tensor correlator for this channel has a much smaller amplitude. The relevant values for the
constraintIϑ are therefore smaller for the triplet-odd channel.

We stress that the range constraint for the tensor correlation functions has an important phys-
ical and conceptual background. The unitary correlation operator method is used to describe
state-independent short-range correlations only. Long-range correlations of any kind have to be
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described by the model space employed in the solution of the many-body problem. By constrain-
ing the range of the tensor correlators we introduce a separation scale between short-range and
long-range correlations. The optimal value for tensor constraints cannot be fixed in the two-body
system alone, but requires input from few-nucleon systems.We will come back to this point in
Sec. 4.

2.6. Cluster expansion

The similarity transformation (23) of an operator A gives a correlated operator that contains
irreducible contributions of higher orders in particle number as given by the cluster expansion

Ã = C†AC = Ã[1] + Ã[2] + Ã[3] + · · · , (68)

whereÃ[n] denotes the irreduciblen-body part [22]. For ak-body operator A there will only be
contributions̃A[n] with n ≥ k. For the correlated Hamiltonian we will, therefore, have a one-body
contribution (from the kinetic energy), a two-body contribution (two-body part of the correlated
kinetic energy and correlated two-body potential), three-body contributions and so on.

In practice it will not be possible to evaluate matrix elements of the correlated operators to all
orders. The importance of the higher-order terms depends onthe range of the central and tensor
correlations [24, 23, 22]. If the range of the correlation functions is small compared to the mean
interparticle distance, then three-body and higher-orderterms of the cluster expansion are expected
to be small. In the two-body approximation these higher-order contributions are discarded

ÃC2 = Ã[1] + Ã[2] . (69)

In principle, the higher-order contributions to the cluster expansion can be evaluated systematically
[33]. However, for many-body calculations the inclusion ofthose terms is an extreme challenge
and we restrict ourselves to the two-body approximation.

Within the two-body approximation the similarity transformation is still unitary on the two-
body level, e.g. the eigenvalues of the Hamiltonian are conserved in two-body systems, but it
is no longer unitary on the many-body level. The energy eigenvalues obtained in exact many-
body calculations using the correlated interaction in two-body approximation will differ from the
eigenvalues obtained in exact calculations using the bare interaction. As will be discussed in detail
in Sec. 4 we can use exact solutions, e.g., in the No-Core ShellModel framework, to estimate the
size of the omitted higher-order contributions.

Technically we can calculate matrix elements of correlatedoperators in the two-body approx-
imation of the cluster expansion in any many-body approach using the density matricesρ(1)

m;k and

ρ(2)
mn;kl of the uncorrelated states

〈Φ̃|A |Φ̃′〉 C2
=

∑

km

ρ(1)
m;k 〈k| Ã

[1] |m〉 +
∑

k<l,m<n

ρ(2)
mn;kl 〈kl| Ã[2] |mn〉 . (70)

Here the one- and two-body density matrices

ρ(1)
m;k = 〈Φ|a

†
kam |Φ′〉 , ρ(2)

mn;kl = 〈Φ|a
†
ka
†
l anam |Φ′〉 (71)
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Figure 6: Kinetic〈T〉, potential〈V〉 and total energy〈H〉 obtained with the bare Argonne V18 interaction (left),
including central correlations (middle) and with central and tensor correlations (right) for the doubly-magic nuclei
4He,16O, and40Ca using 0~Ω shell-model wave functions.

are given in a generic single-particle basis|k〉. Typically we will use harmonic oscillator basis
states, as the harmonic oscillator basis allows to expand the two-body states in products of relative
and center-of-mass harmonic oscillator states with the help of the Talmi-Moshinsky transforma-
tion.

2.7. Correlated interaction VUCOM

We define the UCOM interaction VUCOM as the two-body part of the correlated Hamiltonian

H̃ = T + VUCOM + V[3]
UCOM + . . . . (72)

It contains the contributions of the correlated kinetic energy and of the correlated potential. The
three-body contribution of the correlated Hamiltonian V[3]

UCOM has not been evaluated explicitly
yet.

If we start from a realistic interaction that is given in an operator representation, e.g. the
Argonne V18 potential, then the UCOM correlated interactioncan also be given in operator rep-
resentation

VUCOM =
∑

p

1
2
[
Ṽp(r)Õp + ÕpṼp(r)

]
, (73)

where

Õp = {1, (~σ1·~σ2), q2
r , q2

r (~σ1·~σ2), ~L
2, ~L2(~σ1·~σ2), (~L · ~S), S12(~rr ,

~r
r ), S12(~L, ~L),

S̄12(~qΩ, ~qΩ), qr S12(~r, ~qΩ), ~L2(~L · ~S), ~L2S̄12(~qΩ, ~qΩ), . . . } ⊗ {1, (~τ1·~τ2)} .
(74)

The dots indicate higher-order contributions of the Baker-Campbell-Hausdorff expansion for the
tensor transformation that have been omitted. The terms shown above result from a truncation to
operators of up to fourth order in momentum. For most applications the inclusion of these terms
is sufficient [24, 34].
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In Fig. 6 we show the effect of the correlations on the kinetic and potential energy contributions
for the Argonne V18 interaction. The uncorrelated many-body state is given by the 0~Ω harmonic
oscillator configuration (the oscillator parameter is chosen to reproduce the experimental radius).
Without any short-range correlations the considered nuclei (4He, 16O, and40Ca) are not bound
at all. Even the potential contributions are repulsive. By including the central correlations the
potential contributions become attractive but the nuclei are still unbound. Part of the gain by the
potential contributions has to be paid in form of a larger kinetic energy. Altogether the central
correlations increase the binding energies by about 20− 30 MeV per nucleon. With the closed-
shell trial wave functions used here, contributions from the tensor force are only obtained when
including tensor correlations. As can be seen this is again ahuge effect. The binding energies per
nucleon increase by about 15−20 MeV and a total binding of about 4 MeV per nucleon is obtained
on the 0~Ω level using the correlated interaction.

The existence of an operator representation of VUCOM is essential for many-body models that
are not based on a simple oscillator or plane-wave basis. Oneexample is the Fermionic Molecular
Dynamics model [35, 36, 37] which uses a non-orthogonal Gaussian basis and does not easily
allow for a partial wave decomposition of the relative two-body states. Nevertheless, it is possible
to evaluate the two-body matrix elements of VUCOM analytically (radial dependencies are fitted
by sums of Gaussians), which facilitates efficient computations with this extremely versatile basis
[24].

As we have emphasized already, the operators of all observables have to be transformed con-
sistently. The unitary transformation of observables likequadratic radii, densities, momentum
distributions, or transition matrix elements is straightforward given the toolbox acquired for the
transformation of the Hamiltonian. The Unitary CorrelationOperator Method owes this simplic-
ity to the explicit state and representation-independent form of the correlation operators. In other
approaches like the Lee-Suzuki transformation [38, 39, 40]or the Vlowk renormalization group
method [41], it is not possible to provide a closed form for the effective operators. A discussion of
effective operators in the Lee-Suzuki approach can be found in [42, 43].

An important feature of VUCOM results from the finite range of the correlation functionssS T(r)
andϑT(r) entering into the generators. Since the correlation functions are of finite range, i.e.,
the correlation operator acts as a unit operator at larger, asymptotic properties of a two-body
wave function are preserved. This implies that VUCOM is by construction phase-shift equivalent
to the original NN-interaction. The unitary transformation can, therefore, be viewed as a way to
construct an infinite manifold of realistic potentials, that all give identical phase-shifts.

It is interesting to observe in which way the unitary transformation changes the operator form
of the interaction while preserving the phase-shifts. The central correlator reduces the short-range
repulsion in the local part of the interaction and, at the same time, creates a non-local repulsion
through the momentum-dependent terms. The tensor correlator removes some strength from the
local tensor interaction and creates additional central contributions as well as new momentum-
dependent tensor terms. Hence, the unitary transformationexploits the freedom to redistribute
strength between local and non-local parts of the potentialwithout changing the phase-shifts. The
non-local tensor terms establish an interesting connection to the CD Bonn potential, which among
the realistic potentials is the only one including non-local tensor contributions [44].
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Figure 7: Two-body densityρ(2)
S MS,T MT

(~r12) in the S = 1,MS = 1, T = 0,MT = 0 channel of4He. Left: for the
uncorrelated trial state|Φ〉, middle: including central correlations, right: including central and tensor correlations.
The arrow indicates the orientation of the spin in the two-body channel.

2.8. Correlated densities

As we have seen, the inclusion of short-range correlations is essential for obtaining bound
nuclei when using realistic interactions. However bindingenergies and spectra provide no direct
information about these short-range correlations as they are hidden in the correlated or effective
interactions.

Other quantities are much better suited to provide insight into correlations. The two-body
density in coordinate space visualizes the effect of the correlations directly, whereas the one-
body density in momentum space, the nucleon momentum distribution, allows a comparison with
experimental data, providing a direct proof for the existence of short-range correlations in nuclei.

Two-body coordinate space density
In Fig. 7 we show the two-body densityρ(2)

S MS,T MT
(~r12) in the deuteron channel. It has been

calculated with a 0~Ω wave function for4He. For the uncorrelated wave function the two-body
density has a maximum at~r12 = 0, where the potential is strongly repulsive. This defect inthe
wave function is cured by the central correlator which shifts the nucleons apart. For the centrally
correlated wave function we find now the largest density at|~r12| ≈ 1 fm. At this distance the
potential is most attractive. The tensor force provides attraction if the spins are aligned parallel
with the distance vector. This is reflected in the two-body density. After applying the tensor
correlations the density is enhanced at the “poles” and reduced at the “equator”.

The correlated two-body densitỹρ(2)
S MS,T MT

(~r12) is calculated from the diagonal part of the two-
body density in two-body approximation by introducing relative and center-of-mass variables~r12 =

~x1 − ~x2 and~X12 =
1
2(~x1 + ~x2) and coupling the single-particle spins and isospins to total spinS and

isospinT

ρ̃(2)
S MS,T MT

(~r12, ~X12) =
∑

ms1 ,mt1 ,ms2 ,mt2

〈12ms1,
1
2ms2|S MS〉〈12mt1,

1
2mt2|T MT〉×

ρ̃(2)
ms1 ,mt1 ,ms2 ,mt2 ;ms1 ,mt1 ,ms2 ,mt2

(~X12+
1
2~r12, ~X12− 1

2~r12; ~X12+
1
2~r12, ~X12− 1

2~r12)
.

(75)
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The dependence on the center-of-mass coordinate is removedby integrating over~X12

ρ̃(2)
S MS,T MT

(~r12) =
∫

d3X12 ρ̃
(2)
S MS,T MT

(~r12, ~X12) . (76)

The correlated two-body density is very similar to the results from microscopic calculations
using the bare Argonne V8 interactions by Suzuki and Horiuchi [45].

Momentum distributions
Momentum distributions also directly reflect the existenceof short-range correlations. Without

short-range correlations there would be no high-momentum components in the nuclear many-body
state. To illustrate this, we calculate the correlated one-body momentum distributions̃n(k) for the
doubly-magic nuclei4He and16O in two-body approximation. The uncorrelated wave functions
|Φ〉 are again 0~Ω harmonic oscillator configurations, where the oscillator parameters have been
adjusted to reproduce the experimental radii. The momentumdistribution is given by

ñ(~k) =
∑

ms,mt

〈Φ̃|a†ms,mt
(~k)ams,mt(~k) |Φ̃〉 C2

=
∑

ms,mt

〈Φ| [C†a†ms,mt
(~k)ams,mt(~k)C]C2 |Φ〉 . (77)

The evaluation of this expression is straightforward but lengthy as it requires an integration over
single-particle coordinates for correlated wave functions that are expressed in relative and center-
of-mass coordinates.

The results for the momentum distributions are shown in Fig.8. Without short-range corre-
lations the momentum distributions have no high-momentum components. With only the central
correlations included, we observe a high-momentum tail, which is almost constant as a function
of momentum. The contributions from the tensor correlations to the high-momentum tails are re-
markable. The momentum-distribution from the Fermi surface at about 2 fm−1 up to about 4 fm−1

is dominated by tensor correlations. Only for very high momenta the central correlations become
more important. We also observe a strong dependence of the momentum distributions on the range
of the tensor correlator, especially for smaller momenta close to the Fermi surface. This strong
dependence on the range of the tensor correlator is caused mainly by the simplified uncorrelated
wave function used in the present calculation. The effect of long-range correlations induced by
the long-range part of the tensor force is here only includedwhen using a long-range tensor cor-
relator. In more realistic calculations these long-range correlations can also be expressed within
the many-body model space. Other long-range correlations will lead to a further softening of the
Fermi surface.

The dominating role of the tensor correlations was also found in other microscopic calculations
[46, 47, 48] and has been confirmed experimentally by comparing (e,e′pp) with (e,e′pn) cross
sections at high momentum transfer [49, 50] and (p, pp) with (p, ppn) cross sections [51].

2.9. Correlated transition operators

Short-range correlations have to be considered also for theevaluation of transition matrix ele-
ments. The transition operators are correlated using the same techniques that have been explained

28



4He

0 1 2 3 4

1

10-1

10-2

10-3

10-4

10-5

10-6

k @fm-1
D

n� H
kL
�A
@f

m
3
D

16O

0 1 2 3 4

1

10-1

10-2

10-3

10-4

10-5

10-6

k @fm-1
D

n� H
kL
�A
@f

m
3
D

Figure 8: Nucleon momentum distributioñn(k) calculated with closed-shell wave functions for4He and16O. Results
are shown for the uncorrelated wave functions ( ), for wave functions including central correlations ( ),
and including central and tensor correlations withIϑ = 0.10 fm3 ( ) andIϑ = 0.20 fm3 ( ). The gray dots
indicate the Variational Monte Carlo results from Ref. [46].

for the Hamiltonian in Sec. 2.4. In case of the radius operator

Rms =
1
A

∑

i

(~xi − ~Xcm)2 =
1
A2

∑

i< j

|~ri j |2 (78)

the correlated radius operator in two-body approximation is simply given by

R̃ms
C2
=

1
A2

∑

i< j

[
R+(|~ri j |)

]2
. (79)

The radius like the quadrupole operator and other long-range operators are only weakly affected
by the short-range correlations [52].

But there are other cases, where short-range correlations are very important. One prominent
example is the neutrinoless doubleβ-decay. The effective neutrino potentials appearing here con-
nect to high momenta and are therefore sensitive to short-range correlations in the many-body
state. UCOM is nowadays one of the standard approaches for including the short-range correla-
tions in the transition matrix elements [53, 54, 55].

2.10. Correlated matrix elements
For many-body calculations the matrix elements of the correlated interaction VUCOM and pos-

sibly of other operators are needed. For the many-body calculations presented in this review we
employ the harmonic oscillator basis. Here the two-body matrix elements can be decomposed into
a relative and a center-of-mass matrix element by means of the Talmi-Moshinsky transformation.
In the end the relative matrix elements of the correlated interaction

〈n(LS)JMT MT |VUCOM |n′(L′S)JMT MT〉 =
〈n(LS)JMT MT |C†r C†ΩHint CΩCr − Tint |n′(L′S)JMT MT〉 (80)
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have to be calculated. We use here relativeLS-coupled basis states|n(LS)JM T MT〉, wheren is
the radial quantum number. The corresponding wave functionwill be denoted asφn,L(r), the radial
wave function asun,L(r),

〈r(LS)JMT MT |n(LS)JMT MT〉 = φn,L(r) =
un,L(r)

r
, (81)

whereL is the relative orbital angular momentum,S spin, J total angular momentum, andT
isospin. The interaction also contains Coulomb and other isospin- and charge-symmetry breaking
terms so that the matrix elements also depend explicitly onMT . In the following we will omit the
M andMT quantum numbers to simplify the notation.

In the UCOM approach matrix elements can be calculated in different ways. It is possible to
expand the correlation operators in the basis states|n(LS)JT〉 and use the matrix elements of the
uncorrelated interaction.

An alternative approach is to use the operator representation of VUCOM and evaluate the matrix
elements directly. If one expands the radial dependencies of the individual operator channels in a
sum of Gaussians, all radial integrals can be calculated analytically. The matrix elements of the
additional tensor operators contained in VUCOM can be given in closed form as well. However, this
direct approach relies on the truncation of the Baker-Campbell-Hausdorff expansion (55).

This can be avoided by applying the tensor correlations to the basis states which can be done
exactly. For interactions in operator representation the central correlations will still be applied
to the Hamiltonian as we have a simple and exact expression for the centrally correlated Hamil-
tonian (cf. Sec. 2.4). This approach requires a rewriting ofthe correlated matrix elements by
interchanging the order of central and tensor correlation operators using the identity

C†r C
†
Ω

Hint CΩCr = (C†r C
†
Ω
Cr) C†r Hint Cr (C†r CΩCr)

= C̃†
Ω
C†r Hint CrC̃Ω

(82)

with the “centrally correlated” tensor correlation operator

C̃Ω = C†r CΩCr = exp[−i ϑ(R+(r)) S12(~r, ~qΩ)] . (83)

The central correlator commutes with S12(~r, ~qΩ) and transforms therefore onlyϑ(r), see Eq. (45).
The tensor correlator̃CΩ acts onLS-coupled two-body states withL = J like the identity operator
and couples states withL = J ± 1 with statesL = J ∓ 1 (cf. Sec. 2.3)

〈r(L′S)JT| C̃Ω |n(LS)JT〉 =



φn,L(r) ; L′ = L = J

cos̃θJ(r)φn,L(r) ; L′ = L = J ± 1

± sinθ̃J(r)φn,L(r) ; L′ = J ± 1, L = J ∓ 1

, (84)

where
θ̃J(r) = 3

√
J(J + 1)ϑ(R+(r)) . (85)

Using these relations we can calculate the correlated two-body matrix elements exactly.
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Matrix elements using correlator expansion
This approach is very general as it works for any unitary transformation of the basis states and

for any two-body operator. To calculate the matrix element of the correlated interaction

〈n(LS)JMT MT |VUCOM |n′(L′S)JMT MT〉 =
〈n(LS)JMT MT |C†r C†ΩHint CΩCr − Tint |n′(L′S)JMT MT〉 (86)

we evaluate the correlator in the basis states

C(JL̄LS T)
n̄,n = 〈n̄(L̄S)JT|CΩCr |n(LS)JT〉 . (87)

The tensor correlation operator acts as the identity operator in L = J channels and couplesL = J∓1
with L′ = J ± 1 states:

C(JL̄LS T)
n̄,n =



∫
dr u⋆

n̄,L̄
(r)R−(r)

r

√
R′−(r)un,L(R−(r)) ; L̄ = L = J∫

dr u⋆
n̄,L̄

(r) cosθJ(r)
R−(r)

r

√
R′−(r)un,L(R−(r)) ; L̄ = L = J ± 1

±
∫

dr u⋆
n̄,L̄

(r) sinθJ(r)
R−(r)

r

√
R′−(r)un,L(R−(r)) ; L̄ = J ± 1, L = J ∓ 1

(88)

The correlated matrix elements of the interaction are givenwith these correlator matrix elements
as

〈n(LS)JT|VUCOM |n′(L′S)JT〉
= 〈n(LS)JT|C†r C†ΩHint CΩCr − Tint |n′(L′S)JT〉

=

nmax∑

n̄L̄,n̄′ L̄′

C(JLL̄S T)
n,n̄

⋆
〈n̄(L̄S)JT|Hint |n̄′(L̄′S)JT〉C(JL̄′L′S T)

n̄′,n′ − 〈n(LS)JT|Tint |n′(L′S)JT〉 (89)

Besides the correlator matrix elements (88) the matrix elements of the bare interaction are needed

〈n̄(L̄S)JT|Hint |n̄′(L̄′S)JT〉 . (90)

Heren̄ andn̄′ will now run up to some cut-off nmax. Convergence is reached only ifnmax is chosen
large enough. A hard interaction like Argonne V18 will connect low momentum states with high
momentum states up to about 15 fm−1. For typical oscillator constants of 10 MeV the summation
therefore has to extend tonmax ≈ 300.

Matrix elements for interactions in operator representation
For a bare potential given in the generic operator representation (39) the matrix elements can be

evaluated using the closed form for the centrally correlated interaction. For the tensor correlations
only the correlated kinetic energy is given in a closed form without approximations. For the
potential contributions the tensor correlations will be applied to the wave functions.

We start with the matrix elements for the local contributions of the formV(r)O with [r,O] =
[qr ,O] = 0, which includes all operators of the set (40) except for theq2

r terms. The matrix
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elements forL = L′ = J are not affected by the tensor correlations, only the central correlators act
according to (54). In coordinate representation we obtain

〈n(JS)JT|C†r C†Ω V(r)O CΩCr |n′(JS)JT〉 =
∫

dr u⋆n,J(r) un′,J(r) Ṽ(r) 〈(JS)JT|O |(JS)JT〉 , (91)

whereṼ(r) = V(R+(r)) is the transformed radial dependence of the potential. For the diagonal
matrix elements withL = L′ = J ∓ 1 we get

〈n(J∓1,1)JT|C†r C†Ω V(r)O CΩCr |n′(J∓1,1)JT〉 =∫
dr u⋆n,J∓1(r) un′,J∓1(r) Ṽ(r)

[ 〈(J∓1,1)JT|O |(J∓1,1)JT〉 cos2 θ̃J(r)

+〈(J±1,1)JT|O |(J±1,1)JT〉 sin2 θ̃J(r)

±〈(J∓1,1)JT|O |(J±1,1)JT〉2 cos̃θJ(r) sinθ̃J(r)
]

(92)

with θ̃J(r) = θJ(R+(r)). Finally, the off-diagonal matrix elements forL = J ∓ 1 andL′ = J ± 1 are
obtained as

〈n(J∓1,1)JT|C†r C†Ω V(r)O CΩCr |n′(J±1,1)JT〉 =∫
dr u⋆n,J∓1(r) un′,J±1(r) Ṽ(r)

[ 〈(J∓1,1)JT|O |(J±1,1)JT〉 cos2 θ̃J(r)

−〈(J±1,1)JT|O |(J∓1,1)JT〉 sin2 θ̃J(r)

∓〈(J∓1,1)JT|O |(J∓1,1)JT〉 cos̃θJ(r) sinθ̃J(r)

±〈(J±1,1)JT|O |(J±1,1)JT〉 sinθ̃J(r) cos̃θJ(r)
]
.

(93)

Apart from the integration involving the radial wave functions, the matrix elements of the operators
O in LS-coupled angular momentum states are required. Only for thestandard tensor operator
O = S12(~rr ,

~r
r ) the off-diagonal terms on the right hand side of Eqs. (92) and (93) contribute. For all

other operators in (40) the off-diagonal matrix elements vanish, and the above equations simplify
significantly.

The effect of the tensor correlator is reflected in the structure of the correlated matrix elements
(92) and (93). It admixes components with∆L = ±2 to the states. Therefore, the correlated
matrix element consists of a linear combination of diagonaland off-diagonal matrix elements
〈(LS)JT|O |(L′S)JT〉. In this way even simple operators, like~L2 or (~L · ~S) acquire non-vanishing
off-diagonalcorrelatedmatrix elements (93).

A closed form is available for the momentum dependent terms of the potential (39). For the
tensor correlated form of the operator

Vqr =
1
2
[
q2

r V(r) + V(r)q2
r

]
(94)

we obtain

C†
Ω
VqrCΩ =

1
2
[
q2

r V(r) + V(r)q2
r

]
+ V(r)[ϑ′(r)S12(~r, ~qΩ)]2

− [
qrV(r)ϑ′(r) + ϑ′(r)V(r)qr

]
S12(~r, ~qΩ)

(95)
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by using Eq. (58). Subsequent inclusion of the central correlations leads to the following expres-
sion for the diagonal matrix elements withL = L′ = J in coordinate representation:

〈n(JS)JT|C†r C†ΩVqrCΩCr |n′(JS)JT〉 =
∫

dr
{
u⋆n,J(r) un′,J(r)

[
Ṽ(r) W(r) − Ṽ′(r)

R′′+(r)
R′+(r)2

]

− 1
2
[
u⋆n,J(r) u′′n′,J(r) + u′′⋆n,J(r) un′,J(r)

] Ṽ(r)
R′+(r)2

}
,

(96)

whereṼ′(r) = V′(R+(r)). As before, the tensor correlator does not affect these matrix elements
and only the central correlations have to be considered. Forthe diagonal matrix elements with
L = L′ = J ∓ 1 the tensor terms contribute and we obtain

〈n(J∓1,1)JT|C†r C†ΩVqrCΩCr |n′(J∓1,1)JT〉 =∫
dr

{
u⋆n,J∓1(r) un′,J∓1(r)

[
Ṽ(r) W(r) + Ṽ(r) θ̃′J(r)

2 − Ṽ′(r)
R′′+(r)
R′+(r)2

]

− 1
2
[
u⋆n,J∓1(r) u′′n′,J∓1(r) + u′′⋆n,J∓1(r) un′,J∓1(r)

] Ṽ(r)
R′+(r)2

} (97)

with θ̃′J(r) = θ′J(R+(r)). Likewise, we find

〈n(J∓1,1)JT|C†r C†ΩVqrCΩCr |n′(J±1,1)JT〉 =

±
∫

dr
[
u⋆n,J∓1(r) u′n′,J±1(r) − u′⋆n,J∓1(r) un′,J±1(r)

]Ṽ(r) θ̃′J(r)
R′+(r)

(98)

for the off-diagonal matrix elements withL = J ∓ 1 andL′ = J ± 1.
The matrix elements for the correlated radial and angular kinetic energy can be constructed as

special cases of the interaction matrix elements discussedabove. By settingV(r) = 1/(2µr(r)) in
Eqs. (96) to (98) we obtain the matrix elements for the effective mass part of the correlated radial
kinetic energy (49). The matrix elements of the additional local potential in (49) and the angular
kinetic energy (51) follow directly from Eqs. (91) to (93).
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3. Similarity Renormalization Group (SRG)

Unlike the UCOM framework, the concept of the Similarity Renormalization Group (SRG) is
universal and not tied to the specific correlations relevantin the nuclear many-body problem. The
renormalization of the Hamiltonian through flow-equationswas proposed by Głazek and Wilson
[56] in the context of light-front field theory and was further developed by Perryet al. [57, 58].
Independently, Wegner [59, 60] proposed flow equations for the renormalization of Hamiltonians
in the context of condensed matter physics. A summary of these developments is given in Refs.
[61, 62] and in Ref.[63] in this volume.

Already these initial publications on the SRG contain all formal elements relevant for the
application in the nuclear physics context, even the specific choice of the generator for the SRG
flow evolution that will be used in the following was discussed by Szpigel and Perry [57]. The first
application of the SRG for the transformation of a nuclear Hamiltonian was presented by Bogner
et al. [64, 65] and the SRG in connection to the UCOM approach wasfirst discussed in Refs.
[66, 67].

The general concept of all implementations of the SRG is the transformation of the Hamilto-
nian to a band- or block-diagonal structure with respect to aspecific basis by a continuous unitary
evolution determined via renormalization-group flow equations. The particular physical system
and application under consideration determines which basis and generator is used in the flow evo-
lution. In this respect the SRG approach is very flexible and can be adapted to all kinds of band-
or block-diagonalizations in any basis of choice [62, 68]. This flexibility is an advantage of the
SRG scheme as compared to the UCOM transformation, which is tailored for a very specific type
of correlations. Moreover, the computational simplicity of the SRG-evolution on the level of ma-
trix elements opens a clear path towards a consistent evolution of many-body forces beyond the
level of the two-body cluster approximation (cf. Sec. 2.6).Recently, the SRG evolution of a
nuclear Hamiltonian has been performed on the level of three-body matrix elements [69], thus
demonstrating the feasibility and power of this scheme.

3.1. SRG flow equations

The basic idea of the SRG in the formulation of Wegner [59, 60, 62, 61] is to transform the
initial Hamiltonian H of a many-body system into a diagonal form with respect to a given basis.
The renormalization group flow equation governing the evolution of the Hamiltonian is given by

dHα
dα
= [ηα,Hα] , (99)

whereα is a formal flow parameter and Hα the evolved Hamiltonian. Here we use a general
operator form of the flow equation in many-body space. The central quantity is the anti-hermitian
generatorηα which determines the physics of the flow evolution. Formally, this is an initial value
problem with the original Hamiltonian H as initial condition Hα=0 = H. Analogous equations can
be formulated for the evolution of operators Bα of all observables one is interested in,

dBα
dα
= [ηα,Bα] . (100)
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Apart from trivial cases, the generatorηα will depend on the evolved Hamiltonian Hα itself. There-
fore, the flow equation for an observable Bα cannot be solved independently from the flow equation
of the Hamiltonian, they have to be solved simultaneously. Formally, we can integrate these flow
equations defining a unitary operator Uα of the explicit transformations

Hα = U†αHUα ,

Bα = U†αBUα .
(101)

Note that we chose to define the unitary operator Uα such that the adjoint operator appears on the
left in the similarity transformation—this is consistent with convention introduced for the UCOM
transformation (cf. Eq. (23)), but different from many other discussions of the SRG. From Eqs.
(101) and (99) we obtain a differential equation for the unitary operator Uα,

dUα
dα
= −Uαηα , (102)

which describes an initial value problem with the trivial initial condition Uα=0 = 1 for the uni-
tary operator. If the generator would be independent of the flow parameter, e.g.ηα ≡ ig with a
hermitian generator g, then this differential equation could be readily integrated, yielding the stan-
dard exponential form of the unitary transformation operator Uα = exp(−iαg). However, typical
generators used in the SRG have a non-trivialα-dependence, such that the formal solution for the
unitary operator does not yield a simple exponential but rather a Dyson series. In practical appli-
cations it is, therefore, much easier to solve the flow equations (99) and (100) directly, without
reference to the explicit unitary operator.

The ansatz for the non-hermitian generatorηα originally used by Wegner [59, 60] has a quite
intuitive structure. It is written as a commutator of the diagonal part of the evolved Hamiltonian,
diag(Hα), with the full Hamiltonian Hα,

ηα = [diag(Hα),Hα] . (103)

Obviously, the definition of diag(Hα) presumes the choice of a basis—this is the basis with respect
to which the Hamiltonian shall be diagonalized. By transferring the generator (103) and the flow
equation (99) into a matrix representation for this basis, two properties of the flow become evident:
First, the diagonal form of the Hamiltonian provides a fix point of the flow evolution, since the
generatorηα and thus the right-hand side of the flow equation vanish in this case. Second, the
off-diagonal matrix elements of the Hamiltonian are continuously suppressed throughout the flow
evolution, the sum of their squares decreases monotonically [59, 60]. Hence the diagonal form is
a trivial attractive fixpoint of the SRG flow equation.

So far this approach is generic and independent of the properties of the particular physical
system, the Hamiltonian, or the basis under consideration.If considering anA-body system, then
all the aforementioned relations refer to the operators inA-body space. One of the consequences
is that even a simple initial Hamiltonian, containing two-body operators at most, acquires up to
A-body terms in the course of the evolution. For practical applications of the SRG approach in
the nuclear structure context one, therefore, has to simplify the scheme by confining the evolution
to two or three-body space, thus discarding higher-order contributions in the evolved interaction.
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Furthermore, instead of using the diagonal part of the Hamiltonian in the definition of the genera-
tor, one can use the operator that defines the eigenbasis withrespect to which the Hamiltonian shall
be diagonalized. In this way, we depart from the original goal of Wegner’s ansatz to diagonalize a
Hamiltonian via a flow evolution withα→ ∞ and rather aim at the derivation of tamed few-body
interactions for intermediate values of the flow parameterα that are pre-diagonalized with respect
to a certain basis.

A simplified scheme along these lines was suggested by Szpigel and Perry [57] and applied by
Bogner and others [64, 66]. It confines the evolution to two-body space and uses the generator

ηα = (2µ)2 [T int,Hα] = 2µ [~q2,Hα] , (104)

containing the intrinsic kinetic energy Tint =
1
2µ~q

2 in the two-body system. The prefactor of
the commutator is chosen such that the dimension of the flow parameterα is [momentum]−4 or
[length]4. It is also common to specify the parameterλ = α−4, which has the dimension of mo-
mentum, instead of the flow parameterα. The square of the two-body relative momentum operator
can be decomposed into a radial and an angular part,

~q2 = q2
r +
~L2

r2
, qr =

1
2

(
~q · ~r

r
+
~r
r
· ~q

)
. (105)

Thus an obvious fix point of the evolution with the generator (104) is a two-body Hamiltonian Hα
that commutes with q2r and~L2/r2. Hence, this generator drives the matrix elements of the Hamil-
tonian towards a band-diagonal structure with respect to relative momentum (q,q′) and orbital
angular momentum (L, L′), i.e., with respect to a partial-wave momentum space representation.

Though we will only use the generator (104) in the following,one should note that there are
many other possible choices forηα. An evident alternative is to use the single-particle Hamiltonian
of the harmonic oscillator instead of the kinetic energy in the generator. In this way, the Hamilto-
nian is driven towards a diagonal form in the harmonic oscillator basis. Using various projection
operators one can design generators that drive the Hamiltonian towards a block-diagonal struc-
ture in a given basis [68]. This flexibility of the SRG technique holds great potential for further
refinements and applications of the approach.

3.2. Evolution of two-body matrix elements

Starting from an initial two-body Hamiltonian H composed ofrelative kinetic energy Trel and
two-body interaction V it is convenient to decompose the SRG-evolved Hamiltonian Hα in a sim-
ilar way

Hα = Trel + Vα . (106)

All flow-dependence is absorbed in the SRG-evolved two-body interaction Vα defined by this
relation. Rewriting of the flow equation (99) using the generator (104) explicitly for the evolved
interaction Vα leads to

dVα
dα
= [ηα,Trel + Vα] = (2µ)2 [[T rel,Vα],Trel + Vα] . (107)
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Even in this simplified form a direct solution of the operatorequation is far from trivial. For
practical applications we, therefore, work on the level of matrix elements. Though any basis
in two-body space can be used to define this matrix representation, it is convenient to use the
eigenbasis of the operator entering into the ansatz for the generator (104). In our case, this is the
~q2 operator and it is most convenient to adopt the partial-wavemomentum eigenbasis|q(LS)JT〉,
where the projection quantum numbersM andMT have been omitted for brevity.

In this basis the flow equation (107) translates into a set of coupled integro-differential equa-
tions for the matrix elements

V(JLL′S T)
α (q,q′) = 〈q(LS)JT|Vα |q′(L′S)JT〉 . (108)

In a generic form, the resulting evolution equation reads:

d
dα

Vα(q,q
′) = −(q2 − q′2)2 Vα(q,q

′)

+ 2µ
∫

dQ Q2 (q2 + q′2 − 2Q2) Vα(q,Q)Vα(Q,q
′) .

(109)

For non-coupled partial waves withL = L′ = J, the matrix elements entering this equation are
simply

Vα(q,q
′) = V(JJJS T)

α (q,q′) . (110)

For coupled partial waves withL, L′ = J ± 1, theVα(q,q′) are understood as 2× 2 matrices of
the matrix elements for the different combinations of the orbital angular momentaL = J − 1 and
L′ = J + 1

Vα(q,q
′) =

(
V(JLLS T)
α (q,q′) V(JLL′S T)

α (q,q′)
V(JL′LS T)
α (q,q′) V(JL′L′S T)

α (q,q′)

)
. (111)

Each non-coupled partial wave and each set of coupled partial waves evolves independently of the
other channels of the interaction. This is a direct consequence of the choice of the generator — the
evolution towards a diagonal in momentum space is done in an optimal way for each individual
partial wave.

As mentioned earlier, analogous evolution equations have to be solved for all observables in
order to arrive at a consistent set of effective operators. The evolution of these operators, e.g. the
multipole operators necessary for the evaluation of transition strengths or the one-body density
operators employed for the computation of the momentum distribution, is coupled to the evolu-
tion of the Hamiltonian via the generatorηα. Hence we have to solve these evolution equations
simultaneously.

An alternative approach is to determine the matrix elementsof the unitary operator Uα explic-
itly by solving (102). The evolved matrix elements of all observables can then be obtained by
a simple matrix transformation using the same unitary transformation matrix. In the case of the
momentum-space partial-wave matrix elements of the unitary transformation operator,

U (JLL′S T)
α (q,q′) = 〈q(LS)JT|Uα |q′(L′S)JT〉 , (112)
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the operator equation (102) leads to a coupled set of integro-differential equations

d
dα

Uα(q,q
′) = 2µ

∫
dQ Q2 (q′2 − Q2) Uα(q,Q)Vα(Q,q

′) , (113)

where we assume that the evolution equation (109) is solved simultaneously providing theVα(q,q′).
The generic notation defined in (110) and (111) for non-coupled and coupled partial waves, respec-
tively, applies here as well. This differential equation provides direct access to the matrix elements
of the unitary operator, which maps the initial operators onto any particular point of the flow
trajectory.

3.3. Evolved interactions and wave functions

The concept of the SRG transformation becomes very transparent when looking at the flow
evolution of the momentum-space matrix elements of the SRG-transformed interaction Vα. In
Fig. 9 we show the matrix elementsV(JLL′S T)

α (q,q′) obtained for the Argonne V18 potential in the
three most important partial waves: the1S0 partial wave, i.e. matrix elementsV(00001)

α (q,q′), the
3S1 partial wave, i.e.V(10010)

α (q,q′), and the3S1 − 3D1 partial wave, i.e.V(10210)
α (q,q′). We start

with the matrix elements of the initial Argonne V18 potential at α = 0 fm4 and display snapshots
of the SRG evolution atα = 0.001 fm4, α = 0.01 fm4, andα = 0.04 fm4.

The initial matrix elements show the characteristic features that are responsible for the emer-
gence of strong correlations in the many-body system: The strong off-diagonal matrix elements
that couple low-momentum components with high-momentum components of the wave function.
In the1S0 and3S1 partial waves these off-diagonal high-momentum matrix elements are generated
by the short-range repulsion of the Argonne V18 potential, while the off-diagonal matrix elements
in the3S1 − 3D1 partial wave are solely due to the tensor interaction.

Already in the early phase of the flow evolution, i.e. forα . 0.01 fm4, the matrix elements
far off the diagonal in theS-wave channels are suppressed quickly. The plateau of positive high-
momentum matrix elements is pushed towards the zero-plane and the negative low-momemtum
matrix elements are enhanced. Later in the flow evolution, the residual high-momentum matrix
elements are pushed towards the diagonal and the matrix elements in the low-momentum are
further enhanced. For the tensor-dominated3S1 − 3D1 partial wave the matrix elements far-off
the diagonal are depleted successively. Over all, the SRG-evolution with the generator (104)
leads to a transformed interaction with band-diagonal matrix elements in momentum space. The
pre-diagonalization of the interaction and thus the Hamiltonian matrix elements through the SRG
transformation is evident.

In order to assess the effect of the flow-evolution on the structure of wave functions,we again
consider the deuteron ground state as an example. Using the SRG-evolved momentum-space
matrix elements we solve the two-body problem in the deuteron channel numerically. The de-
pendence of the resulting coordinate-space wave functionson the flow parameterα provides an
intuitive picture of the effect of the SRG evolution in coordinate space. This is illustrated in Fig. 10.

The deuteron wave function for the initial interaction shows the signatures of strong short-
range central and tensor correlations, i.e., the suppression of the wave function at small inter-
particle distances and the presence of theD-wave admixture, respectively. Already early in the
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Figure 9: Snapshots of the momentum-space matrix elements (in units of MeV fm3) of the SRG-evolved Argonne
V18 potential (charge independent parts only) in the1S0, 3S1, and3S1-3D1 partial waves (from left to right) for the
flow parametersα = 0.0 fm4, 0.001 fm4, 0.01 fm4, and 0.04 fm4 (from top to bottom).
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Figure 10: Snapshots of the deuteron wave function obtainedfrom the SRG-evolved Argonne V18 potential for the
flow parametersα = 0.0 fm4, 0.001 fm4, 0.01 fm4, and 0.04 fm4 (from top to bottom). The main panels show the radial
wave functionsφL(r) for L = 0 ( ) andL = 2 ( ). The 3D plots show the corresponding momentum-space
matrix elements in the3S1 partial wave for orientation (cf. Fig. 9).
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flow evolution, i.e. forα . 0.01 fm4, the short-range dip in theS-wave component is removed—
this effect is connected to the suppression of the plateau of high-momentum matrix elements in
the 3S1 partial wave. As a result the deuteron wave function obtained with the SRG-evolved
Argonne V18 potential forα = 0.01 fm4 has lost any signature of a strong short-range repulsion
in the interaction. The total strength of theD-wave admixture is reduced and pushed towards
larger inter-particle distances. Thus, the short-range wave function evolves from being dominated
by short-range central and tensor correlations to an almostuncorrelated pureS-wave. The long-
range behavior, all asymptotic properties, and the deuteron binding energy are not affected by the
SRG-evolution.

The behavior of the matrix elements and of the two-body wave functions highlights the relation
between the UCOM transformation and the SRG evolution regarding the pre-diagonalization of
the Hamiltonian and the description of short-range correlations. Both approaches describe the
same physics.

3.4. UCOM from an SRG perspective

Because the UCOM and the SRG transformations have the same effect on the matrix elements
and wave functions, one might ask for the connection of both approaches on the underlying for-
mal level. The properties of both unitary transformations are governed by their generators: the
dynamical generator−iηα in the case of the SRG and the static generators gr and gΩ in the case of
the UCOM transformation.

There is a non-trivial relation between these generators that provides an insight into the formal
relation and the differences of the two approaches [66]. This becomes evident by evaluating the
SRG generator (104) for a typical nuclear Hamiltonian in two-body space. We assume a simplified
local two-nucleon interaction composed of a central, a spin-orbit and a tensor part. The operator
for this interaction is given by

V =
∑

p

Vp(r) Op (114)

with Op ∈ {1, (~σ1 ·~σ2), (~L · ~S),S12(~rr ,
~r
r )} ⊗ {1, (~τ1 ·~τ2)}. By evaluating the commutator defining the

SRG generator (104) explicitly forα = 0 using this interaction operator we obtain

−iη0 =

[1
2
(
qr S(r)+ S(r) qr

)
+ Θ(r) S12(~r, ~qΩ)

]
. (115)

The operator-valued functions S(r) andΘ(r) contain the radial dependencies of the different terms
of the interaction

S(r)= −1
µ

(∑

p

V′p(r) Op

)
, Θ(r) = −2

µ

Vt(r)
r2
. (116)

If the functions S(r) andΘ(r) were functions of the relative distance r alone, then thestructure
of the initial SRG generator iη0 would be identical to the UCOM generators gr and gΩ that were
constructed based on the physical picture of central and tensor correlations [66]. The explicit
dependence of S(r) on the operator set Op indicates that the SRG transformation acts differently
in different partial waves. In the UCOM terminology, this dependence encodes a partial-wave
dependence of the central correlation functions.
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This formal connection shows that both approaches address the same physics of short-range
correlations, although starting from quite different backgrounds. Moreover, it proves that the set
of UCOM generators covers the most relevant terms. Although there are other operators appearing
in the initial interaction, e.g. the spin-orbit operator, they do not require separate generators—their
effect on the correlations is absorbed in the operator-valued function S(r).

Regarding the partial-wave dependence of the correlations,the standard formulation of the
UCOM approach uses a simplified picture. The correlation functions s(r) andϑ(r) are chosen to
depend on spinS and isospinT only, they do not depend on orbital and total angular momentum.
Formally, one could drop this restriction and work with separate correlation functions for each
partial wave and thus mimic the flexibility of the SRG generator.

A more fundamental difference between the UCOM and the SRG transformations results from
the fact that SRG uses a dynamical generator, whose operator structure changes throughout the
flow evolution, whereas UCOM is based on a static generator. Though the UCOM generator and
the SRG generator share the same basic operator structure atα = 0, the SRG generator acquires a
more complicated form involving higher-order momentum andmomentum-dependent tensor op-
erators at later stages of the evolution. Therefore, the SRG generator is more flexible and adapts
to the behavior of the matrix elements during the flow evolution, leading to a non-trivial flow
trajectory in an operator-space representing the generator. The UCOM transformation, in con-
trast, consists of a one-step transformation along a lineartrajectory confined to a subspace of the
operator-space spanned by the SRG generator. It is, therefore, not surprising that the matrix ele-
ments of the UCOM-transformed interaction do not exhibit thesame perfect band-diagonal struc-
ture as the SRG-evolved interaction. However, the leading operator contributions to the generator
are also present in the UCOM approach and allow for an efficient pre-diagonalization.

The dynamic nature of the SRG generator is also the reason, whythe optimal UCOM correla-
tion function cannot be determined directly from Eqs. (116). We have to consider the whole SRG
flow trajectory up to a certain value ofα to extract meaningful UCOM correlation functions. One
option to do so is discussed in the following section.

3.5. UCOM correlation functions extracted from SRG

As an alternative to the variational determination of the UCOM correlation functionsR+(r)
andϑ(r) discussed in Sec. 2.5 we can use the SRG approach to generate optimized UCOM cor-
relation functions. Our aim is to construct a UCOM transformation that uses the result of the
SRG-evolution of a Hamiltonian in two-body space fromα = 0 to a fixed finite value of the flow
parameter to determineR+(r) andϑ(r). In contrast to the dynamical SRG evolution, the UCOM
correlations have to map the initial Hamiltonian onto the evolved Hamiltonian for a specificα
using a single explicit unitary transformation. Obviously, the correlation operator C is not flexi-
ble enough to allow for an exact mapping of all matrix elements in all partial waves—even if we
would allow for different correlation operators C for each partial wave.

One could consider an approximate mapping of the matrix elements as one possible scheme
to determine the UCOM correlation functions. Here, we use a different strategy, which is rooted
in the interpretation of the UCOM transformation as a tool to imprint short-range correlations into
the many-body state. Instead of considering the initial andevolved two-body matrix elements, we
consider two-body eigenstates of the initial and evolved Hamiltonian for different partial waves.
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The optimal UCOM correlation functions are then required to map a selected two-body eigenstate
of the SRG-evolved Hamiltonian onto the corresponding eigenstate of the initial Hamiltonian.
This wave-function mapping defines the so-called SRG-generated UCOM correlation functions.

The procedure for the construction of SRG-generated UCOM correlation functions consists
of three steps: (i) We solve the SRG evolution equations for a given initial interaction up to a
flow parameterα, obtaining the momentum space matrix elementsVα(q,q′) for a certain partial
wave. (ii ) Using the evolved matrix elements the two-body problem is solved, leading to a set
of coordinate-space wave functions. (iii ) The UCOM correlation functionsR+(r) andϑ(r) are
determined such that they map a selected two-body eigenstate of the SRG evolved interaction onto
the corresponding two-body state of the initial interaction in the respective partial wave.

The steps (i) and (ii ), i.e., the evolved momentum-space matrix elements and thewave func-
tions of the corresponding two-body eigenstates, respectively, have already been illustrated for the
deuteron channel in Sec. 3.3. Step (iii ) is discussed in the following.

Consider two eigenstates|ϕ(0)〉 and |ϕ(α)〉 with the same energy eigenvalue resulting from the
solution of the two-body problem for the initial and the SRG-evolved potential, respectively, in a
given coupled or non-coupled partial wave. We can define a UCOMcorrelation operator C that
maps the two states onto each other

|ϕ(0)〉 = C |ϕ(α)〉 = CΩCr |ϕ(α)〉 . (117)

Based on this formal definition we can derive equations that determine the correlation functions
R−(r) andϑ(r) that characterize the correlation operator.

For non-coupled partial waves withL = J only the central correlator is relevant. With the
two-body solutions

|ϕ(0)〉 = |φ(0)(LS)JT〉
|ϕ(α)〉 = |φ(α)(LS)JT〉

(118)

for the initial and the SRG-evolved interaction, respectively, we obtain from (117) and (32) a rela-
tion connecting the known radial wave functionsφ(0)(r) andφ(α)(r) via a yet unknown correlation
functionR−(r):

φ(0)(r) =
R−(r)

r

√
R′−(r) φ

(α)(R−(r)) . (119)

Here and in the following we assume real-valued wave functions. The relation (119) can be viewed
as a differential equation for the correlation functionR−(r). After formal integration we arrive at
an implicit integral equation forR−(r)

[R−(r)]
3 = 3

∫ r

0
dξ ξ2

[φ(0)(ξ)]2

[φ(α)(R−(ξ))]2
, (120)

which can be solved easily in an iterative fashion. We end up with a discretized representation of
the correlation functionR−(r) for the partial wave under consideration. By construction it maps a
selected SRG-evolved two-body state onto the correspondinginitial state. In general,R−(r) will
depend on the pair of states, e.g. the ground states or a pair of excited states, we have selected. We
will show later on that this dependence is very weak.
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For coupled partial waves withL = J − 1 andL′ = J + 1 central and tensor correlators act
simultaneously. Using the two-body eigenstates

|ϕ(0)〉 = |φ(0)
L (LS)JT〉 + |φ(0)

L′ (L
′S)JT〉

|ϕ(α)〉 = |φ(α)
L (LS)JT〉 + |φ(α)

L′ (L′S)JT〉
(121)

of the initial interaction and the evolved interaction, respectively, we can extract a unique set
of central and tensor correlation functions. After multiplying the mapping equation (117) with
〈r(LS)JT| and〈r(L′S)JT| , respectively, and using Eq. (37), we obtain a system of coupled equa-
tions (

φ(0)
L (r)
φ(0)

L′ (r)

)
=

R−(r)
r

√
R′−(r)

(
cosθJ(r) sinθJ(r)
− sinθJ(r) cosθJ(r)

) (
φ(α)

L (R−(r))
φ(α)

L′ (R−(r))

)
, (122)

from which the correlation functionsR−(r) andϑ(r) can be determined.
Because the central correlation function acts on both orbital components in the same way

and because the transformation matrix in (122) has to be unitary, we can determine the central
correlation functionR−(r) independently of the tensor correlations functionϑ(r). By considering
the sum of the squares of the two orbital components we obtainfrom (122) the identity

[φ(0)
L (r)]2 + [φ(0)

L′ (r)]
2 =

[R−(r)]2

r2
R′−(r)

(
[φ(α)

L (R−(r))]
2 + [φ(α)

L′ (R−(r))]
2) . (123)

which corresponds to (119) for the non-coupled case. The correlation functionR−(r) can then be
determined iteratively from the integral equation

[R−(r)]
3 = 3

∫ r

0
dξ ξ2

[φ(0)
L (ξ)]2 + [φ(0)

L′ (ξ)]
2

[φ(α)
L (R−(ξ))]2 + [φ(α)

L′ (R−(ξ))]2
. (124)

OnceR−(r) is known, the system (122) reduces to a set of two nonlinear equations forθJ(r) =
3
√

J(J + 1) ϑ(r), which can be solved numerically for eachr.
In practice this mapping scheme can be easily implemented using discretized wave functions.

Typically, the SRG evolution of the Hamiltonian in two-body space for a given partial wave is per-
formed on a sufficiently large grid in momentum space. Using the discretizedmomentum-space
matrix elements of the evolved Hamiltonian we solve the two-body problem for the respective
partial wave on the same momentum-space grid. The ground state wave-functions are then trans-
formed to coordinate space, where the mapping equation (122) is solved. In this way, we obtain
discretized correlation functionsR−(r) and, by numerical inversion,R+(r) as well asϑ(r) for each
partial wave. In contrast to the UCOM correlation functions determined variationally, there are no
parameterizations of the correlation functions necessary, which might induce artifacts due to their
limited flexibility.

3.6. SRG-generated UCOM correlation functions

As an example for the determination of UCOM correlations functions through a mapping of
SRG-evolved wave functions, we again consider the Argonne V18 potential. Note, however, that
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the mapping procedure is completely generic and can be used with any other interaction, be it local
or non-local.

In order to stay within the framework set by the variational UCOM correlators, we do not
consider separate correlation functions for each partial wave, which could be done easily, but only
distinguish different channels of two-body spinS and isospinT. As in the variational scheme, we
optimize the correlators for a given (S,T)-channel using the lowestJ partial wave, since the low-J
and thus low-L partial waves are affected most by short-range correlations. For partial waves with
higherJ andL the impact of short-range correlations and of the UCOM transformation is reduced
due to the angular momentum barrier, thus the non-optimal correlators for these partial waves do
not have a big impact.

For determining the central correlation functionsR+(r) in the spin-singlet channels, we use
the 1S0 partial wave for the singlet-even (S = 0, T = 1) and the1P1 partial wave for the single-
odd (S = 0, T = 0) channel. The central and tensor correlation functions inthe triplet-even
(S = 1, T = 0) channel are extracted from the deuteron solution in the coupled3S1 − 3D1 partial
wave. For the triplet-odd channel (S = 1, T = 1) we encounter the same ambiguity as in the
variational treatment: the lowest possible orbital angular momentum allowed by antisymmetry is
L = 1 for which J can be 0, 1, or 2 and only forJ = 2 the tensor correlator does contribute. One
possible recipe for handling this channel is to use only the coupled3P2− 3F2 partial wave to fix the
triplet-odd central and tensor correlation functions, as done in Ref. [67]. The central correlation
functions obtained in this way are not well adapted for the lower-J partial waves. Therefore, a
scheme that includes all possibleJ for the determination of the central correlation function seems
more appropriate. Thus, we determine the central correlation function through a mapping of wave
functions for a pseudo interaction obtained by averaging the 3P0, 3P1, and3P2 partial waves with
a relative weight 2J + 1. This recipe comes closest to the energy-average used for the variational
determination in this channel (cf. Sec. 2.5).

In each of the partial waves we use the energetically lowest pair of states, which is bound in
the case of the triplet-even channel and unbound otherwise,to determine the correlation functions
via the mapping (117). In principle one could use any other pair of two-body states obtained for
the initial and the SRG-evolved Hamiltonian with the same energy. As was shown in Ref. [67]
the correlation functions do not change significantly when using one of the low-lying excited two-
body states instead of the ground state.

A crucial advantage of the SRG-generated correlation functions is that there is no need for
artificial constraints to control the range of the correlations functions—the SRG flow-parameterα,
which enters through the evolved two-body eigenstates, is the only control parameter. In contrast to
the ad-hoc integral constraints formulated for central andtensor correlations functions in Sec. 2.5
the flow parameterα is a physically motivated control parameter that enters thecentral and tensor
correlation function in a consistent way.

The dependence of the correlation functions on the flow-parameterα is illustrated in Fig. 11
for the central correlation functions and in Fig. 12 for the tensor correlation functions obtained
for the Argonne V18 potential through the SRG mapping. Evidently, the over-all range of the
correlation functions is directly controlled by the flow-parameterα: Largerα result in correla-
tion functions with longer range. This is in-line with our observations on the evolution of the
momentum-space matrix elements and the two-body wave functions. Initially, the SRG flow-
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evolution affects only the high-momentum matrix elements and thus the short-distance behavior
of the wave functions. Throughout the flow evolution, i.e., with increasingα, the wave functions
are modified at increasingly larger distances, which results in an increasing range of the associated
correlation functions. This localized action of the SRG transformation on coordiante-space wave
functions is also responsible for the fact that the SRG-generated correlation functions automati-
cally have finite range. This property is not imposed by the mapping scheme, but results from the
structure of the two-body wave functions alone1.

Closer inspection of the structure of the correlation functions in Figs. 11 and 12 reveals an
interesting new aspect as compared to the correlation functions discussed in Sec. 2. In the even
channels the central correlation functionsR+(r) − r exhibit a sign-change atr ≈ 1.1 fm. At shorter
rangesR+(r) − r is positive, indicating an outward shift in a transformed two-body wave func-
tion, and turns negative at larger distances, inducing an inward shift in a transformed wave func-
tion. Pictorially speaking, the UCOM transformation attempts to exploit the attractive parts of
the central potential in the even channels by moving probability amplitudes from small and large
inter-particle distances into the attractive region. The triplet-even tensor correlation functionϑ(r)
exhibits a similar structure, though the negative contribution is much weaker than the positive part.
In the odd channels the correlation functions do not show this sign change, which can be explained
by the lack of a sufficiently strong attraction in the central interaction.

The details of theα-dependence are different for the different types of correlation functions.
For the dominant central correlators in the even channels, the short-range positive component is
practically independent ofα in the range covered in Fig. 11—these are the generic short-range
correlations induced by the strong short-range repulsion of the Argonne V18 potential. Only the
negative long-range part shows a sizableα-dependence affecting its range and strength. All other
correlation functions show a smooth increase of the over-all range with increasingα, only a very
short distances the curves are independent ofα.

The direct comparison of the SRG-generated correlation functions with the correlators deter-
mined variationally in Sec. 2.5 is also quite instructive. In Figs. 13 and 14 we compare the central
and tensor correlations functions, respectively, of the SRG-generated correlator forα = 0.04 fm4

and the standard variational correlator with constraintsIϑ = 0.09 fm3 for the tensor correlator in
T = 0, andIϑ = −0.03 fm3 for the tensor correlator inT = 1. Both sets of correlators yield approx-
imately the same ground-state energy of4He in a No-Core Shell Model calculation, as discussed
in Sec. 4.

In the even channels, the short-range parts of the central correlation functions of both sets
agree very well—another indication that these dominant short-range correlations are truly generic
and independent of the methodology used to determine the correlation functions. The negative
contributions inR+(r) − r appearing in the SRG-generated correlators is absent in the variational
correlators, simply because the parameterizations used for the latter did not allow for such a struc-
ture. The triplet-odd central correlators also agree very well, thus providing additional justification
for the treatment of this channel in the mapping procedure.

1We note that the short range of the correlation functions depends on the initial interaction. If the interaction
is such that the SRG evolution affects also long-range components of the wave function, then the UCOM correlators
obtained by the mapping will be long-ranged as well. This is the case for the chiral N3LO interaction [4], for example.
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In the singlet-odd channel the central correlation functions exhibit the same shape, but the
variational correlator is suppressed due to the explicit range constraint. However, the variational
correlation function agrees very well with the SRG-generated central correlators for smaller values
of α. The tensor correlations functions determined in the variational scheme are also subject to
explicit range constraints that affect their shape. Over-all the correlation functionsϑ(r) of both
sets are similar, but the agreement is not as good as for the channels without ad hoc constraints.

For the following discussion, we will identify the SRG-generated UCOM correlation func-
tions and the resulting UCOM-transformed potential with theabbreviation “UCOM(SRG)”. The
UCOM correlation functions determined from a variational calculation (cf. Sec. 2.5) are termed
“UCOM(var.)”. Finally, the purely SRG-transformed interactions are labelled “SRG”.

3.7. Comparison of matrix elements

To conclude the discussion of the transformed interactionsresulting in the UCOM and in the
SRG scheme, we consider the momentum-space matrix elements once more. In Fig. 15 we com-
pare the matrix elements in the dominantS-wave channels obtained for the bare Argonne V18
potential, the UCOM-transformed Argonne V18 potential using correlation functions obtained
variationally as well as via the SRG mapping, and the pure SRG-evolved interaction.

All similarity transformed interactions show a strong suppression of the off-diagonal matrix
elements, i.e., a decoupling of low-momentum and high-momentum states, and an enhancement
of the low-momentum matrix elements. This leads to a significant improvement of the convergence
in No-Core Shell Model calculations for light nuclei, as willbe discussed in detail in Sec. 4. There
are, however, distinctive differences in the behavior of the matrix elements for the1S0 and the3S1

partial waves in the high-momentum sector.
The SRG evolution leads to a transformed interaction with a perfect band-diagonal structure in

momentum space, i.e., in the high-momentum regime the matrix elements drop to zero rapidly with
increasing distance from the diagonal. For the UCOM-transformed interaction, the domain of non-
vanishing high-momentum matrix elements extends further out. In the case of the UCOM(var.)
correlation functions there is a plateau of non-vanishing matrix elements in the high-momentum
sector, which falls off slowly when leaving the diagonal. As a result, the band-diagonal structure
is far less pronounced than in the case of the SRG-evolved interaction. For the UCOM(SRG)
interaction there appears a broad band of non-vanishing high-momentum matrix elements. The
far-off diagonal matrix elements outside of this band are more suppressed than for the UCOM
with variationally determined correlators, but compared to the SRG-transformed interactions the
band is significantly broader.

The apparent differences between the SRG- and the UCOM(SRG)-transformed matrixele-
ments show that, despite the construction of the UCOM correlation functions using input from
the SRG evolution, the transformed interactions are very similar for

√
q2 + q′2 . 2 fm−1, but are

quite different above. The origin of this differences is the limited flexibility of the UCOM gen-
erator, which is determined from the eigenstates with the lowest energy and does not allow for a
perfect band-diagonalization of the high-momentum matrixelements. However, it does allow for
a decoupling of low- and high-momentum modes, which will be important for the convergence of
shell-model-like many-body calculation as discussed in the following section.
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V18 potential in the1S0, 3S1, and3S1-3D1 partial waves. First row: initial Argonne V18 matrix elements (charge
independent terms only). Second row: UCOM transformed matrix elements using UCOM(var.) correlation functions
for I (10)

ϑ
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4. No-Core Shell Model

The No-Core Shell Model (NCSM) is a powerful and well established many-body technique
that has been used successfully in a wide range of nuclear structure calculations in light nuclei
[70, 71, 72]. It provides a perfect framework for assessing the properties of nuclear interactions,
both from the technical perspective, e.g., regarding theirconvergence properties, and from the
experimental view, e.g., regarding the agreement of predicted observables with experiment.

In this section we discuss NCSM calculations using the UCOM interaction with correlation
functions determined variationally (cf. Sec. 2) and the UCOMinteraction using SRG-generated
correlation functions (cf. Sec. 3). For comparison we also show results with the SRG interaction.
All UCOM and SRG interactions are derived from the Argonne V18 interaction. The matrix
elements are calculated without approximation as explained in Sec. 2.10 and Sec. 3.2 including all
electromagnetic and charge dependent terms.

Using exact calculations in the three- and four-body system, we investigate the convergence
properties and the role of induced three-body interactionsof the UCOM and SRG interactions as
a function of tensor correlation range or flow parameter. Thebinding energies in the three- and
four-body system map out the so-called Tjon-line. By choosing particular values for the tensor
correlation range and the flow parameters, respectively, weobtain UCOM and SRG two-body
interactions that provide binding energies very close to the experimental results in the three- and
four-body system.

The UCOM and SRG interactions selected by this choice are then used in NCSM calculations
of 6He, 6Li and 7Li. Although we are not able to reach full convergence, binding energies can
be obtained by extrapolation. A better convergence behavior is found for the excitation energies.
The spectra provide some insight about the spin dependence of the UCOM and SRG interactions.
Additional hints are provided by electromagnetic properties like radii, magnetic dipole moments
and electric quadrupole moments.

4.1. Benchmarking VUCOM in ab initio few-body calculations

For the NCSM calculations in the three- and four-body system we use the ManyEff code by
Petr Navŕatil [11]. It employs a translationally invariant oscillator basis in Jacobi coordinates. The
model space is defined by the oscillator frequency~Ω and the total numberNmax of excitations
with respect to the 0~Ω configuration. The interaction is provided in form of relative harmonic-
oscillator matrix elements. In the standard NCSM approach aneffective interaction adapted to the
model space (Nmax, ~Ω) is derived using the Lee-Suzuki transformation. For the calculations pre-
sented here we directly use the “bare” UCOM and SRG matrix elements, which do not depend on
the model space sizeNmax. Within this procedure, the NCSM provides a variational approach for
the energy. The energy eigenvalues will converge from aboveto the exact solution for sufficiently
large model spaces. The converged results should also be independent of the oscillator frequency
~Ω, although the rate of convergence will be different for different oscillator frequencies.

Before presenting results with UCOM and SRG interactions we illustrate that it is not possi-
ble to reach full convergence with the bare Argonne V18 interaction, even within the huge model
spaces possible for3H and4He. As can be seen in Fig. 16 it is already very hard to obtain a bound
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Figure 16: NCSM calculations with the bare Argonne V18 interaction for3H and4He. The ground state energy is
calculated in model space withNmax = 0,2, . . . ,40 for 3H and withNmax = 0,2, . . . ,18 for 4He. The exact binding
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Figure 17: NCSM calculations for the ground-state energy of3H in model spaces withNmax = 0,2, . . . ,40. The
tensor correlation range for the UCOM(var.) interaction isIϑ = 0.09 fm3. The flow parameters areα = 0.04 fm4

for the UCOM(SRG) andα = 0.03 fm4 for the SRG interaction. The experimental binding energy isindicated by a
horizontal line.

nucleus. One can also observe that the lowest energies are obtained for very large oscillator fre-
quencies. With these narrow oscillator wave functions it becomes eventually possible to explicitly
describe the short-range correlations for very largeNmax.

We can compare these results with calculations with the UCOM and SRG interactions as shown
in Fig. 17 and Fig. 18. We use our “standard” choices given in (125) for the tensor correlation range
Iϑ and flow parametersα as explained later in this section. For all interactions we find a bound
minimum already in the 0~Ω space. The minima are at oscillator frequencies that correspond
roughly to the experimental sizes of the nuclei. With increasing model-space sizeNmax we observe
a fast convergence for all interactions. In direct comparison, the UCOM(SRG) and SRG inter-
actions converge faster than the UCOM(var.) interaction with respect to both, model space size
Nmax and oscillator frequency~Ω. It is important to note that the converged energy, while being
close to the experimental binding energy, is lower than the exact result for the bare Argonne V18
interaction by about 0.7 MeV in case of3H and by about 4.1 MeV in case of4He. This overbind-
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Figure 18: NCSM calculations for the ground-state energy of4He in model spaces withNmax = 0,2, . . . ,18. The
tensor correlation range for the UCOM(var.) interaction isIϑ = 0.09 fm3. The flow parameters areα = 0.04 fm4
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Figure 19: NCSM calculations for the ground state of4He with UCOM(SRG) interactions at different flow parameters
(α = 0.01,0.04,0.08 fm4) in model spaces withNmax = 0,2, . . . ,18. The horizontal line indicates the experimental
binding energy.

ing of UCOM and SRG interactions with respect to the bare interaction is caused by the missing
three- and four-body contributions – UCOM and SRG interactions are only calculated in two-body
approximation. This point will be discussed in detail in Sec. 4.2.

The convergence pattern and the converged energy depends onthe parameters of the tensor cor-
relation range or the flow parameter respectively. This is illustrated in Fig. 19 for the UCOM(SRG)
interaction using three different flow parameters. With increasing flow parameter the calculations
converge faster and to a lower energy. This is analyzed in detail in Fig. 20, where we compare
the energy minima in the 0~Ω model spaces and the converged energies as a function ofIϑ or α.
The 0~Ω results are getting closer to the converged results with larger correlation ranges or flow
parameters, i.e., the interactions become “softer”. Note that the converged UCOM(var.) results
decrease monotonically with increasing tensor correlation range, whereas the UCOM(SRG) and
SRG interactions both show a minimum in the converged energy for flow parametersα ≈ 0.10 fm4.
This indicates that the tensor correlation range and the flowparameter in UCOM(SRG) and SRG
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Figure 20:4He ground-state energy calculated in 0~Ω space (dotted lines) and converged NCSM results (solid lines)
as a function of correlation range or flow parameter. The exact result for the bare Argonne V18 interaction and the
experimental binding energy are indicated by horizontal lines.

interactions play a somewhat different role. In the case of the UCOM(var.) interactionsIϑ only
affects the range of the tensor correlator in the deuteron channel. In the case of UCOM(SRG) and
SRG interactionsα affects also the central correlations in all channels. Beyond a certain point,
stronger central correlations actually result in less binding from the central part of the interaction
and the interaction becomes less attractive.

4.2. Tjon-line and the role of three-body interactions

As has already been observed by Tjon for local interactions,a correlation exists between the
3H and4He binding energies [73]. When the binding energy of4He is plotted against the binding
energy of3H the results for different interactions fall essentially onto a single line, theso-called
Tjon-line. This has been confirmed also for modern interactions. Typically the binding energies
for bare two-body forces are too small compared to experiment. This can be corrected by adding
an appropriate three-body force. In Fig. 21 results from Refs. [10, 8] for realistic two-body interac-
tions and combinations of two- plus three-body forces are shown. In addition we show the results
with UCOM and SRG interactions for which the binding energies vary as a function of tensor
correlation rangeIϑ or flow parameterα and continue more or less on the Tjon-line obtained from
bare realistic two-body forces. The results obtained with the UCOM and SRG interactions are
very similar and the trajectories of all interactions pass very close (within 200 keV) to the exper-
imental binding energies of3H and4He. The results closest to the experimental binding energies
are obtained for the parameters:

UCOM(var.): Iϑ = 0.09 fm3

UCOM(SRG): α = 0.04 fm4

SRG: α = 0.03 fm4

. (125)

This is a remarkable result. By choosing a particular tensor correlation range or particular
flow parameters the two-body UCOM or SRG interactions not only reproduce the experimental
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interactions. Also included are results with bare two-bodyforces (black diamonds) and combinations of two- and
three-body forces (grey diamonds) taken from [10] and [8].

nucleon-nucleon scattering data but also give the correct binding energies in the three- and four-
body systems. In this calculation we neither evaluate three- and four-body contributions from the
correlated two-body interaction nor do we include genuine three- and four-body forces. At this
point all three- and four-body contributions have to cancelat least on the level of the expectation
value. As explained by Polyzou and Glöckle [14] a unitary transformation exists between different
combinations of on-shell equivalent two- and three-body interactions. UCOM and SRG interac-
tions provide a particular realization of such a transformation. The three-body contributions of
SRG interactions have been studied explicitly in [69] by evolving the three-body matrix elements
in the harmonic oscillator basis.

We will use UCOM and SRG interactions with tensor correlation range and flow parameters
optimized for three- and four-body systems as described above for NCSM calculations inp-shell
nuclei in Sec. 4.3 and for exploratory studies using Hartree-Fock and many-body perturbation
theory for doubly magic nuclei up to208Pb in Sec. 5.

4.3. Properties of A= 6,7 nuclei

In this section we study properties of the lightp-shell nuclei6He,6Li and 7Li using the NCSM
code Antoine [74, 75]. Matrix elements of UCOM and SRG interactions are provided as j j -
coupled matrix elements generated from the relative matrixelements using the Talmi-Moshinsky
transformation. Again we do not employ the Lee-Suzuki transformation.

Like for the three- and four-body systems the results are studied as a function of oscillator
frequency~Ω and model space sizeNmax. We do not reach full convergence in the accessible model
spaces for these nuclei, even with the UCOM or SRG interactions. For ground-state energies we
can use extrapolations to estimate the converged binding energy. An error estimate is provided
by comparing results from different oscillator parameters. For observables like the radii and the
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UCOM(var.) UCOM(SRG) SRG Experiment
6He 27.9(4) 28.4(3) 28.8(4) 29.269
6Li 30.9(4) 31.6(3) 32.0(4) 31.995
7Li 37.4(6) 38.7(4) 39.6(5) 39.245

Table 3: Experimental and extrapolated calculated bindingenergies (in MeV) obtained with UCOM(var.),
UCOM(SRG) and SRG interactions. Error estimates are obtained by comparing extrapolated energies for different
oscillator frequencies.

quadrupole moment of7Li the results show a strong dependence on the model space size and
extrapolated results are not reliable. Spectra on the otherhand appear to be much better converged
and can be compared with experiment.

The convergence problems are to a large extend not caused by properties of the interactions
but by the cluster or halo nature of these nuclei. To properlydescribe the asymptotics of wave
functions with a neutron halo like in6He, or an underlying cluster structures in case of the lithium
isotopes, large model spaces are needed in the oscillator basis.

Ground-state energies
We calculate the ground-state energies in model spaces up toNmax = 14 for 6He and6Li and

up toNmax = 12 for 7Li for oscillator frequences~Ω = 12,16, . . . ,28 MeV. For all interactions the
lowest energy in the 0~Ω space is obtained for an oscillator frequency of 16 MeV. In the largest
model spaces lowest energies are found for oscillator constants between 24 MeV and 28 MeV for
the UCOM(var.) interaction and between 20 MeV and 24 MeV for UCOM(SRG) and SRG inter-
actions. To estimate the converged ground-state energy an exponential extrapolation is performed
using the results obtained in the four largest model spaces.An estimate of the error can be obtained
by comparing the extrapolated energies for different oscillator frequencies. In Figs. 22,23,24 the
calculated energies are shown as a function of the model space sizeNmax together with the fitted
exponentials. Both UCOM(SRG) and SRG interactions provide extrapolated binding energies that
are close to the experimental values, whereas the binding energies with the UCOM(var.) interac-
tion are somewhat underestimated for all nuclei. The results are summarized in Table 3. Note
that we use the interaction parameters (125) as obtained from the Tjon-line analysis—no further
adjustments are made here or in the following.

Radii, magnetic dipole moments and quadrupole moments
Electromagnetic properties provide important tests of thewave function beyond the simple

binding energy. We calculate the point proton radii for all nuclei and the magnetic dipole moment
as well as the electric quadrupole moment for6Li and 7Li. The results are very similar for the
different UCOM and SRG interactions and we only show results for theUCOM(SRG) interaction.
The results are also very similar to results from NCSM calculations using the CD Bonn and INOY
interactions [76, 77].

The point radii shown in Fig. 25 are calculated for the oscillator frequencies~Ω = 16, 20, and
24 MeV. There still is a strong dependence of the calculated radii on the model space size. We
do not believe that the extrapolation of the radii is reliable, but the results indicate that the radii
are slightly too small when compared to experiment. It is difficult to draw conclusions regarding
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Figure 22: Energy of the6He 0+ state as a function of model space size for different oscillator frequencies obtained
with UCOM(var.), UCOM(SRG) and SRG interactions. Exponential extrapolations are fitted to the results from the
four largest model spaces.
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Figure 23: Energy of the6Li 1+ state as a function of model space size for different oscillator frequencies obtained
with UCOM(var.), UCOM(SRG) and SRG interactions. Exponential extrapolations are fitted to the results from the
four largest model spaces.
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Figure 24: Energy of the7Li 3/2− state as a function of model space size for different oscillator frequencies obtained
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Figure 25: Point proton radii of6He,6Li and 7Li as a function of model space size for different oscillator frequencies
using the UCOM(SRG) interaction. Experimental values from[78] and [79].

ò

ò ò ò ò ò ò ò

æ

æ æ æ æ æ æ æ
à

à
à à à à

à à

6Li - UCOMHSRGL
ò 16 MeV
æ 20 MeV
à 24 MeV

0 2 4 6 8 101214161820
0.80

0.82

0.84

0.86

0.88

0.90

Nmax

Μ
@Μ

N
D

ò ò ò ò ò ò ò

æ æ
æ æ æ æ æ

à à
à à à à à

7Li - UCOMHSRGL

ò 16 MeV
æ 20 MeV
à 24 MeV

0 2 4 6 8 10 12 14 16 18 20
2.6

2.8

3.0

3.2

3.4

Nmax

Μ
@Μ

N
D

Figure 26: Magnetic dipole moment of6Li and 7Li as a function of model space size calculated with UCOM(SRG).
Experimental values from [80].

the saturation properties of the interaction as the radii for these nuclei depend strongly on the
asymptotic behavior of the wave function due to their halo orcluster nature.

The magnetic dipole moments of6Li and 7Li shown in Fig. 26 agree reasonably well with the
experiment. The quadrupole moment of6Li is correctly predicted to be very small and negative,
which confirms the4He plus deuteron picture. For the quadrupole moment of7Li we find a sim-
ilar behavior as for the radii. There is still a strong dependence on the model space size. The
extrapolated results underestimate the experimental value.

Spectra
Further information about the interaction can be obtained from the spectra of excited states.

The spectra are calculated in 12~Ω and 10~Ω model spaces for theA = 6 andA = 7 nuclei
respectively. We show here the results for the oscillator parameter 16 MeV which corresponds to
the ground state minimum in the 0~Ω model space and which shows the fastest convergence for
the spectra. For other oscillator constants the spectra vary more rapidly when enlarging the model
space but the converged results depend only very weakly on the oscillator parameter.

The results are very similar for all three interactions. In Fig. 28 the results are summarized.
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Figure 27: Quadrupole moment of6Li and 7Li ground state as a function of model space size for UCOM(SRG).
Experimental values from [80].

For the UCOM(var.) interaction the results are shown starting from the 0~Ωmodel space. For the
UCOM(SRG) and SRG interactions we only show the results from thelargest model spaces.

In 6He the energy of the 2+ state is well converged. This is not true for the second 2+ and the 1+

state. These states are well above the two-neutron separation energy and there is no experimental
confirmation for the existence of these states.

For 6Li the T = 0 states are well converged in contrast to theT = 1 states (2+2 and 0+). We
also find the excitation energy of the 3+ state to be too high. This indicates that the effective spin-
orbit force in the UCOM and SRG interactions is too weak. A similar observation can be made in
the spectrum of7Li. Here the splittings between the 3/2− and 1/2− states as well as between the
7/2− and 5/2− states are too small compared to the experimental values, aswell. In that respect
the UCOM and SRG interactions perform similarly to other two-body interactions. It has been
observed in GFMC calculations [17] that three-body forces contribute significantly to the effective
spin-orbit strength. NCSM calculations with chiral two- andthree-body forces [81] also show a
strong dependence of these splittings on the parameters of the three-body force.
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5. Hartree-Fock and beyond

For nuclei beyond the p-shell, many-body calculations in methods like the full NCSM are
not feasible anymore, because the dimension of the many-body basis at a givenNmax~Ω truncation
level grows factorially with the particle number. One can extend the domain of NCSM calculations
to larger particle numbers and model space sizes by using importance truncation methods, as
discussed in Refs. [82, 83, 84]. For the description of groundstates of closed-shell and neighboring
nuclei, coupled cluster methods have been employed quite successfully [85, 86, 87, 88, 89, 90, 91].
These methods are able to cover the majority of correlationsin the nuclear many-body system,
however, they are computationally demanding as well.

At the opposite end of the scale regarding the computationalcost and the ability the describe
correlations is the Hartree-Fock approach [92]. A simple Hartree-Fock calculation—based on
a single Slater determinant for the description of the ground state—can be done easily for any
isotope throughout the nuclear chart. Obviously, the Hartree-Fock approach does not allow for
the description of any correlations and, therefore, cannotprovide a quantitative approximation
for nuclear observables when using realistic nuclear interactions. It does, however, provide a
variational upper bound for the exact ground-state energy and as such can be used to assess the
qualitative systematics, e.g., of the binding energies as function of mass number, throughout the
whole nuclear chart. Furthermore, the Hartree-Fock solution can serve as a starting point for
improved approximations that take the missing correlations into account. In the simplest case,
low-order many-body perturbation theory can be used to estimate the effect of correlations on
the energy or other observables. Alternative methods for the inclusion of correlations beyond
Hartree-Fock, such as ring-, ladder-, or Padé-resummed perturbation theory [93, 94] as well as
Brueckner-Hartree-Fock schemes and Green’s function methods [95, 96] are also feasible. The
Hartree-Fock or the corresponding Hartree-Fock-Bogoliubov [97, 98] solutions also form the basis
for the description of collective excitations in the Random Phase Approximation at different orders
[52, 99, 100].

In the following we will use the Hartree-Fock scheme as well as second-order many-body
perturbation theory to study the systematics of binding energies and charge radii resulting from
the UCOM- and SRG-transformed interactions. The aim is not to provide a precise prediction of
the ground state energy for heavy nuclei, but to assess the systematic behavior of the transformed
two-body interactions with increasing mass number.

5.1. Hartree-Fock with UCOM- and SRG-transformed interactions

In the simplest formulation of a Hartree-Fock (HF) scheme, the many-body state is approxi-
mated by a single Slater determinant

|HF〉 = |Φ[ν]〉 = A ( |φν1〉 ⊗ |φν2〉 ⊗ · · · ⊗ |φνA〉), (126)

whereA is the antisymmetrization operator acting on anA-body product state. The single-particle
states|φν〉 are used as variational degrees of freedom in a minimizationof the expectation value
of the many-body Hamiltonian. The formal variational solution of the many-body problem using

61



the trial state (126) leads to the well known HF equations forthe single-particle states, which have
to be solved self-consistently [92, 101].

The Hamiltonian itself is the same as it was used in Sec. 4 for the NCSM calculations. It
consists of the intrinsic kinetic energy Tint = T − Tcm and the transformed two-body interaction
VNN including Coulomb and charge-dependent terms

Hint = T − Tcm+ VNN = Tint + VNN , (127)

Unlike the NCSM, the use of this translational invariant Hamiltonian does not guarantee that the
HF ground state is free of spurious center-of-mass contaminations. The Slater determinant form of
the many-body state does not allow a separation of intrinsicand center-of-mass motion for general
single-particle states. However, for the purpose of the present discussion, the effect of center-of-
mass contaminations on the ground-state energy is irrelevant. A more stringent but computation-
ally expensive treatment of the center-of-mass problem would require an explicit center-of-mass
projection [102, 103].

We formulate the HF scheme in a basis representation using harmonic oscillator single-particle
states. Thus the matrix elements entering HF equations are the same as in the NCSM calculations
of Sec. 4. The HF single particle states|φν〉 are written as

|φν〉 = |αl jmmt〉 =
∑

n

C(αl jmmt)
n |nl jmmt〉 , (128)

where |nl jmmt〉 denotes a harmonic oscillator single-particle state with radial quantum numbern,
orbital angular momentuml, total angular momentumj with projectionm, and isospin projection
quantum numbermt. Assuming spherical symmetry, only oscillator states withthe same quantum
numbersl, j, andm can contribute in the expansion. In the following, we will restrict ourselves
to constrained or closed-shell calculations, whereC(αl jmmt)

n = C(αl jmt)
n is independent ofm. The

details of the resulting HF equations for the expansion coefficientsC(αl jmt)
n and of their solution are

discussed in Ref. [101].
Within the HF approximation, we consider the ground-state energies and the charge radii for

a sequence of nuclei with closedj-shells from4He to208Pb using the different UCOM- and SRG-
transformed interactions adopted in Sec. 4. For these calculations the harmonic oscillator single-
particle basis includes 15 major shells, i.e., the sum in (128) is limited to 2n + l ≤ 14, which is
sufficient to guarantee full convergence of the HF states for all nuclei under consideration. We
use a sequence of oscillator lengthsaHO from 1.3 fm to 2.4 fm for the underlying oscillator basis.
In accord with the variational principle, we adopt the valueof the oscillator length that yields the
minimal ground-state energy, though, for the basis sizes used here, the energies and radii obtained
on the HF level are largely independent of the oscillator length.

A summary of the HF ground-state energies and charge radii obtained with the UCOM and
SRG-transformed potentials is given in Fig. 29. Here we adoptthe UCOM-correlators obtained
variationally and through the SRG-mapping with the range or flow parameters determined by
fitting to the experimental4He ground-state energy in converged NCSM calculations. Similarly,
the flow parameter for the SRG-evolved interaction is determined through the4He binding energy
(cf. Sec. 4.2). The HF approximation, therefore, yields similar results for the ground-state energy
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Figure 29: Ground-state energies per nucleon (a) and chargeradii (b) for a sequence of nuclei with closedj-shells
obtained at the Hartree-Fock level. The data sets correspond to UCOM(var.) interaction (�), the UCOM(SRG)
interaction (�), and the SRG interaction (�). The range or flow parameter of the different transformations is fixed
such that the experimental4He ground-state energy is reproduced in NCSM calculations (cf. Sec. 4.2). The black
bars indicate experimental values [104].

of 4He with all three interactions—UCOM(var.), UCOM(SRG), and SRG.However, the HF energy
is above the experimental and the converged NCSM ground-state energy, which is expected—the
single determinant describing the HF ground state corresponds to a 0~Ω NCSM eigenstate and
cannot describe any of the correlations that the NCSM model space will capture with increasing
model space sizeNmax~Ω.

With increasing mass number the behavior of the UCOM and the SRG-transformed interac-
tions differs dramatically. The UCOM interactions, both UCOM(var.) andUCOM(SRG), lead to
HF ground-state energies per nucleon that are of the order of4 or 5 MeV throughout the whole
mass range. Especially for the UCOM(var.) interaction thereis a practically constant offset of
about 4 MeV per nucleon between the HF energies and experiment. For the case of4He we know
from the NCSM calculations in Sec. 4 that the missing binding energy resides in correlation en-
ergy, because the same effective interaction reproduced the experimental values in large model
spaces. We expect that the inclusion of correlations beyondHF will also lower the ground-state
energies of the heavier nuclei and bring them closer to experiment.

The SRG-transformed interaction exhibits a very different trend: The HF binding energy per
nucleon increases rapidly with increasing mass number. Already for intermediate masses, the HF
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energy drops below the experimental ground-state energy. Given that the HF energy gives an upper
bound for the exact energy eigenvalue of the Hamiltonian, this discrepancy cannot be remedied
through the inclusion of beyond-HF correlations, but hintsat the induced many-body forces (see
discussion in Secs. 1 and 2.6 that are left out in this calculation. In the SRG they have an over-all
repulsive effect.

This intrinsic difference between UCOM and SRG interactions is also reflected in the charge
radii depicted in Fig. 29(b). The charge radii obtained withthe UCOM interaction show a sys-
tematic deviation form the experimental trend. The predicted radii are too small and the difference
to experiment increases linearly with increasing mass number reaching a deviation of about 1 fm
for 208Pb. For the SRG interaction, the deviation is even more pronounced, the radius of208Pb is
underestimated by about 2 fm.

There are two main differences between the UCOM-transformed and the SRG-transformed
two-body interactions which cause the different behavior when going to heavier nuclei: (i) The
UCOM interactions use a unitary transformation that is optimized to account for short-range cor-
relations in the lowest partial wave of each spin-isospin channel only. Thus, higher partial waves,
whose impact grows with increasing mass number, are not pre-diagonalized in an optimal way
by the UCOM transformation. However, because the wave functions for largerL are suppressed
at short distances by the centrifugal barrier, this is a minor effect. The SRG transformation, in
contrast, handles each partial wave separately and thus leads to an optimal pre-diagonalization
for all. (ii ) Even for the lowest partial waves the UCOM transformation does not provide the
same perfect pre-diagonalization in the high-momentum sector as the SRG transformation, as dis-
cussed in Sec. 3.7. The residual off-diagonal high-momentum matrix elements together with the
less pronounced pre-diagonalization of the higher partialwaves stabilize the UCOM interactions
against the overbinding observed in the SRG calculations. Onthe other hand this leads to slower
convergence of the UCOM interactions as compared to the SRG.

One can view the difference between SRG and UCOM from yet another perspective. Both
approaches use a unitary transformation, which preserves the eigenvalues of the Hamiltonian in
many-body space, provided the transformation is done without any additional truncations. How-
ever, here we use the cluster expansion and truncate at two-body level, i.e., we discard all the
induced many-body forces. Thus, if we observe a systematic difference in an exact many-body
calculation using two-body part of the transformed interactions only, we can conclude that the
omitted many-body forces behave systematically different in SRG and UCOM, because the trans-
formed Hamiltonians in their complete form inA-body space have to yield the same result. In
this view, the simplistic HF calculations already show thatthe induced three-body and many-body
interactions in the SRG framework must have a much larger net effect on binding energies and
wave functions—and thus on radii—than in the UCOM framework.

5.2. Low-order many-body perturbation theory

The simplest way to estimate the effect of correlations beyond HF is low-order many-body
perturbation theory. Many-body perturbation theory (MBPT)starting from the HF solution is a
standard technique in many fields of quantum many-body physics, ranging from quantum chem-
istry [105] to nuclear physics [106, 107, 108, 109, 101, 94].It is straightforward to apply and
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Figure 30: Ground-state energies for a sequence of nuclei with closedj-shells obtained at the HF level (open symbols)
and in second-order MBPT (filled symbols) using the UCOM(var.) interaction. The different curves correspond to
different model spaces built from 11 (�), 13 (�), and 15 (�) major oscillator shells. The oscillator length for each
nucleus is chosen according to the HF root-mean-square radius (a) or according to the experimental charge radius (b).
The black bars indicate the experimental binding energies [104].

computationally simple, but has inherent limitations. It is well known that the convergence of suc-
cessive orders of perturbation theory is not guaranteed, onthe contrary [110, 94]. Nevertheless,
low-order MBPT provides at least a qualitative measure for the effect of correlations beyond HF.

We will restrict ourselves to second-order calculations for an order-of-magnitude estimate of
the correlation energy, i.e., the change in the ground-state energy resulting from beyond-HF cor-
relations. The second order contribution involves antisymmetrized two-body matrix elements of
the intrinsic Hamiltonian Hint containing two HF single-particle states below the Fermi energy
(denoted byν, ν′) and two HF single-particle states above the Fermi energy (denoted byµ, µ′):

E(2) =
1
4

<ǫF∑

ν,ν′

>ǫF∑

µ,µ′

|〈φνφν′ |Hint |φµφµ′〉|2

ǫν + ǫν′ − ǫµ − ǫµ′
. (129)

Note that the full two-body part of the many-body Hamiltonian enters, which includes the intrinsic
kinetic energy in our case.

The starting point for the evaluation of the correlation energy via perturbation theory is the
HF solution yielding a finite set of single-particle states|φν〉 and the corresponding single-particle
energiesǫν for the respective nucleus. As discussed before, we use the oscillator basis including a
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Figure 31: Ground-state energies for a sequence of nuclei with closedj-shells obtained at the HF level (open symbols)
and in second-order MBPT (filled symbols) using the UCOM(SRG) interaction. The different curves correspond to
different model spaces built from 11 (�), 13 (�), and 15 (�) major oscillator shells. The oscillator length for each
nucleus is chosen according to the HF root-mean-square radius (a) or according to the experimental charge radius (b).
The black bars indicate the experimental binding energies [104].

certain number of major shells for a specific oscillator length. Because perturbation theory is not a
variational approach, we cannot use variational argumentsto find an optimal oscillator length, but
have to resort to other prescriptions. We adopt two different schemes for choosing the oscillator
lengthaHO for each nucleus: Using either the root-mean-square radiuspredicted by the HF solution
or the experimental charge radius we optimize the oscillator length such that a naive shell-model
Slater determinant built from harmonic oscillator single-particle states approximately reproduces
the respective radius. Because the HF solutions for the UCOM interaction underestimate the
charge radii, the oscillator lengths obtained from the HF radius are smaller than the ones obtained
from the experimental radius.

The ground-state energies obtained by including the second-order MBPT contribution on top
of the HF energy are presented in Figs. 30 and 31 for the UCOM-transformed interactions with the
UCOM(var.) and the UCOM(SRG) correlators, respectively. The upper and lower panels in each
figure are obtained using the HF radii and the experimental radii, respectively, to fix the oscillator
length. For each case we show a sequence of calculations in model spaces consisting of 11, 13,
and 15 major oscillator shells in order to assess the convergence behavior. The HF energies are
fully converged and independent of the model space size. Thesecond-order MBPT estimate of
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the correlation energy (129) shows signatures of convergence only for light isotopes, for heavier
isotopes there still is a significant change of typically 0.5 MeV per nucleon when going from 13 to
15 shells. Uncertainties of a similar order of magnitude result from the dependence of the second-
order energy on the oscillator length, with decreasingaHO the second-order energy contribution
|E(2)| is increasing. Finally, one should keep in mind that second-order MBPT provides only a
crude approximation for the correlation energy. As shown inRef. [94] the deviations of the
second-order estimate to the exact eigenvalue in the same model space can be sizable.

Despite the uncertainties associated with the second-order MBPT calculation regarding con-
vergence, choice of the oscillator length, and quality of low-order MBPT as such, the results in
Figs. 30 and 31 prove that the correlations beyond HF cause anessentially constant shift of the
ground state energy per nucleon across the whole mass range.For the UCOM interactions, this
brings the ground state energies into the same regime as the experimental binding energies. The
over-all systematics of binding energies obtained with theUCOM interactions is in agreement with
experiment, already at the level of a pure two-body interaction. The role of three-body interactions
is reduced to providing corrections, e.g., regarding the charge radii, on top of an already reason-
able trend. For the standard SRG-transformed interactions the situation is different: The two-body
component alone cannot provide the correct systematics andthree-body interaction have to have a
strong impact on the binding-energy systematics already.
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6. Conclusion

The Unitary Correlation Operator Method (UCOM) provides a universal tool to account for
short-range interaction-induced correlations in the nuclear many-body problem. The correlations
can be either imprinted into many-body states that otherwise would not contain these correlations,
like Slater determinants, or they can be absorbed in effective operators that are defined through an
explicit similarity transformation. The effective interactions obtained in this way are well suited
for low-momentum Hilbert spaces, because, unlike bare interactions, they do not scatter strongly
to high momenta. UCOM is very transparent and intuitive as it explicitly introduces correlation
functions for the description of short-range central and tensor correlations. These correlation
functions play the role of variational degrees of freedom for the many-body states. We propose
two methods to find optimal correlation functions for a givenbare Hamiltonian: One is energy
minimization in two-body space; the other employs the closerelationship to the SRG approach,
which also aims at separating low- and high-momentum scales.

UCOM has been developed for both, matrix representation and operator representation. The
matrix representation in the harmonic oscillator basis is used for NCSM calculations2. We show
that binding energies and spectra converge much more rapidly with increasing size of the Hilbert
space when using effective UCOM-transformed interactions rather than the bare interaction. It
is even possible to do Hartree-Fock calculations and obtainbound nuclei throughout the nuclear
chart. We show that thisab initio Hartree-Fock method can only account for about half the binding
energy, the other half is correlation energy that cannot be obtained by a single Slater determinant.

Especially the operator representation of UCOM explains in avery transparent way, why strong
short-range correlations and long mean free path or the mean-field shell model are not contradict-
ing each other. There is a separation of length scales, well developed for the central correlations
and less well for the tensor correlations, which allows to renormalize the bare Hamiltonian to
an effective one appropriate for low-momentum Hilbert spaces. One might be tempted to be-
lieve that short-range correlations are not real, as soft phase-shift equivalent interactions with a
modified off-shell behavior describe the asymptotic properties of the two-nucleon system and are
successfully used for the description of many-body systems. However, short-range correlations
are revealed by the stiffness of nuclear matter against compression or the high-momentum tails of
nucleon momentum distributions that are presently gainingrenewed interest [48, 50, 111, 112].
Around the Fermi edge the momentum distributions differ from the mean-field ones also due to
long-range correlations that are not accounted for by UCOM. These correlations have to be treated
by configuration mixing.

As the short-range correlations are, to a large extend, state independent and can be treated
by a unitary transformation, one can work in the independent-particle basis using a transformed
Hamiltonian. Also electric and magnetic observables are seeing mainly the low-momentum nature
of the states and change little by the UCOM transformation. Anexception are Gamow-Teller
transitions, which are sensitive to tensor correlations. It is well known that a quenching of typically
0.8 occurs for Hilbert spaces that do not contain these correlations.

2The UCOM two-body matrix elements in the harmonic oscillator basis (relativeLS- or j j -coupling for various
frequencies and model-space sizes) suitable for no-core calculations are available from the authors upon request.
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It turns out that effects from UCOM-induced three-body interactions cancel to a certain extend
those from the original three-body force. The partial cancellation effect is not yet understood.
Heavier nuclei and the saturation properties of nuclear matter indicate that three-body forces can-
not be substituted completely. The short-range repulsion of the nuclear interaction is essential for
describing the correct saturation properties. In particular when increasing the density above twice
nuclear saturation density, the short-range repulsive correlations are expected to become so strong
that they cannot be treated anymore by a two-body approximation for the effective interaction.
From the above arguments it is clear that anyab initio treatment of nuclear matter at higher densi-
ties based on Slater determinants of single-particle planewaves demands a sophisticated effective
interaction with many-body forces.

The Unitary Correlation Operator Method has been formulatedin momentum representation,
in harmonic oscillator basis and in operator representation. The latter can be used in any represen-
tation for example in Fermionic Molecular Dynamics (FMD), which provides many-body Hilbert
spaces especially suited for cluster structures in nuclei (not discussed in this paper). UCOM is a
very versatile approach that provides effective interactions as well as the corresponding effective
operators.
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