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Abstract

Correlations play a crucial role in the nuclear many-bodybfam. We give an overview of
recent developments in nuclear structure theory aimindnatdiescription of these interaction-
induced correlations by unitary transformations. We foonghe Unitary Correlation Operator
Method (UCOM), which fers a very intuitive, universal and robust approach for téatent of
short-range correlations. We discuss the UCOM formalisnmetaitiand highlight the connections
to other methods for the description of short-range cadticgla and the construction offective
interactions. In particular, we juxtapose UCOM with the Samity Renormalization Group (SRG)
approach, which implements the unitary transformatiorheftlamiltonian through a very flexi-
ble flow-equation formulation. The UCOM- and SRG-transforrimgdractions are compared on
the level of matrix elements and in many-body calculatiorntiw the no-core shell model and
with Hartree-Fock plus perturbation theory for a varietynatlei and observables. These calcu-
lations provide a detailed picture of the similarities amedlences as well as the advantages and
limitations of unitary transformation methods.
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1. Introduction

Recent years have seen substantial progress in theoregtiabds describing the many-body
problem of low energy nuclear structure in@minitio senseAb initio means from the beginning,
without further assumptions or uncontrolled approxinragioAt present for a system of particles
interacting by the strong interaction, the most elementigrees of freedom are considered to
be the point-like quarks and gluons, whose dynamics is éerirom the Lagrangian of Quantum
Chromo Dynamics (QCD). However, in the low-energy regime QCBnoa be treated by per-
turbation theory because of the confinement phenomenon loWest bound states of QCD are
baryons and mesons, which are the natural degrees of freatltow energies. In a system at
very low energy, below about 50 MeV per baryon, only the pnadod neutron are left. Other
baryons like theA-resonance appear only as intermediate virtual excitatigklso the mesons,
among which the pions are the lightest ones, do not occurghpaeticles on their mass shell, but
may be regarded as bosons mediating the interaction amerigatijons.

Recent QCD lattice simulations [1] give hope that in the neturtuthe baryon-baryon inter-
action might be “measured” on the lattice withfistient precision. This would complement the
scattering data, which can give only indirect informationtbe interaction in form of the phase
shifts measured at large distances, where the particlestdateract anymore.

For proton and neutron precise scattering data exist thoat &b fit the parameters of nucleon-
nucleon potential models. Using global symmetries the fofrtine potential can be written as a
sum of central, spin-orbit, and tensor interactions. Reefits to scattering phase shifts reveal that
the nucleon-nucleon potential cannot be assumed to beitocabrdinate space, which means the
potential depends not only on the relative distance anddimeosientations but also on the relative
momentum. The minimal momentum dependence besides th@dpirterms is of2 type (as
in the Argonne V18 potential [2]) or terms likg@#V/(r) + V(r)d® (as in the Bonn AB potentials
[3]). Recent developments use the approximate chiral symyrivethe light quark sector of QCD
to establish for the nucleon-nucleon interaction a pestiob scheme in terms of diagrams con-
tributing to the so called chiral potentials [4, 5, 6]. By auglhigher-order terms to the expansion
they can be improved systematically. However, with inar@asiumber of contributions more
and more parameters have to be fixed by experimental data.g@aé advantage of the chiral
potentials is that two- and three-body forces are treatesboial footing.

The nuclear structure problem consists in solving thetaty many-body Scbdinger equa-
tion for A nucleons B N

H [¥h) = En [¥h) (1)

and in investigating the properties of tAebody eigenstates?n) by computing observable quan-
tities as expectation values or transition matrix elemefitse subset of the discrete eigenvalues
E, represents the excitation spectrum of a nucleus and canmbygared to data directly. The con-
tinuous part of the spectrum corresponds to scatteringsstahich usually have a rich resonance
structure.

As the Schodinger equations already indicates, solving the manypodblem requires two
main ingredients, the Hamiltonian H and a representatiothi®many-body eigenstatég,,) or a
basis in theA-body Hilbert space.



For more than about 6 particles Slater determinadts) provide the most convenient basis
for treating the many-body problem numerically. They areally constructed as eigenstates of
a one-body mean-field HamiltonianpHMatrix elements of one-, two-, or three-body operators
in A-body space can be calculated easily using an occupatiotemurapresentation. Modern
computers and numerical techniques can taéklsody Hilbert spaces dimensions up to about
10'°. These numbers are impressive but by far ndicient. The dilemma is that realistic nuclear
potentials, which fit the scattering data at low energy addde the high momentum components
observed in bound states of nuclei, possess a strong repusishort distances and a strong
tensor force. Figure 2 illustrates that for the Argonne ViBeptial. These properties of the
nuclear Hamiltonian induce short- and long-range coriaiatin the many-body eigenstaté,,).
Especially the short-range repulsive and tensor coraglatcannot be properly represented by
Slater determinants. The reason is that a Slater deterimigiam antisymmetrized product of
single-particle statesA antisymmetrization operator):

<€1’ 62’ cees é‘:Al(D[v]) =A ¢V1(§1) ¢v2(§2), s (PVA(‘fA)’ é‘:i = (Z’ ai, Ti) (2)

describing the motion of independent particles and as saohat describe correlations in the
relative distancesX( — X;) between particles. Of course, Slater determinants forronaptete
basis and thus can in principle represent any state. Howaseve show in Sec. 4 the number of
Slater determinants needed to describe the ground statexthades the short-range correlations
exceeds soon any numerically tractable numbe/Afor4. The Hamiltonian represented in Slater
determinants results in matrices with large matrix elemenen far & the diagonal. In physical
terms, in this basis the Hamiltonian scatters to very highgyH, eigenstates. Therefore, one
introduces anféective Hamiltonian based on the following concepts.

Common to many conventional derivations dfeetive Hamiltonians is that one first divides
the many-body Hilbert space into a so called P-space or nspaeke and a Q-space. The projection
operators P and @ 1— P are defined with the eigenstates of a Hamiltonignvich is usually a
one-body operator like kinetic energy or the harmonic testait Hamiltonian. One is then looking
for an dfective Hamiltonian K; that should have the same eigenvalkgss the full Hamiltonian
H

Her [Pn) = By [Dn) (3)

and its eigenstates should be contained in the model-spacthey can be represented as a finite
sum of H, eigenstates that span the P-space,

P-space

@) = PIDp) = > [0} (Ppy|Dp) - (4)
K

Therefore, Hy should not connect P- and Q-space (£®= 0. Usually one is satisfied with a few
low lying eigenvalues and eigenstates of Eq. (3) and regamkigher eigenstates as orthogonal
rest that carries less and less physics. Therefore, inipeachly the decoupling of the lowest
eigenstates is needed, i.8D,| HesQ = O for few low lying E,. A sharp separation between P-
and Q-space, as given in the mathematical definition of Bgig4lifficult to identify on physical
arguments anyhow.



As the P-space consists of many-body product states thabtdescribe short-range correla-
tions or high relative momentg it is regarded as a low-momentum Hilbert space. Sometimes o
also speaks of a low-energy Hilbert space, but here enefgssr® H, and its eigenvalues and not
to the true Hamiltonian H, which is the physical energy opmralo avoid confusion we prefer to
speak of low or high momentum states.

As a unitary transformation leaves eigenvalues invaridastjuite natural to perform a suitable
unitary transformation of the uncorrelated many-bodyest#b(,;) to another basi$dy,;), which
already includes correlations to a certain extent so that-tamiltonian matrix becomes more
band-diagonal and is not scattering to high momentum statgsore. Whenever many-body
states include short-range correlations we mark them bike the fully correlated eigenstates
|¥,,) of the Hamiltonian H which includes short-range repulsind gensor potentials.

In this contribution we discuss in depth the Unitary CorielatOperator Method (UCOM)
which tries to achieve this goal by an explicitly given unjtaperator that transforms the Hamil-
tonian and all other observables tfhestive operators that include th&exts of the short-range
correlations.

Before discussingfiective interactions in general and UCOM in particular, we \ddike to
address a few more general issues related to the nucleatipbtend éfective interactions.

1.1. Many-body potentials

In recent years it has become clear that the nuclear many{m@ilem needs at least three-
body forces to reproduce data withfcient precision

A A A
H:T[1]+Vﬁl]\l+vﬁg\lN+.H:ZTi+Zvij-l_ Z Vijk+---- (5)
i=1

j>i=1 k>j>i=1

An irreducible three-body potentiall§y,, is the remaining part of the Hamiltonian acting in three-
body space that cannot be described by a sum over one-baelyckémergies and two-body poten-
tials. Likewise, irreducible four-body potentials are teenaining parts of the Hamiltonian acting
in four-body space that cannot be described by a sum ovebbtelg-and three-body potentials and
so on.

A typical example of an irreducible or genuine three-bodyeptal is the Fujita-Miyazawa
interaction [7], which arises from the restriction to pnotand neutron as elementary degrees of
freedom. Due to the strong coupling with the pion, a nucleamlze converted into &-resonance,
which then has to decay back into a nucleon, because theyeofealge total system is not flicient
to produce aA on its mass shell. This intermediate virtual excitation a&¢ oontained in the
nucleonic Hilbert space, but igfectively already included in a two-body potential that igefitto
data. The left-hand graph displayed in Fig. 1, where the thiicleon is only a spectator, therefore,
is a contribution that makes the two-body potential &eaive one with respect to excluded
degrees of freedom from the nucleonic Hilbert space. Initifg4hand graph the pion is coupling
to a third nucleon. Thus this interaction cannot be writteraa €fective two-body potential. It
has to be seen as a genuine three-body potential.

Already from Fig. 1 it is obvious that two-body and three-pdorces cannot be treated inde-
pendently as they may originate from the same physical gedeurthermore, this simple example



Figure 1:A-resonance as intermediaté-shell excitation in a three-body system.

shows that omitting parts of the many-body Hilbert space dn@ in principle reachable with the
strong interaction leads tdfective operators and induces many-body forces. Tiezewill also
occur, and is of major concern, in the following sections wtiee nucleonic Hilbert space itself is
truncated to low-energy states.

1.2. Qf-shell properties

The elastic nucleon-nucleon scattering cross sectionpiesented in terms of phase shifts
and mixing angles as a function of energy. As cross sectiomsngasured far away from the
interaction region, these quantities give only indiredbimation about the nuclear forces and
cannot determine the potential in a unique way. In a statjoseattering state the two nucleons
have a sharp enerdy, and the modulus of the asymptotic relative momentyof the ingoing
wave has to come back on-shell to the same momeuwtumthe outgoing wave, both related to
the eigenenergy b, = ?/(2u).

In an interacting many-body system the total endfgyorresponding to an eigenstate of the
Hamiltonian is sharp but a pair of particles within the systeas neither a sharp relative energy
nor a sharp momentum. While they feel their mutual interactiey are also interacting with
other particles exchanging energy and momentum. Therdfeénteraction is tested forftierent
in- and outgoing momentg andq’ that are not connected by any on-shell relation. Studying
many-body systems will, therefore, give information onafteshell behavior of the nuclear force.

As we will see in Sec. 2 a unitary transformation that acty @tlshort distances and does
not dfect the asymptotic behavior, like the UCOM correlator, lsatiee phase shifts untouched
but creates a new potential that is not distinguishable fiimenoriginal one by measurements of
the elastic cross section. As one can devise an infinite nupflsich transformations, there are
infinitely many phase-shift equivalent potentials. Théssyever, difer in their df-shell behavior.
Therefore, scattering data will never be able to deterntieenticlear force uniquely. In Sec. 4 and
5 we show that phase-shift equivalent potentials wiffedent df-shell properties can produce very
different results when applied in many-body systems. One of fireduces with increasing mass
number a dramatic overbinding in a variational calculatwhere the calculated binding energy
is, anyhow, only an upper limit. In order to be sure that timeited Hilbert space used is not



the reason that the other potentials are not overbindingetisowe needs many-body approaches
models that can solve the many-body problem exactly for argitamiltonian.

One goal of modern nuclear structure theory is to disenéanglmuch as possible thé&-o
shell nature of the potential fronffects originating in the use of restricted many-body Hilbert
spaces. However, one should always keep in mind that in @aoyyhnot only in nuclear structure,
any interaction is anfeective low-momentum interaction in the sense that it is tocged for
the degrees of freedom and Hilbert space one is using. Witlea&sing momentum transfer one
always opens up new degrees of freedom not contained in igiearmodel space.

Exact benchmark calculations for the three- and four-bggyesn [8, 9, 10, 11, 12] were very
helpful in this respect. They also showed that three-bodgef® are needed, thoughffdrent
ones for diferent phase-shift equivalent two-body potentials. Fongxta the contribution to the
binding energy ofHe coming from three-body terms complementing the Argonh@ potential
are about 50% larger than those accompanying the CD Bonn @tgr8], see Fig. 21. The CD
Bonn potential has a softer short-range repulsion than thEBAUt contains a radial momentum
dependence which is absent in Argonne V180d&le and collaborators have shown in a quite
general way that f6-shell properties of two-body interactions can be tradesiresy three-body
forces [14]. We will encounter thigiect again when we perform the UCOM and SRG similarity
transformations of the Hamiltonian.

1.3. Hfective potentials

Besides the conceptual problems of deriving and defining tioéear interaction there is also
the already mentioned technical problem that the solutioih@ many-body Scliadinger equa-
tion (1) requires a representation of the many-body eigeest Since realistic nuclear interac-
tions induce various kinds of correlations, in particulaoi-range correlations, one possibility is
to work with many-body states that can represent the cdiwak In that case the main numerical
effort goes into calculating the matrix elements of the Hamila. Examples are the exact Fad-
deev and Faddeev-Yakubovsky equations for the 3- and 4-bgstem [15], the hyperspherical
harmonics basis [16], or the Green’s Function Monte Carldwe{GFMC) [17, 18, 19, 20, 21].
The other possibility is to represent the eigenstates ofHamiltonian with many-body basis
states|®r,;) which are chosen such that the numerid@be for calculating the matrix elements
(Dp| TH y,), (@pgl VEL [@p), (@l VEL 1@1,) of one-, two-, and three-body operators is min-
imized. In that respect the best choice are antisymmetpzeduct states (Slater determinants).
However, the strong short-range correlations induced alystee nuclear forces cannot be repre-
sented in a reasonable way by a product state basis. For &xtmagour-body systerfHe, when
represented in harmonic oscillator states, needs a tloeg Hilbert space of dimension more than
1C? to get a converged ground-state energy with the Argonne \61@pial, see Sec. 4. Therefore,
so called #ective interactions for truncated Hilbert spaces are tioed. At present there is no
other possibility for mass numbers larger than about 12.

1.4. Unitary approaches

In a product basis representation the nucleon-nucleoraictien scatters to energetically very
high-lying basis states. Or in other words, the short-raegelsive and tensor correlations imply
components in the many-body state with large relative maajemhich necessitate very large



many-body Hilbert spaces in order to accommodate the @tiwak in this basis. To still work with
the numerically convenient product basis one uses so cefllective interactions. Theflective
interaction should decouple the Hilbert space containiiglp Imomenta from the one with low
momenta, which can be represented more easily by prodiessta

The most straightforward and intuitive way is to considenaary transformation of the prod-
uct basis|®r,;) .

|Dpp) = U |Dpyp) (6)

to render the Hamiltonian matrix into a more diagonal forrhgamnecting low and high momenta.

The new basi$¢7[y]) should contain already the main properties of the shoigeaorrelations like
a depletion of the many-body wave function

(1,62, EADp)) With & = (X, 0, 71) (7)

whenever the distangg — X;| between two nucleons of the many-body system is within thgea
of the repulsive core of the interaction. Similarly theiirsgpd;, &; should be aligned witli; =
X — X; if their isospin is in theT = 0 configuration, because this correlation produces binding
energy, see Fig. 2.

This unitary transformation can be used to define fiacive Hamiltonian through the simi-
larity transformation

Het = UTHU = U'HU. . (8)

The unitary transformation fulfills the principal requirent formulated in Eq. (3) that the eigen-
values for the energy are invariant. Later approximati¢tmaifl be checked regarding this aspect.
Another advantage is that orthonormality relations betweigenstates of H or between basis
states are not changed.

 (Fal¥) = (Fr U ) = (Enl¥) = G
(Dl Dy = (Dpy| UTHU D) = (D[ D) = Sy 9)

Any unitary transformation can be written in terms of a heiamni generator G as
U=e'C. (10)

If G = Zlegj is a one-body operator no correlations are induced becaud®i case U=

H?zle‘igi just transforms each single-particle stateldy,;) independently. Therefore, the gen-
erator G has to be at least a two-body operator. This imghasthe unitary transformation of a
one-body operator [ yields [22, 23, 24].

U TRIU = TR T L T (11)
The transformation of a two-body operatogly
UT Vi U= VL + VL + VI + (12)

yields a new two-body operat®lZ, and additional operators of higher-order. Likewise a trans
formed three-body operator results in a new irreduciblegHyody operator with its higher-body



companions. Thé above the operators indicates théeets from short-range correlations are
now moved to the operators in the sense that the poté\rﬁ@ﬁs softer or less repulsive at short
distances than the originam. This “taming” of the potential comes at the expense of imhiicng
two-, three- and more-body terms originating from the kinehergy as well as from the potential.
The diferent contributions will be discussed and shown in Sec. 2.

An important message that holds for any method of deriviiigcéve interactions is that the
effective Hamiltonian contains irreducibiebody interactions, where goes in principle from 1
to A. For example, if we start from a Hamiltonian with two- andetebody forces like in Eq. (5),
we obtain _ -

U™ HU = T8 4 (T + VL) + (T + VL + VR + - (13)
The hope is to keep the> 2 body terms small in order to reduce the numericidre

One important advantage of formulating tHeeetive Hamiltonian through a unitary similarity
transformation is that any other observable B can and shmeiflansformed the same way. An
arbitrary matrix element of B between two eigenstates oHamiltonian can be written as

(ol B|¥m) = (Pl U'BU W) = (Pl Begr [P (14)
which implies the definition of B as
Ber = U'BU. (15)

Again By becomes a many-body operator even if B is an one-body opesste Eq. (11). In
section 2 and 3 approximations in the calculations gf&te introduced. The same approximations
can also be applied to calculatg;B

1.5. Jastrow ansatz

An early attempt to incorporate short-range correlationthe many-body state was proposed
by Jastrow [25, 26]

A
©,9) =S | | 17, 0,04, 7.7) [0 (16)

i<j
where in modern applications the Jastrow correlation fonstf contain besides the relative dis-
tancesrj = X; — Xj, also operators depending on spins and isospins to accounbfrelations
other than the short-range repulsion, like the tensoriakorfor distances;;| much larger than
the range of the interactiofrj;, . ..) approaches one. As the symmetrized product runs over all
particle pairs, the transformation from the uncorrelatades®) to the correlated®, J) is anA-
body operator, like in all other approaches. Even three lpydguctsf (X, Xj, X, ...) are being
used [17, 20, 26].

Although very intuitive, the Jastrow ansatz implies a hugmaerical éfort in calculating ex-
pectation values and matrix elements. Even the norf®of) cannot be calculated analytically.
As the transformation is not unitary, configuration mixiradaulations encounter even greater nu-
merical challenges.



1.6. Projective approaches

In the past and still nowadays man§extive interactions are based on projection methods. In
this case one is looking for arffective Hamiltonian that should have the same eigenvefﬁi%
the full Hamiltonian H and its eigenstates should be thegmtapns of the exact eigenstatpis,)
onto the model space:

P He [®) = E, @) and [@) = P [Fy) . (17)

To simplify the equations one writes the HamiltoniansHy + V and the &ective Hamiltonian
Het = Ho + Ve @s a sum of Bland a residual interaction V andyV respectively. The formal
solution for Hg that fulfills the requirement (17) is actually energy-degesmt and given by

Q

Veﬁ(E) =V + Vm

Ver(E) , (18)
where the energi has to be taken as the unknown eigenvddyef the full problem. This means
that each eigenstate in principle corresponds tdtar@int éfective Hamiltonian. As the @ierence
betweerk and eigenvalues of §that belong to the Q-space enters Eq. (18), the energy depead
will be weak if the lowest Q-space eigenvalue is far away ftbenconsidereé&,. Note that \(z(E)
in this equation is not restricted to the P-space but cosriecand Q-space. However, tHéegtive
interaction is actually PM(E)P. The full Vig(E) is needed when one calculates othfedive
observables (see below). Again Eg. (18) yields fiaative Hamiltonian that contains many-body
operators.

When solving this equation in two-body space one obtains thedkner G-matrix

q

G((,()) =V + Vm

Glw), (19)
where the choice of the starting energyand the Pauli projection operator g acting in two-body
space is not uniquely defined. After having solved the G-matuation (19) one uses &) in
the A-body space, which constitutes a low density approximation

Although Eq. (18) appears to be suited for a perturbatiomesgion, this is not possible if the
strong short-range correlations of the nuclear interadti@ve to be renormalized. At least infinite
partial summations are needed. The Brueckner G-matrix s &partial summation, namely over
the so called ladder diagrams.

Another task (often not considered) is that not only the Himmian should be transformed to
an dfective one, but also all other observables B such that

(On| Ber [Py (Pl PBeP [P

= = (P,|B|¥ 20
(D DY D| D)2~ (D | D)2 Dy | D) /2 (Fnl B ¥m) (20)

for the low lying many-body states of interest. This coulgimciple be done by using thebody
Bethe-Goldstone equation

Q

= ey

Ver(En)) [0n) , (21)
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which also follows from Eq. (17). It reconstructs the coatetl many-body statgP,) from its
projected parf®,) = P |¥,). When inserting Eq. (21) into Eq. (20) to obtain th&eetive op-
erator one does not need much imagination to see that thisather impracticable method and
susceptible to errors in approximations of the matrix eletmef Vg (E,) that connect P- and Q-
space. Within the G-matrix approximation one uses the gunalos Bethe-Goldstone equation,
where \i,¢(E) is replaced by Gg) andQ by g. The G-matrix method is not discussed further in
this contribution.

Unitary approaches are more transparent and not energydepe A unitary approach is
more robust as there is some freedom in the choice of U, be@alkg a few low lying eigenvalues
and eigenstates of RfP = PU'H UP are needed. A not so optimal choice of U can be compen-
sated by a larger P-space. Unitary approaches can everaggeddgctive interactions that are by
construction phase-shift equivalent with the originaénaiction.

1.7. Plan of the review

In Section 2, the concept of the Unitary Correlation OperMethod (UCOM) is laid out.
Central and tensor correlators are introduced and theirgptieg are illustrated with descriptive
examples. Section 3 discusses the relation to the SimyilRe@normalization Group (SRG) ap-
proach, which is more general, but in its application to aackfective interactions it is based on
the same physical assumptions. From SRG we deduce a set wlabptrrelation functions for
UCOM and compare the resultingfective low-momentum interactions. Section 4 steps into the
many-body Hilbert space using the No-Core Shell Model (NCSM)rbbe the fective interac-
tions developed in the preceding sections. Properties niisses, spectra, radii, magnetic dipole
and quadrupole moments, are investigated for nuclei wittsmamber# = 3—7. In Section 5 we
move on to nuclei along the whole nuclear chart by means dfitlreree-Fock approximation and
low-order many-body perturbation theory. We show that tiiW concept is very versatile not
only for the understanding of the nuclear many-body systerpiovides a general method to treat
short-range correlations in a quantitative way. We alsoudis evidence for missing three-body
forces or density dependences, which seem to be neededdio it correct nuclear saturation
properties for large systems. Finally we close with sumaiagi conclusions.
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Figure 2: Argonne V18 potential in th® = 1,T = 0 channel. The lower curve is obtained when the spins are
aligned parallel to the distance vector of two nucleons wagthe upper curve is obtained when the spins are oriented
perpendicular to the distance vector. This spin dependeint® potential is caused by the tensor force. The relative

momentung is chosen to be zero, therefore, the spin-orbit force doesartribute.

2. Unitary Correlation Operator Method (UCOM)

As discussed in the introduction, short-range central angdr correlations pose a major chal-
lenge for the solution of the nuclear many-body problem.sEheorrelations are induced by cor-
responding features of realistic nucleon-nucleon forbes are illustrated in Fig. 2, where the
Argonne V18 potential is plotted as a function of the diseaatthe nucleons and the orientation
of the spins relative to the distance vector. At short distarr < 0.5fm, the potential is strongly
repulsive, it has a repulsive “core” which induces shongeacentral correlations. At larger dis-
tances the potential shows a pronounced dependence onehe&ton of the spins. If the spins
are aligned perpendicular to the distance vector the patestalmost flat, whereas the potential
is attractive with a minimum at ~ 1.0 fm if the spins are aligned parallel to the distance vector.
This difference is caused by the tensor force, which originates ynfiorh the one-pion exchange
part of the potential.

In the Unitary Correlation Operator Method [27, 24, 23, 22Zjd¢é correlations are imprinted
into a many-body state by means of a unitary correlationatpecC:

W) =C |¥). (22)

Here the uncorrelated many-body stéte is a “simple” state that cannot represent the short-range
correlations. This can be a Hartree-Fock Slater deterrhimaa basis state of the No-Core Shell
Model.

Short-range correlations are important when the partictese close. If the density is low
enough, the probability for finding three nucleons withie ttorrelation volume defined by the
correlation range will be small. In that case the assumghahthe short-range correlations are of
two-body nature will be a good approximation. At nucleausation densityo = 0.17 fm the
mean distance between nucleons.Bffn while the repulsive core sets in around fin. There-
fore, we assume that the correlations are essentially ewignt of the environment and we use
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a state-independent ansatz for the correlation operatorhis implies that the short-range cor-
relations for low-lying states are very similar in all nuclérhe unitary correlation operator C
describing this transformation is given in an explicit agder form, independent of a particular
representation or model space. The correlation operatmtisiized for the lowest orbital angular
momentumL in each spin-isospin channel but it does not explicitly adepenlL. The UCOM
approach can, therefore, be also used in many-body apm@®dbht do not use basis states of
good angular momentum. Alternatively, one could defirfiedent correlation operators for each
partial-wave channel. In th&-wave UCOM approach proposed by Myo and Toki [28] only central
correlations inL = 0 channels are considered.

When calculating expectation values or matrix elements ofesoperator A we can either
evaluate the bare operator A in the correlated st@tesor we can use a correlated operagor
defined through a similarity transformation

A=C!ACc=C/AC (23)
with the uncorrelated states.
(FIA ') = (P|CTAC V') = (P|A|Y) . (24)

Due to the unitarity of C, the notions of correlated states @rdelated operators are equivalent
and we may choose the form that is technically more advaategge
In the case of the nuclear many-body problem, the unitametation operator C has to account
for short-range central and tensor correlations as exgdbabove. In the UCOM approach we
explicitly disentangle these fikerent types of correlations and define the correlation apees a
product of two unitary operators,
C=CoC, (25)

where G, describes short-range tensor correlations apdebtral correlations. Each of these
unitary operators is expressed with hermitian two-bodyegators

CQ:exd—ingj], Cr:exd—iZgr,ij]. (26)

i<] i<j

The details of the generators gnd @, will depend on the particular nucleon-nucleon interaction
under consideration.

2.1. Central correlations

The central correlations are induced by the repulsive cbtieeocentral part of the interaction
which tries to keep the nucleons apart from each other. Thebiwdy density in the correlated
many-body state will be strongly suppressed at short iatéighe distances, i.e. in the range of
the repulsive core, and it will be enhanced at larger diganwhere the potential is attractive.
This can be achieved by a distance-dependent shift in taéwelave function for each pair of
nucleons. The generator § constructed such that it performs these shifts in a ynitey. The
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shifts are generated by the projection of the relative mdorenj = %[ﬁl — P2] onto the distance
vectorr = X; — X, of two nucleons:

a=3(-ard-) @7)

with r = |. The amplitude of the shift—large shifts at small distaneghkin the core, small or no
shifts outside the core—is described by a functsgr(r) for each spin-isospin channel. The de-
tailed form of the functiorss+(r) will depend on the potential. Its determination will bealissed
in detail in Sec. 2.5. The full generator for the central etations is written in a hermitized form
as
1

O = ; E[Qr Ss1(r) + sst(r) o] s, (28)
wherellst is the projection operator onto two-body s@rand isospifl . Similar generators were
already used by Ristig et al. [29, 30, 31] for the descriptibthe central correlations induced by
hard-core potentials.

2.2. Tensor correlations

The correlations induced by the tensor force entangle tieatation of the spins with the spa-
tial distribution of the nucleons to optimize the contributof the tensor force. We construct the
tensor correlation operator in such a way that it will only@ethe orbital part of the relative wave
function of two nucleons. This can be achieved by using dmby/“orbital part’d, of the relative
momentum operator, which is obtained by subtracting thekgadrt of the relative momentum
operator (used in the generator for the central correlg}ibom the full relative momentum oper-
ator

r 1 - .
Go=d- - =5 (CxP-rxD) (29)

with C = Px d. Like the tensor operatorlgqf, F) in the tensor force, the generator for the tensor
correlations is the scalar product of an operator of ranké@aordinate space (constructed from the
relative distance vecta@tand the “orbital momentum,) with the operator of rank 2 in spin-space
[23]. As for the central correlator the amplitude of the &hivill depend on the distance of the
nucleons and the potential under consideration. The amalglits given by the tensor correlation
functiond+(r). In cartesian notation we can write the full generator as

Oa = Z B7(r) S12(T, do) Mar (30)
T

using the general definition for a tensor operator of rank 2

S12(8 b) = 3[(¢1- &)(@2- B) + (¢1- B)(@,- &)] - 3(¢*1-F2)(@- B+ b - &). (31)
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2.3. Correlated wave functions

As explained above, because the correlation operator abtoo the relative motion of a nu-
cleon pair, the center-of-mass motion of the nucleon paiotsatfected. When discussing corre-
lated two-body wave functions we can, therefore, restuicselves to the relative wave functions.
For the uncorrelated relative wave function we assueoupled angular momentum eigenstates
[p(LS)IJM T Mr) with the radial wave functiog(r). The correlation operators do not depend on
M and My and we will omit these quantum numbers in the following.

The central correlator C= exp(-ig,) affects only the radial part of the wave function and
leaves the orbital part of the wave function and the spin aasdin unchanged. In coordinate rep-
resentation the correlated wave function can be rewrittea @morm-conserving coordinate trans-
formation [22]

FUSITIC L)) = O VR R (o

:

LTI Ia0S)IT) = B R a(R(r)ou
whereR, (r) andR_(r) are mutually inverseR.(R:(r)) = r. The correlation functionR,(r) and
R_(r) are related to the functios(r) used in the generator (28) through the integral equation

Wk (33)

o S(9)

For illustrative purposes the correlation functions camapproximated aR.(r) ~ r + s(r).

In the LS-coupled basis the application of the tensor correlatgrc@n be expressed easily.
The tensor operator; &7, o) used in the generator has onlff-diagonal matrix elements in the
LS-coupled basis

(32)

(I £ 1,1)ITIS12(F, do) I(J F 1, 1)IT) = +3i4/IT + 1) . (34)

Within a subspace of fixed one can, therefore, calculate the matrix exponential and the
matrix elements of the full tensor correlatos.C
The tensor correlation operator will have niieet for states with. = J, whereas states with
L = J = 1 will be connected to states with= J ¥ 1. The strength of the mixing is governed by
o(r)
o(r) L'=L=1J
(r(L’S)JT| Cq [#(LS)IT) =3cost(r)¢(r) ;L'=L=J=+1 , (35)
+sing;(Ne¢(r) ;L'=J+1L=JF1
where we use the abbreviation
0;(r) = 34/I(J + 1) ¥(r) . (36)
Combining central and tensor correlations we end up with tfleviing expression for the
fully correlated wave function in coordinate space:

B0 R(r) (R (1)) L=L=J
(r(L'S)IT|CaCr I¢(LS)IT) = { cosdy (N EL VRN ¢(R(1)) ;L' =L=J=1 . (37)

+sing; (N2 VRN ¢(R(r)) ;L' =J=1LL=J%1
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Figure 3: Central and tensor correlations in the deuteranigél. Starting from an uncorrelated trial wave function (a
first the central (b) and then also the tensor correlated fuawvaions (c) are shown together with the corresponding
central (d) and tensor correlation functions (e).

The wave function in momentum space can be obtained by Fdraresformation of the coor-
dinate space wave function (37)

(q(L’S)IT|CaC; [¢(LS)IT) = \Ei” f drr2ju (gr)(r(L’S)JIT| CaCr [¢(LS)IT) , (38)

where we use momentum eigenstates normaliz€d&s)JT|q' (L'S)JT) = q—lzé(q —q)dLL.

The deuteron wave function provides an illuminating exanfipi the role of central and tensor
correlations. We will start from an uncorrelated statg(LS)JT) = |¢o(01)10, which is a pure
S-wave state with the spin-isospin quantum numbers of théeden. The radial wave function
¢o(r) shall not contain short-range correlations induced byréipeilsive core. Figure 3 shows the
uncorrelated. = 0 radial wave function. Applying the central correlatgr\th the correlation
functionR,(r) leads to a wave function with a correlation hole at shodnparticle distances. The
application of the tensor correlation operatqf i@ a second step generates thavave compo-
nent in the wave function, which depends on the tensor @airoel functiond(r). If we assume
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an uncorrelated wave function that is pur8hwave, the entir®-wave component has to be gen-
erated by the tensor correlator. This can be achieved uswegydong-ranged tensor correlation
function (as given by the dashed curves in Fig. 3). But thisigime idea of the unitary correlation
operator method, where we only want to describe the stakependent short-range correlations
by means of the correlation operators. Long-range corogisit like those governing the outer
part of the deuteron wave function, should be described@tplby the many-body approach.
The solid curves show the-wave component obtained with such a short-range tensozlatwr
(1, = 0.09 fm® as discussed in Sec. 2.5).

2.4. Correlated operators

Correlated Hamiltonian — Central Correlations

In the two-body system the unitary transformation with tleatcal correlator Ccan be ex-
pressed analytically for any operator that can be writtea &sction of relative distanceand
relative momentung;.

The most important example is a Hamiltonian consisting oelc energy and a realistic
nucleon-nucleon interaction given in a generic operatanfo

v-X 21V,(1)0p + OpVg(r)] (39)

with
Op = {1, (¢4-0%), Q. QA(4-0%), L2, L3(d41-G2),
(C-3) S D), Sl D) el (7-B).

Here we only consider non-local terms up to quadratic moarerntependence. Such terms appear,
e.g., in the Nijmegen [32] or operator representations @Bbnn AB potentials [3]. A quadratic
momentum dependence of the fogihcan be expressed by thg and L2 terms contained in (39).
Charge dependent terms in the interaction are not explididgussed, but are included in the
calculation of matrix elements and the many-body calcoietibased on them.

For the formulation of the correlated Hamiltonian in twodgcspace, we start with an initial
Hamiltonian given by

(40)

where we have decomposed the kinetic energy operator T ioémizr of mass contributione
and an intrinsic contribution;J which in turn is written as a sum of a radial and an angular part

1, 1 [2
Tr:qu, TQ:Zr—Z.

Applying the central correlator,Gn two-body space leads to a correlated Hamiltonian cangist
of the one-body kinetic energy T and two-body contributitorshe correlated radial and angular

(42)
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relative kinetic energyT!”! and T, respectively, as well as the correlated two-body intévact
Vi
CIHC =T+ T +TE + VB, (43)
The explicit operator form of the correlated terms can bévddrfrom a few basic identities. The
unitary transformation for the relative distance operatagsults in the operator-valued function
R.() |
CrG =R(r). (44)

Because of the unitarity of the correlation operatpa@ arbitrary function of r transforms as
Ci (NG = f(C/rC) = f(R.(1) . (45)

The interpretation of the unitary transformation in termi@morm-conserving coordinate trans-
formationr — R,(r) is evident. For the radial momentum operatproge finds the following
correlated form [22]

1 1
CT qr Cr = qr . (46)
r NCAGEERVGAG)
With this we can express qvhich enters the radial part of the relative kinetic energy a
1 1 1
T N2 _ 2 2
CI’ O CI’ - E(qr R;(r)z + Q+(|’)2 qr) + W(r) ’ (47)

which consists of a transformed momentum dependence pladditional local term depending
only on the correlation functioR, (r)

TR RIO)

WO = IRy T 2R

(48)

All other basic operators, such RS, (E . §), SZ(F, F) commute with the correlation operatoy C
and are, therefore, unchanged by the central correlations.

Based on these elementary relations we can explicitly coctstine two-body contributions to
the correlated kinetic energy. For the radial part we ohltging (47)

1 N 1
2ur(r)  2ue(r)

— . 1 1
T =CTC T = 5(f o) + 2, ) (49)

with a distance-dependentective mass term
1 _i(l 1)
2u(r) 21 R(r)?

The two-body contribution to the correlated angular parthef kinetic energy involves only the
basic relation (46) and gives

(50)

1 [2
2u0(r) r?

TE = CITaCr —To = (51)
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with a distance-dependent angul#fieetive mass term

1 1, r?
2~ 2R Y

The momentum dependent terms of the nucleon-nucleon atil@ng39) transform in a similar
manner like the kinetic energy. Using (46) and (47) we obtain

2V(R.(1) V(R+(r))qz
CR()? R

(52)

RI(r)

)+V(R.(1) W() -V (R s -

(53)

Gl S(@VIO+VOP) = oo

For all other terms of the NN-interaction (39) the opera@gsommute with the generator gnd
we only have to transform the radial dependencies

Cl V(r)O, C; = V(R.(r)) Op . (54)

Many of the other relevant operators, e.g. the quadratimisadr transition operators, can be
transformed just as easily.

Correlated Hamiltonian — Tensor Correlations
The transformation of the Hamiltonian with the tensor clatien operator @ is more in-
volved. In general, it can be evaluated via the Baker-Camyptelisdoft expansion

. . i2
CLACq=A+i[ga. Al + E[QQ, [Ga,All +--- . (55)

In some cases the series expansion will terminate afterta fimimber of terms. A trivial case is
the distance operator r, which commutes with the tensorrgérreg, and is thus unchanged by
the transformation

CirCo=r. (56)

For the radial momentum operatgr, the expansion (55) terminates after the first order commuta
tors and we obtain the simple expression

CZ) O Co =0 - ﬁ/(r) S12(?’ qQ) . (57)

For the tensor correlated quadratic radial momentum opetla¢ series terminates after the first
two terms and we obtain

Co 0 Ca = o = [9'(1) & + 0 #' (1] S12(F, Go) + [ (1) Sia(F, Go)]? (58)

where S5(7,da)? = 9[S* + 3(L - S) + (L - SP|. By applying the tensor correlator to the kinetic
energy we have generated momentum-dependent tensoramgasatwell as “conventional” spin-
orbit and tensor terms (from the (§)2 term). The correlated kinetic energy is no longer a central
operator.
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For all other operators of the interaction (39) that depem@mgular momentum, the Baker-
Campbell-Hausddi series does not terminate. Through the commutators additiensor opera-
tors are generated. At first order we obtain

[90, Si2(5, D] = i9(r)[~2411; — 18 € - S)+ 3S»(%, 1]
[0, (C - S)] = i)~ S12(d, Go)]
[90, L?] = i9()[2 S12(Ga, do)]

[0, Si2(C, D)] = i9(N)[7 Sia(Ce. do)]
where we use the abbreviation

S12(fa, do) = 2P7S12(Ga, Ga) + Sia(L, L) — 2 Sia(5, 1) (60)

The next order generates terms of higher order in orbitall@ngnomentum, e.g., EZ(E . §)
term. In practice we have to truncate the Baker-Campbell-gtatfsexpansion to some finite set
of operators [24]. In principle the contributions of the Inég-order operators will become more
important with increasing angular momenta. On the othedltlae contributions of the correlated
Hamiltonian, which are of short range, will be overwhelmadititre centrifugal barrier from the
one-body kinetic energy for large angular momenta.

Note that matrix elements of the correlated Hamiltoniamgisingular momentum eigenstates
are calculated by applying the tensor correlation operatto the basis states (see Sec. 2.3), which
does not require approximations.

(59)

2.5. Optimal correlation functions

The central and tensor correlators depend on the correlatiationss(r) andd(r) in the dif-
ferent spin- and isospin-channels. We now have to deterthiege correlation functions for a
given nuleon-nucleon potential. One important questioat as already raised in the discussion
of the deuteron wave function, is the separation betwedn-stdependent short-range correla-
tions, which we want to describe by the correlation operadod long-range correlations that
should be described explicitly by the many-body approach.

The most convenient procedure to determine the correlétioctions is based on an energy
minimization in the two-body system [27, 23]. For each camation of spinS and isospinl we
compute the expectation value of the correlated energygwsinal state with the lowest possible
orbital angular momenturh. The uncorrelated radial wave function should not contay af
the short-range correlations, i.e., it should resembleskioet-range behavior of a non-interacting
system. In the following we will use a free zero-energy sraty solutiong, (r) « rt. Other un-
correlated trial wave functions, e.g. harmonic oscillaigrenfunctions, give very similar results.

For practical reasons the correlation functions are reptesl by parametrizations with typ-
ically three variational parameters. The drdp-@an be well-described by a double-exponential
decay with variable range. For the short-range behaviograédiferent parametrizations have
been compared. For the Argonne V18 potential, the follovwngparametrizations for the central
correlation functions have proven appropriate:

R.(r) =1+ a(r/B)" exp[-exp(/B)] ,

el (61)
L(r) =1 + a1 - explr/y)lexp[-exp(/p)] -
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T | Param.| o [fm] B[fm] y [fm] n

0 1] 0.7971 1.2638 0.4621 —
1 | 1.3793 0.8853 — 0.3724
0
1

I 1.3265 0.8342 — 0.4471
Il 0.5665 1.3888 0.1786 —

R, OOoOW

Table 1: Parameters of the central correlation functiR(s) specified in (61) for the Argonne V18 potential obtained
from two-body energy minimization.

Which of these parametrizations is best suited for a padiahannel will be decided on the basis
of the minimal energy alone. All parametrizations allowyoouitward shifts by construction. This
is different from the correlation functions that are obtained leySRG mapping procedure (see
Sec. 3.6). For the tensor correlation functions the follmyyarametrization is used

9(r) = a[1 - exp(r/y)lexp[-exp/B)] . (62)

The S = 0 channels are onlyfieected by the central correlators. Their parameters are de-
termined by minimizing the energy for the lowest possibleitai angular momentum state, i.e.,
L=1forT =0andL =0forT = 1, respectively,

Eoo = (¢1(10)1Q C{ Hiy; C; [41(10)10 ,
Eo1 = (¢0(00)01 C! Hit C; |¢90(00)0) .

ForS =0, T = 1 the minimization ofEy; by variation of the parameters of the central correlation
function is straightforward. The resulting parameterssamramarized in Table 1. F&=0,T =0

the potential is purely repulsive and, therefore, the gnerigimization leads to central correlation
functions of very long range. In order to avoid this pathglage employ a constraint on the
strength of the correlation function given by

lg, = fdrrz(R+(r)—r). (64)

The value of this constraint on the central correlation fiomcfor theS = 0, T = 0 channel is
fixed tolg, = 0.1fm*in accordance with typical values in other channels.

ForS = 1 we also have to consider tensor correlations and the péeesiod the central and the
tensor correlation functions have to determined simuttasly. ForT = O the energy is defined
by the matrix element with = O states

E10 = (¢0(01)1Q C/C, Hint CaC; Ip0(01)10 . (65)

In the T = 1 channel the lowest possible orbital angular momentuin is 1. From angular
momentum coupling we obtain 0, and 2 as possible values fdr Therefore, we define the
energy functional used for the minimization procedure bsraging over the angles, which is the
sum over all three possibilities with relative weights givey 2J + 1
Ei1 = $(#1(11)01 C/ Hin C; ¢p2(11)0D)
+ 3($1(11)11 Cf Hint Cr [2(11)1D) (66)
+ 2(¢1(11)23 C/C, Hint CaCy |$2(11)21) .

(63)
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Figure 4: Optimal central correlation functioRs(r) — r for the Argonne V18 potential according to the parameters
given in Tab. 1. The curves correspond to thedent spin-isospin channelS:= 0, T =1(—-—),S=1T =0
( ), S=0,T=0(---- ),andS=1T=1(-—-).

T=0 T=1
lp[fm%] @ BIm]  y[fm] [1p[m%] o  Blm] y[fm]

0.03 491.32 0.9793 10000 -0.01 -0.1036 1.5869 3.4426
0.04 521.60 1.0367 10000 -0.02 -0.0815 1.9057 2.4204
0.05 539.86 1.0868 10000 -0.03 -0.0569 2.1874 1.4761
0.06 542,79 1.1360 10000 -0.04 -0.0528 2.3876 1.2610
0.07 543.21 1.1804 10000 -0.05 -0.0463 2.6004 0.9983
0.08 541.29 1.2215 10000 -0.06 -0.0420 2.7984 0.8141
0.09 536.67 1.2608 10000 -0.07 -0.0389 2.9840 0.6643

0

0

0

0

0

0.10 531.03 1.2978 10000 -0.08 -0.0377 3.1414 0.6115
0.11 524.46 1.3333 10000 -0.09 -0.0364 3.2925 0.5473
0.12 517.40 1.3672 10000 -0.10 -0.0353 3.4349 0.4997
0.15 495.99 1.4610 1000.
0.20 450.67 1.6081 1000.
0.30 408.40 1.8240 1000.0

Table 2: Parameters of the tensor correlation functitinsdefined in (62) for the Argonne V18 potential witHidirent
valuesly for the range constraint obtained from two-body energy mination.
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As mentioned earlier, the long-range character of the teimsoe leads to long-range tensor
correlations. However, long-range tensor correlatiorcfioms are not desirable for several rea-
sons: {) The optimal long-range behavior would be strongly stapeshdent. Therefore, our goal
of extracting the state-independent, universal cor@tatforbids long-range correlation functions.
(i) The two-body approximation would not be applicable forgamange correlators.ii() Effec-
tively, higher order contributions of the cluster expandead to a screening of long-range tensor
correlations between two nucleons through the presencthef aucleons within the correlation
range [24]. For these reasons, we constrain the range oéftfseit correlation functions in our
variational procedure. We use the following integral coaist on the “volume” of the tensor

correlation functions
ly = fdrr2 I(r) .

The constrained energy minimization for tBe= 1, T = 0 and theS = 1, T = 1 channels with
different values of the tensor correlation voluigpéeads to optimal parameters reported in Table
2. The optimal parameters for the central correlation fianst change only marginally with the
tensor constraint. Therefore, we adopt a fixed set of paes&ir the central correlators given in
Table 1.

The optimal central correlation functions for the Argonn&8\potential are shown in Fig. 4.
In the even channels, the correlation functions decregselyaand vanish beyond~ 1.5fm. The
central correlators in the odd channels are weaker andgbftsfilonger range due to the influence
of the centrifugal barrier. For the tensor correlation fimts the constraints on the range are
important. Fig. 5 shows the triplet-even (a) and triplettgl) tensor correlation function#(r)
for differently. Because the tensor interaction is significantly weakefffer 1 than forT = 0O,
the tensor correlator for this channel has a much smalletitutde. The relevant values for the
constraintly are therefore smaller for the triplet-odd channel.

We stress that the range constraint for the tensor comal&tinctions has an important phys-
ical and conceptual background. The unitary correlatioarafpr method is used to describe
state-independent short-range correlations only. L@amgie correlations of any kind have to be

(67)
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described by the model space employed in the solution of #rgyAody problem. By constrain-
ing the range of the tensor correlators we introduce a separscale between short-range and
long-range correlations. The optimal value for tensor traists cannot be fixed in the two-body
system alone, but requires input from few-nucleon syste¥is.will come back to this point in
Sec. 4.

2.6. Cluster expansion

The similarity transformation (23) of an operator A givesaarelated operator that contains
irreducible contributions of higher orders in particle muenas given by the cluster expansion

A=CAC =AM+ AR AD 4 ... (68)

whereAl" denotes the irreducible-body part [22]. For &-body operator A there will only be
contributionsAl" with n > k. For the correlated Hamiltonian we will, therefore, havena-body
contribution (from the kinetic energy), a two-body contrtilon (two-body part of the correlated
kinetic energy and correlated two-body potential), thipeedy contributions and so on.

In practice it will not be possible to evaluate matrix elensent the correlated operators to all
orders. The importance of the higher-order terms dependseorange of the central and tensor
correlations [24, 23, 22]. If the range of the correlationdtions is small compared to the mean
interparticle distance, then three-body and higher-aeetens of the cluster expansion are expected
to be small. In the two-body approximation these higheeombntributions are discarded

AC? = Al 4 Al (69)

In principle, the higher-order contributions to the clugepansion can be evaluated systematically
[33]. However, for many-body calculations the inclusiontlmbse terms is an extreme challenge
and we restrict ourselves to the two-body approximation.

Within the two-body approximation the similarity transfmation is still unitary on the two-
body level, e.g. the eigenvalues of the Hamiltonian are exvesl in two-body systems, but it
is no longer unitary on the many-body level. The energy eigkres obtained in exact many-
body calculations using the correlated interaction in tvealy approximation will dier from the
eigenvalues obtained in exact calculations using the béeeaction. As will be discussed in detail
in Sec. 4 we can use exact solutions, e.g., in the No-Core Bloglel framework, to estimate the
size of the omitted higher-order contributions.

Technically we can calculate matrix elements of correlajgerators in the two-body approx-
imation of the cluster expansion in any many-body approathguthe density matricqﬁ;)k and

p2 , of the uncorrelated states

@A) Z Y p KA my+ > @ (kIR mn) (70)
km

k<l,m<n

Here the one- and two-body density matrices
PGk = (@ a0y, p = (0] g g aam D) (71)
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Figure 6: Kinetic(T), potential(V) and total energyH) obtained with the bare Argonne V18 interaction (left),
including central correlations (middle) and with centratidensor correlations (right) for the doubly-magic nuclei
“He, 10, and*°Ca using @Q shell-model wave functions.

are given in a generic single-particle bags. Typically we will use harmonic oscillator basis
states, as the harmonic oscillator basis allows to expamtiib-body states in products of relative
and center-of-mass harmonic oscillator states with thp bethe Talmi-Moshinsky transforma-
tion.

2.7. Correlated interaction Mom
We define the UCOM interactionéowm as the two-body part of the correlated Hamiltonian

H=T+Vucom+ VLo +-.. . (72)

It contains the contributions of the correlated kineticrggeand of the correlated potential. The
three-body contribution of the correlated HamiltoniajLy,, has not been evaluated explicitly
yet.

If we start from a realistic interaction that is given in aneogtor representation, e.g. the
Argonne V18 potential, then the UCOM correlated interactian also be given in operator rep-
resentation

1~ ~ -
Vucom = 2, 5IVe(N0p + OpVp(1)] (73)
P

where
Op = {1, (G1-02), &, GF(Ga-0), L2, LA (1), (C - S) Swa(5, 1), Sio(L, L),
S12(da. Ga), O Sio(F, da). LA(L - S), L2S,2(da. Ga).. .. } © {1, (7B} .

The dots indicate higher-order contributions of the Bakem@laell-Hausddt expansion for the
tensor transformation that have been omitted. The termsrslabove result from a truncation to
operators of up to fourth order in momentum. For most appdoa the inclusion of these terms
is suficient [24, 34].

(74)
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In Fig. 6 we show theféect of the correlations on the kinetic and potential eneagyrtbutions
for the Argonne V18 interaction. The uncorrelated manyybstdte is given by the/f2 harmonic
oscillator configuration (the oscillator parameter is @ reproduce the experimental radius).
Without any short-range correlations the considered miittée, 10, and*°Ca) are not bound
at all. Even the potential contributions are repulsive. Bsluding the central correlations the
potential contributions become attractive but the nudleisdill unbound. Part of the gain by the
potential contributions has to be paid in form of a largerekio energy. Altogether the central
correlations increase the binding energies by about 320 MeV per nucleon. With the closed-
shell trial wave functions used here, contributions from thnsor force are only obtained when
including tensor correlations. As can be seen this is aghumge éfect. The binding energies per
nucleon increase by about 220 MeV and a total binding of about 4 MeV per nucleon is obtdine
on the &Q level using the correlated interaction.

The existence of an operator representation @fdy; is essential for many-body models that
are not based on a simple oscillator or plane-wave basis eiaraple is the Fermionic Molecular
Dynamics model [35, 36, 37] which uses a non-orthogonal 8auodasis and does not easily
allow for a partial wave decomposition of the relative twadlp states. Nevertheless, it is possible
to evaluate the two-body matrix elements ajdéwv analytically (radial dependencies are fitted
by sums of Gaussians), which facilitatéB@ent computations with this extremely versatile basis
[24].

As we have emphasized already, the operators of all obdes/bhve to be transformed con-
sistently. The unitary transformation of observables bkedratic radii, densities, momentum
distributions, or transition matrix elements is straightfard given the toolbox acquired for the
transformation of the Hamiltonian. The Unitary Correlati@perator Method owes this simplic-
ity to the explicit state and representation-independeamh fof the correlation operators. In other
approaches like the Lee-Suzuki transformation [38, 39,ct0he Vo« renormalization group
method [41], it is not possible to provide a closed form far &iective operators. A discussion of
effective operators in the Lee-Suzuki approach can be fountir43].

An important feature of \com results from the finite range of the correlation functicas(r)
and 9+ (r) entering into the generators. Since the correlation fanstare of finite range, i.e.,
the correlation operator acts as a unit operator at laygesymptotic properties of a two-body
wave function are preserved. This implies thajc¥v is by construction phase-shift equivalent
to the original NN-interaction. The unitary transformatican, therefore, be viewed as a way to
construct an infinite manifold of realistic potentials,tth# give identical phase-shifts.

It is interesting to observe in which way the unitary tramsfation changes the operator form
of the interaction while preserving the phase-shifts. Téw@ml correlator reduces the short-range
repulsion in the local part of the interaction and, at the eséime, creates a non-local repulsion
through the momentum-dependent terms. The tensor caret&hoves some strength from the
local tensor interaction and creates additional centratrdmtions as well as new momentum-
dependent tensor terms. Hence, the unitary transformatipioits the freedom to redistribute
strength between local and non-local parts of the potewitAbut changing the phase-shifts. The
non-local tensor terms establish an interesting connettithe CD Bonn potential, which among
the realistic potentials is the only one including non-ldeasor contributions [44].
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Figure 7: Two-body density(szf\,b’TMT(r”lz) intheS = 1,Ms = 1, T = 0,My = 0 channel of*He. Left: for the
uncorrelated trial statéd), middle: including central correlations, right: includittentral and tensor correlations.
The arrow indicates the orientation of the spin in the twolbohannel.

2.8. Correlated densities

As we have seen, the inclusion of short-range correlatisressential for obtaining bound
nuclei when using realistic interactions. However bindemgrgies and spectra provide no direct
information about these short-range correlations as theyia@den in the correlated offective
interactions.

Other quantities are much better suited to provide insigtd correlations. The two-body
density in coordinate space visualizes thEe& of the correlations directly, whereas the one-
body density in momentum space, the nucleon momentumtlisn, allows a comparison with
experimental data, providing a direct proof for the exisgeaf short-range correlations in nuclei.

Two-body coordinate space density

In Fig. 7 we show the two-body densip£), 1, (F12) in the deuteron channel. It has been
calculated with a BQ wave function for*He. For the uncorrelated wave function the two-body
density has a maximum &t, = 0, where the potential is strongly repulsive. This defedhia
wave function is cured by the central correlator which shifte nucleons apart. For the centrally
correlated wave function we find now the largest densitjrat ~ 1fm. At this distance the
potential is most attractive. The tensor force providesaetion if the spins are aligned parallel
with the distance vector. This is reflected in the two-bodysity. After applying the tensor
correlations the density is enhanced at the “poles” andoediat the “equator”.

The correlated two-body denswg\ﬁ&T v, (F12) is calculated from the diagonal part of the two-
body density in two-body approximation by introducing tefaand center-of-mass variabigs =
%1 — %X, and Xy, = %()?1 + X») and coupling the single-particle spins and isospins @l &ginS and
isospinT

Pz Xd = D7 (m, IS MG, 3m,IT Mo
Ms; .My .Ms, .My

ﬁ(”%s)rmtl’m%mzier”hvaz’mtzOzlz + %Flz, >212 - %ﬁz; >Z12 + %?12, >z12 - %Vlz)
(75)
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The dependence on the center-of-mass coordinate is rerbgniategrating oveiX;,

23 ?\/b,T w, (M12) = f d*X12 oY g\/g,T v (F12 X12) (76)

The correlated two-body density is very similar to the resstdlom microscopic calculations
using the bare Argonne V8 interactions by Suzuki and Hori[£5].

Momentum distributions

Momentum distributions also directly reflect the existeotghort-range correlations. Without
short-range correlations there would be no high-momentummponents in the nuclear many-body
state. To illustrate this, we calculate the correlated loo@y momentum distributiongk) for the
doubly-magic nuclefHe and®O in two-body approximation. The uncorrelated wave funttio
|®) are again BQ harmonic oscillator configurations, where the oscillatargmeters have been
adjusted to reproduce the experimental radii. The momenligtribution is given by

(K = > (@l a}, 1 Kanm® @) = > (@[Cgh, m(K)anmn(KICI? @) . (77)

Ms, M Ms, Mt

The evaluation of this expression is straightforward bogtly as it requires an integration over
single-particle coordinates for correlated wave fundititat are expressed in relative and center-
of-mass coordinates.

The results for the momentum distributions are shown in &igWithout short-range corre-
lations the momentum distributions have no high-momentamponents. With only the central
correlations included, we observe a high-momentum tailckvis almost constant as a function
of momentum. The contributions from the tensor correlaitmthe high-momentum tails are re-
markable. The momentum-distribution from the Fermi swefatabout 2 fm* up to about 4 fm*
is dominated by tensor correlations. Only for very high mataghe central correlations become
more important. We also observe a strong dependence of theentam distributions on the range
of the tensor correlator, especially for smaller momentse&lto the Fermi surface. This strong
dependence on the range of the tensor correlator is causaty oy the simplified uncorrelated
wave function used in the present calculation. THeat of long-range correlations induced by
the long-range part of the tensor force is here only inclugbdn using a long-range tensor cor-
relator. In more realistic calculations these long-rangeeatations can also be expressed within
the many-body model space. Other long-range correlatiolhgead to a further softening of the
Fermi surface.

The dominating role of the tensor correlations was alsodanmther microscopic calculations
[46, 47, 48] and has been confirmed experimentally by compag € pp) with (e, € pn) cross
sections at high momentum transfer [49, 50] apdo(p) with (p, ppn) cross sections [51].

2.9. Correlated transition operators

Short-range correlations have to be considered also favhleiation of transition matrix ele-
ments. The transition operators are correlated using tie sachniques that have been explained
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Figure 8: Nucleon momentum distributi@ik) calculated with closed-shell wave functions féte and'®0. Results
are shown for the uncorrelated wave functions--), for wave functions including central correlations £ —),
and including central and tensor correlations with= 0.10 fm® ( yandly = 0.20 fm® ( ). The gray dots
indicate the Variational Monte Carlo results from Ref. [46]

for the Hamiltonian in Sec. 2.4. In case of the radius operato

1 1
Rins = Z\ Z(zl - Xcm)z = ﬁ ; mjl2 (78)
the correlated radius operator in two-body approximatssimply given by
~ 1 2
Rms £ 25 D[R] (79)

1<)
The radius like the quadrupole operator and other longeapgrators are only weaklyfacted
by the short-range correlations [52].

But there are other cases, where short-range correlatiengeay important. One prominent
example is the neutrinoless doullelecay. The fective neutrino potentials appearing here con-
nect to high momenta and are therefore sensitive to shogeraorrelations in the many-body
state. UCOM is nowadays one of the standard approaches fading the short-range correla-
tions in the transition matrix elements [53, 54, 55].

2.10. Correlated matrix elements

For many-body calculations the matrix elements of the ¢ated interaction Vcom and pos-
sibly of other operators are needed. For the many-body ledicns presented in this review we
employ the harmonic oscillator basis. Here the two-bodyimatements can be decomposed into
a relative and a center-of-mass matrix element by meansofalmi-Moshinsky transformation.
In the end the relative matrix elements of the correlateeradtion

(N(LS)IMT Mr|Vycom IN'(L'S)IMT Mr) =
(N(LS)IMT My| CiC], Hint CaCr — Ting IN'(L'S)IMT My)  (80)
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have to be calculated. We use here relati®coupled basis statga(LS)JM T M), wheren is
the radial quantum number. The corresponding wave funetithtve denoted ag, (r), the radial
wave function asi,(r),

(F(LS)IMT MrIn(LS)IMT M) = g (1) = 200 (81)

whereL is the relative orbital angular momentur§, spin, J total angular momentum, ant
isospin. The interaction also contains Coulomb and othepise and charge-symmetry breaking
terms so that the matrix elements also depend explicitliMenIn the following we will omit the

M andMr quantum numbers to simplify the notation.

In the UCOM approach matrix elements can be calculatedfferént ways. It is possible to
expand the correlation operators in the basis staigsS)JT) and use the matrix elements of the
uncorrelated interaction.

An alternative approach is to use the operator representatiVycov and evaluate the matrix
elements directly. If one expands the radial dependendéigmondividual operator channels in a
sum of Gaussians, all radial integrals can be calculatelytaaly. The matrix elements of the
additional tensor operators contained igc¥y can be given in closed form as well. However, this
direct approach relies on the truncation of the Baker-Caniptaaisdoff expansion (55).

This can be avoided by applying the tensor correlationsedotisis states which can be done
exactly. For interactions in operator representation #@ral correlations will still be applied
to the Hamiltonian as we have a simple and exact expressiaghdacentrally correlated Hamil-
tonian (cf. Sec. 2.4). This approach requires a rewritinghef correlated matrix elements by
interchanging the order of central and tensor correlatfgerators using the identity

C/Cl, Hint CoCr = (C{C{,C;) C Hint C; (C/CoCy) ©2)
= C/Cl Hint C:Cq

with the “centrally correlated” tensor correlation operat
Ca = C/CaC;r = expl-i (R, (1)) SualF, )] - (83)

The central correlator commutes with,@, do) and transforms therefore oniy(r), see Eq. (45).
The tensor correlatdZ, acts onLS-coupled two-body states with= J like the identity operator
and couples states with= J + 1 with stated. = J ¥ 1 (cf. Sec. 2.3)

¢ (r) L=L=1J
(r(L'S)JT|Cq In(LS)JIT) = {cosy(Nen (r) ;L'=L=Jx1 , (84)
+sin0,(Nen (r) ;L'=J+1LL=JF1
where _
05(r) = 3/I(J + 1) I(R.(1)) . (85)

Using these relations we can calculate the correlated vay-matrix elements exactly.
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Matrix elements using correlator expansion
This approach is very general as it works for any unitarysfamation of the basis states and
for any two-body operator. To calculate the matrix elemédnihe correlated interaction
(N(LS)IMT Mr|Vycom I (L'S)IMT Mr) =
(N(LS)IMT M| CIC] Hint CoCr — Tint IN'(L'S)IMT M) (86)

we evaluate the correlator in the basis states
COLST = (A(LS)IT| CaC, IN(LS)IT) . (87)

The tensor correlation operator acts as the identity opeiral. = J channels and couplés= J¥1
with L’ = J + 1 states:

farux(NZL R (Nun (R(r))

(:(JLLSD fdru*{r)cos@;.(r)mr) R(NDUnL(RA(r))
_fdru%dr)5|n03(r)R,(r) R.(NunL(R(T)

Il
i SR &

— &
Il

1 (88)
J¥1l

| '_I
Il

L
L
J

+

The correlated matrix elements of the interaction are gweh these correlator matrix elements
as

(N(LS)JIT|Vuycom In'(L'S)JT)
= (N(LS)JIT|C/C], Hint CaCr — Ting IN'(L'S)IT)
Nmax
= ) CUHSDR(LS)ITI Hi | (L'S)ITICELYS — (n(LS)IT Timt I (L'S)IT) (89)
ALL

Besides the correlator matrix elements (88) the matrix etesnaf the bare interaction are needed
(A(LS)IT| Hin IM(L'S)JT) . (90)

Heren andn” will now run up to some cut4d ny,. Convergence is reached onlynifay is chosen
large enough. A hard interaction like Argonne V18 will connl®w momentum states with high
momentum states up to about 15fmFor typical oscillator constants of 10 MeV the summation
therefore has to extend tg,ax = 300.

Matrix elements for interactions in operator representati

For a bare potential given in the generic operator repratient(39) the matrix elements can be
evaluated using the closed form for the centrally correlatéeraction. For the tensor correlations
only the correlated kinetic energy is given in a closed foritheut approximations. For the
potential contributions the tensor correlations will b@lgx to the wave functions.

We start with the matrix elements for the local contribusiai the formV(r)O with [r, O] =
[ar,O] = 0, which includes all operators of the set (40) except fordhéerms. The matrix
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elements folL = L’ = J are not &ected by the tensor correlations, only the central cowedadct
according to (54). In coordinate representation we obtain

(N(IS)ITICIC V(O CoC;: IN'(IS)JT) = f dr Uz 5(r) Uy 5(r) V(r) ((3S)IT|OI(IS)IT), (91)

whereV(r) = V(R.(r)) is the transformed radial dependence of the potentiat. tt® diagonal
matrix elements with. = L’ = J ¥ 1 we get

(n(JF1,1)JT|CICL, V(O CoC; I (IF1,1)JT) =
f dr U 50 (1) Uy 3 (r) V(D[ ((3F1,1)IT|OI(IF1, 1)IT) cos 6;(r)
+((J+1, 1)IT|O|(I+1,1)IT) sir? 6;(r) (92)
+((JF1, 1)JT|O|(I+1,1)IT) 2 coshs(r) sinEJ(r)]

with 5J(r) = 0;(R,(r)). Finally, the dt-diagonal matrix elements far=J+ 1 andL’ = J+ 1 are
obtained as

(N(JF1,1)IT|CIC V(r)O CoC, IN'(I+1,1)IT) =
f ar U2 50 (1) Uy 3 (r) V(D[ ((3F1,1)IT|O|(I=1, 1)IT) cos 6;(r)
—((J£1, 1)IT|O|(IF1,1)IT) sirf 6;(r)
F((JF1, 1)IT|O|(IF1L,1)IT) cosd;(r) sinds(r)
+((J+1,1)JIT|O|(J+1, 1)IT) sinb,(r) cosb,(r)] .

(93)

Apart from the integration involving the radial wave furmts, the matrix elements of the operators
O in LS-coupled angular momentum states are required. Only fostidwedard tensor operator
O = S5, §) the df-diagonal terms on the right hand side of Egs. (92) and (98iibute. For all
other operators in (40) thefediagonal matrix elements vanish, and the above equationdiy
significantly.

The dfect of the tensor correlator is reflected in the structuréefcorrelated matrix elements
(92) and (93). It admixes components withh = +2 to the states. Therefore, the correlated
matrix element consists of a linear combination of diagaad df-diagonal matrix elements
((LS)JIT|O|(L’S)JT). In this way even simple operators, lik8 or (L - S) acquire non-vanishing
oft-diagonalcorrelatedmatrix elements (93).

A closed form is available for the momentum dependent terihtkeopotential (39). For the
tensor correlated form of the operator

1
Var = 5[V + VO] (94)
we obtain

CiVarCa = IV + VO] + VO ()5, Gl
[V ) + 7 OVOISu(r )

(95)
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by using Eq. (58). Subsequent inclusion of the central tatioms leads to the following expres-
sion for the diagonal matrix elements with= L’ = J in coordinate representation:

(N(IS)JIT| CICi Vg CaC IN(IS)IT) = f dr {u;, 5(r) Uy o(r) [V(r) W(r) - V/(r) FFf((rr))z]
1 %
— é[u;’J(r) upy 5(r) + U5 (r) Un’,J(O]%} ;
(96)

whereV'(r) = V'(R.(r)). As before, the tensor correlator does nffeet these matrix elements
and only the central correlations have to be considered.tHeodiagonal matrix elements with
L = L’ = J ¥ 1 the tensor terms contribute and we obtain

(N(3F1,1)IT|CIC] VqCaC, IN'(IF1, 1)IT) =

_ _ R
f dr {ug’m(r) Uy 52| V(1) W(r) + V(1) @,(r)% = V(1) R’+((rr))2]
= " (97)
1 Y,
U6 320) + U3 0) Urn Ol 03
with @'5(r) = 05(R.(r)). Likewise, we find
(N(IFL, 1)IT|C/C VeiCaC M (321, 1)IT) =

e [0 0200) Uy a0 - U () s 3 (98)

for the dt-diagonal matrix elements with= J+ 1 andL’ = J + 1.

The matrix elements for the correlated radial and angulzetié energy can be constructed as
special cases of the interaction matrix elements discusisede. By setting/(r) = 1/(2u(r)) in
Egs. (96) to (98) we obtain the matrix elements for tifective mass part of the correlated radial
kinetic energy (49). The matrix elements of the additionahl potential in (49) and the angular
kinetic energy (51) follow directly from Egs. (91) to (93).
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3. Similarity Renormalization Group (SRG)

Unlike the UCOM framework, the concept of the Similarity Ramnatization Group (SRG) is
universal and not tied to the specific correlations relevattie nuclear many-body problem. The
renormalization of the Hamiltonian through flow-equatiovess proposed by Gtazek and Wilson
[56] in the context of light-front field theory and was furthdeveloped by Perrgt al. [57, 58].
Independently, Wegner [59, 60] proposed flow equationsiferénormalization of Hamiltonians
in the context of condensed matter physics. A summary oktdeselopments is given in Refs.
[61, 62] and in Ref.[63] in this volume.

Already these initial publications on the SRG contain alinfat elements relevant for the
application in the nuclear physics context, even the speciifoice of the generator for the SRG
flow evolution that will be used in the following was discudsxy Szpigel and Perry [57]. The first
application of the SRG for the transformation of a nuclear Haman was presented by Bogner
et al. [64, 65] and the SRG in connection to the UCOM approachfingtsdiscussed in Refs.
[66, 67].

The general concept of all implementations of the SRG is #restormation of the Hamilto-
nian to a band- or block-diagonal structure with respectdpexific basis by a continuous unitary
evolution determined via renormalization-group flow egurag. The particular physical system
and application under consideration determines whichskzasil generator is used in the flow evo-
lution. In this respect the SRG approach is very flexible amdbzaadapted to all kinds of band-
or block-diagonalizations in any basis of choice [62, 68hisTflexibility is an advantage of the
SRG scheme as compared to the UCOM transformation, whichasddifor a very specific type
of correlations. Moreover, the computational simplicifyttee SRG-evolution on the level of ma-
trix elements opens a clear path towards a consistent @molat many-body forces beyond the
level of the two-body cluster approximation (cf. Sec. 2.Recently, the SRG evolution of a
nuclear Hamiltonian has been performed on the level of thoely matrix elements [69], thus
demonstrating the feasibility and power of this scheme.

3.1. SRG flow equations

The basic idea of the SRG in the formulation of Wegner [59, &), ] is to transform the
initial Hamiltonian H of a many-body system into a diagorainfi with respect to a given basis.
The renormalization group flow equation governing the eNmituof the Hamiltonian is given by

dH,
da

wherea is a formal flow parameter and,Hhe evolved Hamiltonian. Here we use a general
operator form of the flow equation in many-body space. Thérabguantity is the anti-hermitian
generator, which determines the physics of the flow evolution. FormdHys is an initial value
problem with the original Hamiltonian H as initial conditidd,—o = H. Analogous equations can
be formulated for the evolution of operators &f all observables one is interested in,

dB,
da

= [0, Hol (99)

= [770,Bal - (100)
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Apart from trivial cases, the generaigrwill depend on the evolved Hamiltonian,htself. There-
fore, the flow equation for an observablg @&nnot be solved independently from the flow equation
of the Hamiltonian, they have to be solved simultaneoustyntally, we can integrate these flow
equations defining a unitary operatoy of the explicit transformations

H, = U HU, ,

: 101
B, = U/BU, . (100)

Note that we chose to define the unitary operatpisuich that the adjoint operator appears on the
left in the similarity transformation—this is consistenthiivconvention introduced for the UCOM
transformation (cf. Eq. (23)), but flierent from many other discussions of the SRG. From Egs.
(101) and (99) we obtain afikerential equation for the unitary operatoy,U

du,
da

which describes an initial value problem with the triviaitial condition U,.q = 1 for the uni-
tary operator. If the generator would be independent of the flarameter, e.gy, = ig with a
hermitian generator g, then thidi@dirential equation could be readily integrated, yieldingstan-
dard exponential form of the unitary transformation oparét, = exp(-iag). However, typical
generators used in the SRG have a non-triviglependence, such that the formal solution for the
unitary operator does not yield a simple exponential bitaiah Dyson series. In practical appli-
cations it is, therefore, much easier to solve the flow equnat{99) and (100) directly, without
reference to the explicit unitary operator.

The ansatz for the non-hermitian generagporiginally used by Wegner [59, 60] has a quite
intuitive structure. It is written as a commutator of thegtiaal part of the evolved Hamiltonian,
diag(H,), with the full Hamiltonian H,

1o = [diag(H,), Ha] - (103)

Obviously, the definition of diag(f) presumes the choice of a basis—this is the basis with respec
to which the Hamiltonian shall be diagonalized. By transfigrthe generator (103) and the flow
equation (99) into a matrix representation for this bawis,groperties of the flow become evident:
First, the diagonal form of the Hamiltonian provides a fixrgadf the flow evolution, since the
generatom, and thus the right-hand side of the flow equation vanish is tlaise. Second, the
off-diagonal matrix elements of the Hamiltonian are contiralpsuppressed throughout the flow
evolution, the sum of their squares decreases monoton{&8l| 60]. Hence the diagonal form is

a trivial attractive fixpoint of the SRG flow equation.

So far this approach is generic and independent of the piepesf the particular physical
system, the Hamiltonian, or the basis under consideratli@onsidering amA-body system, then
all the aforementioned relations refer to the operatos-body space. One of the consequences
is that even a simple initial Hamiltonian, containing twoely operators at most, acquires up to
A-body terms in the course of the evolution. For practicalliappons of the SRG approach in
the nuclear structure context one, therefore, has to dyrthke scheme by confining the evolution
to two or three-body space, thus discarding higher-ordetritmtions in the evolved interaction.

=-U,n, , (102)
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Furthermore, instead of using the diagonal part of the Hami&n in the definition of the genera-
tor, one can use the operator that defines the eigenbasisasfibct to which the Hamiltonian shall
be diagonalized. In this way, we depart from the originallgd&Vegner’'s ansatz to diagonalize a
Hamiltonian via a flow evolution witlx — oo and rather aim at the derivation of tamed few-body
interactions for intermediate values of the flow paramettrat are pre-diagonalized with respect
to a certain basis.

A simplified scheme along these lines was suggested by Samidderry [57] and applied by
Bogner and others [64, 66]. It confines the evolution to twdybgpace and uses the generator

Mo = (2)° [Tint, Ha] = 21 [6% Ha] (104)

containing the intrinsic kinetic energyid = ﬁqz in the two-body system. The prefactor of

the commutator is chosen such that the dimension of the fleanpetera: is [momentumi* or
[length}*. It is also common to specify the parametes a~*, which has the dimension of mo-
mentum, instead of the flow parameterThe square of the two-body relative momentum operator
can be decomposed into a radial and an angular part,

L2 1

r
f=q+5. a=5d +_ -d. (105)

?
.
Thus an obvious fix point of the evolution with the generaid}4) is a two-body Hamiltonian H
that commutes withfandC2/r2. Hence, this generator drives the matrix elements of theiHam
tonian towards a band-diagonal structure with respect ladive momentumd, g’) and orbital
angular momentumi( L"), i.e., with respect to a partial-wave momentum space sentation.
Though we will only use the generator (104) in the followioge should note that there are
many other possible choices f@y. An evident alternative is to use the single-particle Héonian
of the harmonic oscillator instead of the kinetic energyhi@ gienerator. In this way, the Hamilto-
nian is driven towards a diagonal form in the harmonic oatl basis. Using various projection
operators one can design generators that drive the Hamaiftdowards a block-diagonal struc-
ture in a given basis [68]. This flexibility of the SRG techreguolds great potential for further
refinements and applications of the approach.

3.2. Evolution of two-body matrix elements
Starting from an initial two-body Hamiltonian H composedrelative kinetic energy /I, and
two-body interaction V it is convenient to decompose the S®RGlved Hamiltonian Hin a sim-

ilar way
Hy = Trai + V- (106)

All flow-dependence is absorbed in the SRG-evolved two-badgraction \, defined by this
relation. Rewriting of the flow equation (99) using the getmr§l04) explicitly for the evolved
interaction \,, leads to

dv,

da = [Ua, Trel + Va] = (2/1)2 [[Trela Voz]’ TreI + Va] . (107)
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Even in this simplified form a direct solution of the operagguation is far from trivial. For
practical applications we, therefore, work on the level dftrnix elements. Though any basis
in two-body space can be used to define this matrix repres@mtat is convenient to use the
eigenbasis of the operator entering into the ansatz foreénermgtor (104). In our case, this is the
d? operator and it is most convenient to adopt the partial-wagmentum eigenbasig(LS)JT),
where the projection quantum numbd&isand Mt have been omitted for brevity.

In this basis the flow equation (107) translates into a sebapled integro-dferential equa-
tions for the matrix elements

VOISO (q, ) = (Q(LS)ITIV, g (L'S)JIT) . (108)

In a generic form, the resulting evolution equation reads:

d
2o Ve(@.d) = —(o° — q%)* Va(a,q)
[04

(109)
+2u [ dQQ (e + % - 209 V(. QVu(Q ).
For non-coupled partial waves with = L = J, the matrix elements entering this equation are
simply
Vo(a,9) = VI (q,q) . (110)

For coupled partial waves with, L’ = J + 1, theV,(q,q) are understood as2 2 matrices of
the matrix elements for the fiierent combinations of the orbital angular momelnta J — 1 and

L=J+1 (JLLST)(q’ ) V(JLL ST)(q q)
V(9. 9) _( Qau LST)(q q) V(JLLST)(q’q)) (111)

Each non-coupled partial wave and each set of coupled pagiges evolves independently of the
other channels of the interaction. This is a direct consecgief the choice of the generator — the
evolution towards a diagonal in momentum space is done irpéimal way for each individual
partial wave.

As mentioned earlier, analogous evolution equations haveetsolved for all observables in
order to arrive at a consistent set dffiextive operators. The evolution of these operators, eq. th
multipole operators necessary for the evaluation of ttemmsstrengths or the one-body density
operators employed for the computation of the momentunmilligion, is coupled to the evolu-
tion of the Hamiltonian via the generatgy. Hence we have to solve these evolution equations
simultaneously.

An alternative approach is to determine the matrix elemeftise unitary operator Jexplic-
itly by solving (102). The evolved matrix elements of all ebgbles can then be obtained by
a simple matrix transformation using the same unitary fansation matrix. In the case of the
momentum-space partial-wave matrix elements of the ynitansformation operator,

UPSD (g, q) = (q(LS)ITIU, I (L'S)IT), (112)
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the operator equation (102) leads to a coupled set of intéigifierential equations

U@ 0) =2 [dQE (@3- @) Uu(a. QVu(Qd) (113

where we assume that the evolution equation (109) is solwadtaneously providing th¥,(q, ).
The generic notation defined in (110) and (111) for non-cediphd coupled partial waves, respec-
tively, applies here as well. Thisftirential equation provides direct access to the matrix efesn
of the unitary operator, which maps the initial operatortoasny particular point of the flow
trajectory.

3.3. Evolved interactions and wave functions

The concept of the SRG transformation becomes very transipateen looking at the flow
evolution of the momentum-space matrix elements of the SRf&stormed interaction W In
Fig. 9 we show the matrix element&’ " "(q, of) obtained for the Argonne V18 potential in the
three most important partial waves: tHgy, partial wave, i.e. matrix elementg®Xgq, o), the
33, partial wave, i.e.V1%%q, o), and the3S; — 3D; partial wave, i.e.V3?%q, f). We start
with the matrix elements of the initial Argonne V18 potehtibe = 0 fm* and display snapshots
of the SRG evolution at = 0.001 fnf, @ = 0.01 fm*, anda = 0.04 fm®.

The initial matrix elements show the characteristic feadithat are responsible for the emer-
gence of strong correlations in the many-body system: Titomgtdf-diagonal matrix elements
that couple low-momentum components with high-momentumpmnents of the wave function.
In thelS, and3S; partial waves thesefladiagonal high-momentum matrix elements are generated
by the short-range repulsion of the Argonne V18 potentidilevthe df-diagonal matrix elements
in the®S; — 3D, partial wave are solely due to the tensor interaction.

Already in the early phase of the flow evolution, i.e. for< 0.01fm*, the matrix elements
far off the diagonal in th&-wave channels are suppressed quickly. The plateau ofyeohigh-
momentum matrix elements is pushed towards the zero-platcie¢he negative low-momemtum
matrix elements are enhanced. Later in the flow evolutioa résidual high-momentum matrix
elements are pushed towards the diagonal and the matrixetsnm the low-momentum are
further enhanced. For the tensor-dominat8g — 3D, partial wave the matrix elements faffo
the diagonal are depleted successively. Over all, the SRGHeN with the generator (104)
leads to a transformed interaction with band-diagonal imatements in momentum space. The
pre-diagonalization of the interaction and thus the Hamilin matrix elements through the SRG
transformation is evident.

In order to assess théfect of the flow-evolution on the structure of wave functions,again
consider the deuteron ground state as an example. UsingREeeSolved momentum-space
matrix elements we solve the two-body problem in the deuatetwannel numerically. The de-
pendence of the resulting coordinate-space wave functiartbe flow parameter provides an
intuitive picture of the ffect of the SRG evolution in coordinate space. This is illustién Fig. 10.

The deuteron wave function for the initial interaction sksathie signatures of strong short-
range central and tensor correlations, i.e., the supmesdi the wave function at small inter-
particle distances and the presence of Bheave admixture, respectively. Already early in the
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Figure 9: Snapshots of the momentum-space matrix elemiantsigs of MeV fn) of the SRG-evolved Argonne
V18 potential (charge independent parts only) in1Bg, S;, and®S,-3D; partial waves (from left to right) for the
flow parameters: = 0.0 fm?, 0.001 fnf", 0.01 fm*, and 004 fm* (from top to bottom).
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Figure 10: Snapshots of the deuteron wave function obtdoad the SRG-evolved Argonne V18 potential for the
flow parameters = 0.0 fm*, 0.001 fnf', 0.01 fm®*, and 004 fm* (from top to bottom). The main panels show the radial
wave functionsp (r) for L = 0 ( JandL =2 (----- ). The 3D plots show the corresponding momentum-space
matrix elements in th&S, partial wave for orientation (cf. Fig. 9).
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flow evolution, i.e. fore < 0.01 fm?, the short-range dip in th8-wave component is removed—
this dfect is connected to the suppression of the plateau of higinentum matrix elements in
the 3S, partial wave. As a result the deuteron wave function obthiwéh the SRG-evolved
Argonne V18 potential forr = 0.01 fm’* has lost any signature of a strong short-range repulsion
in the interaction. The total strength of tilewave admixture is reduced and pushed towards
larger inter-particle distances. Thus, the short-rangesviianction evolves from being dominated
by short-range central and tensor correlations to an almastrrelated pur&-wave. The long-
range behavior, all asymptotic properties, and the denteirding energy are nottacted by the
SRG-evolution.

The behavior of the matrix elements and of the two-body wawmetions highlights the relation
between the UCOM transformation and the SRG evolution reggrttie pre-diagonalization of
the Hamiltonian and the description of short-range cotiaia. Both approaches describe the
same physics.

3.4. UCOM from an SRG perspective

Because the UCOM and the SRG transformations have the démsean the matrix elements
and wave functions, one might ask for the connection of bpfir@aches on the underlying for-
mal level. The properties of both unitary transformatiors governed by their generators: the
dynamical generatorin, in the case of the SRG and the static generatoasd g, in the case of
the UCOM transformation.

There is a non-trivial relation between these generatetstfovides an insight into the formal
relation and the dierences of the two approaches [66]. This becomes evidentddyating the
SRG generator (104) for a typical nuclear Hamiltonian in tvamly space. We assume a simplified
local two-nucleon interaction composed of a central, a-sploit and a tensor part. The operator
for this interaction is given by

V=V, 0, (114)
p

with Op € {1, (¢4-2), (L - S). Siz(5, )} ® {1, (71 -%)}. By evaluating the commutator defining the
SRG generator (104) explicitly fer = 0 using this interaction operator we obtain

-ino = [5(@ S0+ S0 ) + 00) Sl ) (115)

The operator-valued functions S(r) a®¢) contain the radial dependencies of thfatient terms
of the interaction
2 V(1)

S(r):—%(Zv;(r)op), o = "5 (116)
p

If the functions S(r) an@®(r) were functions of the relative distance r alone, thendtnacture
of the initial SRG generatorj would be identical to the UCOM generatorsand g, that were
constructed based on the physical picture of central angbtecorrelations [66]. The explicit
dependence of S(r) on the operator sgti@licates that the SRG transformation act$edently
in different partial waves. In the UCOM terminology, this dependesecodes a partial-wave
dependence of the central correlation functions.
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This formal connection shows that both approaches addnessame physics of short-range
correlations, although starting from quitefdrent backgrounds. Moreover, it proves that the set
of UCOM generators covers the most relevant terms. Althohgtetare other operators appearing
in the initial interaction, e.g. the spin-orbit operattey do not require separate generators—their
effect on the correlations is absorbed in the operator-valuection S(r).

Regarding the partial-wave dependence of the correlatibviesstandard formulation of the
UCOM approach uses a simplified picture. The correlationtians s(r) and9(r) are chosen to
depend on spi% and isospinT only, they do not depend on orbital and total angular monmantu
Formally, one could drop this restriction and work with sepa correlation functions for each
partial wave and thus mimic the flexibility of the SRG generato

A more fundamental dierence between the UCOM and the SRG transformations resuits fr
the fact that SRG uses a dynamical generator, whose opetatotuse changes throughout the
flow evolution, whereas UCOM is based on a static generatayugdi the UCOM generator and
the SRG generator share the same basic operator structure @tthe SRG generator acquires a
more complicated form involving higher-order momentum amementum-dependent tensor op-
erators at later stages of the evolution. Therefore, the S&t@rgtor is more flexible and adapts
to the behavior of the matrix elements during the flow evohiytileading to a non-trivial flow
trajectory in an operator-space representing the gemerdtee UCOM transformation, in con-
trast, consists of a one-step transformation along a litragactory confined to a subspace of the
operator-space spanned by the SRG generator. It is, theyefor surprising that the matrix ele-
ments of the UCOM-transformed interaction do not exhibitshme perfect band-diagonal struc-
ture as the SRG-evolved interaction. However, the leadimgadpr contributions to the generator
are also present in the UCOM approach and allow forfénient pre-diagonalization.

The dynamic nature of the SRG generator is also the reasonth&hgptimal UCOM correla-
tion function cannot be determined directly from Eqgs. (1M8% have to consider the whole SRG
flow trajectory up to a certain value afto extract meaningful UCOM correlation functions. One
option to do so is discussed in the following section.

3.5. UCOM correlation functions extracted from SRG

As an alternative to the variational determination of the WC@orrelation functiondR,(r)
andd(r) discussed in Sec. 2.5 we can use the SRG approach to gengtiatezed UCOM cor-
relation functions. Our aim is to construct a UCOM transfaiiorathat uses the result of the
SRG-evolution of a Hamiltonian in two-body space fram= 0 to a fixed finite value of the flow
parameter to determirie,(r) andd(r). In contrast to the dynamical SRG evolution, the UCOM
correlations have to map the initial Hamiltonian onto theleed Hamiltonian for a specifia
using a single explicit unitary transformation. Obvioyghe correlation operator C is not flexi-
ble enough to allow for an exact mapping of all matrix eleraentall partial waves—even if we
would allow for diferent correlation operators C for each partial wave.

One could consider an approximate mapping of the matrix etesnas one possible scheme
to determine the UCOM correlation functions. Here, we usdfarmint strategy, which is rooted
in the interpretation of the UCOM transformation as a toohiint short-range correlations into
the many-body state. Instead of considering the initial@ralved two-body matrix elements, we
consider two-body eigenstates of the initial and evolvedhtitanian for diferent partial waves.
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The optimal UCOM correlation functions are then required apra selected two-body eigenstate
of the SRG-evolved Hamiltonian onto the corresponding esgga of the initial Hamiltonian.
This wave-function mapping defines the so-called SRG-gé&sdkdCOM correlation functions.

The procedure for the construction of SRG-generated UCOMeladion functions consists
of three steps: i} We solve the SRG evolution equations for a given initial iatéion up to a
flow parametery, obtaining the momentum space matrix eleménts, ') for a certain partial
wave. (i) Using the evolved matrix elements the two-body problempisexd, leading to a set
of coordinate-space wave functionsii)(The UCOM correlation function®,(r) andJ(r) are
determined such that they map a selected two-body eigertdttite SRG evolved interaction onto
the corresponding two-body state of the initial interatiio the respective partial wave.

The stepsij and {i), i.e., the evolved momentum-space matrix elements and/éve func-
tions of the corresponding two-body eigenstates, respygthave already been illustrated for the
deuteron channel in Sec. 3.3. Stap) (s discussed in the following.

Consider two eigenstatde©) and |¢®) with the same energy eigenvalue resulting from the
solution of the two-body problem for the initial and the SR@lged potential, respectively, in a
given coupled or non-coupled partial wave. We can define a UQ@OIvEelation operator C that
maps the two states onto each other

@) = Clp@) = CoCr |9y . (117)

Based on this formal definition we can derive equations thedrdene the correlation functions
R_(r) and¥(r) that characterize the correlation operator.

For non-coupled partial waves with = J only the central correlator is relevant. With the
two-body solutions

@) = |pO(LS)IT)

@y = [¢)(LS)IT) (118)

for the initial and the SRG-evolved interaction, respedyivee obtain from (117) and (32) a rela-
tion connecting the known radial wave functiasi®(r) and¢@(r) via a yet unknown correlation
functionR_(r):

#°0) = SO JRE 60R 0. (119)

Here and in the following we assume real-valued wave funstidhe relation (119) can be viewed
as a diferential equation for the correlation functi®(r). After formal integration we arrive at
an implicit integral equation foR_(r)

[ )17
[p(R(E))]>°

which can be solved easily in an iterative fashion. We end itip avdiscretized representation of
the correlation functiofR_(r) for the partial wave under consideration. By constructtanaps a
selected SRG-evolved two-body state onto the corresponuitig state. In generalR_(r) will
depend on the pair of states, e.g. the ground states or af gaicited states, we have selected. We
will show later on that this dependence is very weak.

3: rd 2
R =3 fo f e (120)

43



For coupled partial waves with = J — 1 andL’ = J + 1 central and tensor correlators act
simultaneously. Using the two-body eigenstates

P9y = BOWLS)IT) + 16 D(L'S)IT)

121
gy = [$ULS)IT) + 162(L'S)IT) 121)

of the initial interaction and the evolved interaction, pestively, we can extract a unique set
of central and tensor correlation functions. After mulfip the mapping equation (117) with
(r(LS)JT| and{r(L’S)JT|, respectively, and using Eq. (37), we obtain a system of leolgqua-

tions
¢(0)(|’) R_(r') cosh;(r) sind;(r) (l)(“)(R(r))
(¢(0)(r)) \ R.(r) ( Sin;J(r) COSH‘\]](I')) ( (a)(R_(r))) (122)

from which the correlation functiorii(r) andd(r) can be determined.

Because the central correlation function acts on both drb@gmponents in the same way
and because the transformation matrix in (122) has to bamynive can determine the central
correlation functiorR_(r) independently of the tensor correlations functit{n). By considering
the sum of the squares of the two orbital components we obtaim (122) the identity

RO e o) (OROPHOROP. 129

[62(N]° + [60(N)° =
which corresponds to (119) for the non-coupled case. Thelkedion functionR_(r) can then be
determined iteratively from the integral equation

PP + 0@
[6(R_(£))]2 + [6D(R(£))]2

OnceR _(r) is known, the system (122) reduces to a set of two nonlingaategons ford,(r) =
3vJ(J + 1) ¥(r), which can be solved numerically for each

In practice this mapping scheme can be easily implementied dsscretized wave functions.
Typically, the SRG evolution of the Hamiltonian in two-bodyese for a given partial wave is per-
formed on a sfiiciently large grid in momentum space. Using the discretinetinentum-space
matrix elements of the evolved Hamiltonian we solve the hedy problem for the respective
partial wave on the same momentum-space grid. The groutelwtve-functions are then trans-
formed to coordinate space, where the mapping equatior) (§2»lved. In this way, we obtain
discretized correlation functiori® (r) and, by numerical inversiomR, (r) as well asi(r) for each
partial wave. In contrast to the UCOM correlation functioesadmined variationally, there are no
parameterizations of the correlation functions necessdrich might induce artifacts due to their
limited flexibility.

3 _ ' 2
R =3 fo o ¢ (124)

3.6. SRG-generated UCOM correlation functions

As an example for the determination of UCOM correlations fioms through a mapping of
SRG-evolved wave functions, we again consider the Argonrie pdtential. Note, however, that
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the mapping procedure is completely generic and can be ugledny other interaction, be it local
or non-local.

In order to stay within the framework set by the variation& @M correlators, we do not
consider separate correlation functions for each part@ieywwhich could be done easily, but only
distinguish diferent channels of two-body spand isospinl. As in the variational scheme, we
optimize the correlators for a giveB,(T)-channel using the lowesdtpartial wave, since the low-
and thus lowt. partial waves areftected most by short-range correlations. For partial wavts w
higherJ andL the impact of short-range correlations and of the UCOM tiamsétion is reduced
due to the angular momentum batrrier, thus the non-optintaéladors for these partial waves do
not have a big impact.

For determining the central correlation functidRg(r) in the spin-singlet channels, we use
the 1S, partial wave for the singlet-evets(= 0, T = 1) and the'P; partial wave for the single-
odd S = 0, T = 0) channel. The central and tensor correlation functionthéntriplet-even
(S = 1, T = 0) channel are extracted from the deuteron solution in thipled S, — 3D, partial
wave. For the triplet-odd channéb (= 1, T = 1) we encounter the same ambiguity as in the
variational treatment: the lowest possible orbital angmamentum allowed by antisymmetry is
L = 1 for whichJ can be 0, 1, or 2 and only far = 2 the tensor correlator does contribute. One
possible recipe for handling this channel is to use only theoted®P, — 3F, partial wave to fix the
triplet-odd central and tensor correlation functions, asalin Ref. [67]. The central correlation
functions obtained in this way are not well adapted for theeleJ partial waves. Therefore, a
scheme that includes all possikildor the determination of the central correlation functieemss
more appropriate. Thus, we determine the central corosldtinction through a mapping of wave
functions for a pseudo interaction obtained by averagieg®g, 3P,, and3P, partial waves with
a relative weight 2 + 1. This recipe comes closest to the energy-average useddeatiational
determination in this channel (cf. Sec. 2.5).

In each of the partial waves we use the energetically lowaistg states, which is bound in
the case of the triplet-even channel and unbound othermiskstermine the correlation functions
via the mapping (117). In principle one could use any othar gfawo-body states obtained for
the initial and the SRG-evolved Hamiltonian with the samergyeAs was shown in Ref. [67]
the correlation functions do not change significantly wheimgione of the low-lying excited two-
body states instead of the ground state.

A crucial advantage of the SRG-generated correlation fanstis that there is no need for
artificial constraints to control the range of the corr@as functions—the SRG flow-parameter
which enters through the evolved two-body eigenstatelseisnly control parameter. In contrast to
the ad-hoc integral constraints formulated for centralt@mdor correlations functions in Sec. 2.5
the flow parametet is a physically motivated control parameter that entercémgral and tensor
correlation function in a consistent way.

The dependence of the correlation functions on the flowspatera is illustrated in Fig. 11
for the central correlation functions and in Fig. 12 for tkegor correlation functions obtained
for the Argonne V18 potential through the SRG mapping. Euigethe over-all range of the
correlation functions is directly controlled by the flowrpmetera: Largera result in correla-
tion functions with longer range. This is in-line with ours®svations on the evolution of the
momentum-space matrix elements and the two-body waveiunsct Initially, the SRG flow-
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evolution dfects only the high-momentum matrix elements and thus thg-sgigiance behavior
of the wave functions. Throughout the flow evolution, i.eithwncreasingy, the wave functions
are modified at increasingly larger distances, which resalan increasing range of the associated
correlation functions. This localized action of the SRG sfanmation on coordiante-space wave
functions is also responsible for the fact that the SRG-gsadrcorrelation functions automati-
cally have finite range. This property is not imposed by th@pirag scheme, but results from the
structure of the two-body wave functions aléne

Closer inspection of the structure of the correlation futdiin Figs. 11 and 12 reveals an
interesting new aspect as compared to the correlationiingctiscussed in Sec. 2. In the even
channels the central correlation functidRgr) — r exhibit a sign-change at~ 1.1 fm. At shorter
rangesR, (r) — r is positive, indicating an outward shift in a transformedtaody wave func-
tion, and turns negative at larger distances, inducing waid shift in a transformed wave func-
tion. Pictorially speaking, the UCOM transformation attesnfp exploit the attractive parts of
the central potential in the even channels by moving pradihalimplitudes from small and large
inter-particle distances into the attractive region. Tiy@dt-even tensor correlation functiai{r)
exhibits a similar structure, though the negative contidsuis much weaker than the positive part.
In the odd channels the correlation functions do not shosvdigin change, which can be explained
by the lack of a sfiiciently strong attraction in the central interaction.

The details of ther-dependence areftirent for the diferent types of correlation functions.
For the dominant central correlators in the even channetsshort-range positive component is
practically independent af in the range covered in Fig. 11—these are the generic saoger
correlations induced by the strong short-range repulsidgheArgonne V18 potential. Only the
negative long-range part shows a sizabldependencefiecting its range and strength. All other
correlation functions show a smooth increase of the odermate with increasing, only a very
short distances the curves are independent of

The direct comparison of the SRG-generated correlationtifume with the correlators deter-
mined variationally in Sec. 2.5 is also quite instructive Figs. 13 and 14 we compare the central
and tensor correlations functions, respectively, of the $RGerated correlator far = 0.04 fm®
and the standard variational correlator with constraipts 0.09 fm® for the tensor correlator in
T =0, andly = —0.03 fm? for the tensor correlator ili = 1. Both sets of correlators yield approx-
imately the same ground-state energyidé in a No-Core Shell Model calculation, as discussed
in Sec. 4.

In the even channels, the short-range parts of the centre¢labon functions of both sets
agree very well—another indication that these dominanttsiamge correlations are truly generic
and independent of the methodology used to determine threlaton functions. The negative
contributions inR,(r) — r appearing in the SRG-generated correlators is absent iratiegional
correlators, simply because the parameterizations useldddatter did not allow for such a struc-
ture. The triplet-odd central correlators also agree vesly,whus providing additional justification
for the treatment of this channel in the mapping procedure.

1We note that the short range of the correlation functionseddp on the initial interaction. If the interaction
is such that the SRG evolutiofffacts also long-range components of the wave function, thetJCOM correlators
obtained by the mapping will be long-ranged as well. Thibésdase for the chiral N3LO interaction [4], for example.
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In the singlet-odd channel the central correlation fumgiexhibit the same shape, but the
variational correlator is suppressed due to the explicigeaconstraint. However, the variational
correlation function agrees very well with the SRG-genatatntral correlators for smaller values
of @. The tensor correlations functions determined in the tianal scheme are also subject to
explicit range constraints thaftfact their shape. Over-all the correlation functiai(s) of both
sets are similar, but the agreement is not as good as for #mnels without ad hoc constraints.

For the following discussion, we will identify the SRG-geated UCOM correlation func-
tions and the resulting UCOM-transformed potential with alereviation “UCOM(SRG)”. The
UCOM correlation functions determined from a variationdtoéation (cf. Sec. 2.5) are termed
“UCOM(var.)”. Finally, the purely SRG-transformed intenacts are labelled “SRG”.

3.7. Comparison of matrix elements

To conclude the discussion of the transformed interactiesslting in the UCOM and in the
SRG scheme, we consider the momentum-space matrix elemergsmore. In Fig. 15 we com-
pare the matrix elements in the domin&@yvave channels obtained for the bare Argonne V18
potential, the UCOM-transformed Argonne V18 potential gsoorrelation functions obtained
variationally as well as via the SRG mapping, and the pure S®RB+d interaction.

All similarity transformed interactions show a strong stggsion of the fi-diagonal matrix
elements, i.e., a decoupling of low-momentum and high-nmdora states, and an enhancement
of the low-momentum matrix elements. This leads to a sigaifianprovement of the convergence
in No-Core Shell Model calculations for light nuclei, as via# discussed in detail in Sec. 4. There
are, however, distinctive fierences in the behavior of the matrix elements for'gand the’S;
partial waves in the high-momentum sector.

The SRG evolution leads to a transformed interaction withreepeband-diagonal structure in
momentum space, i.e., in the high-momentum regime the xred&ments drop to zero rapidly with
increasing distance from the diagonal. For the UCOM-tramséal interaction, the domain of non-
vanishing high-momentum matrix elements extends furtler tin the case of the UCOM(var.)
correlation functions there is a plateau of non-vanishiragrix elements in the high-momentum
sector, which falls f§ slowly when leaving the diagonal. As a result, the band-aiiad structure
is far less pronounced than in the case of the SRG-evolvetagtten. For the UCOM(SRG)
interaction there appears a broad band of non-vanishingmigmentum matrix elements. The
far-off diagonal matrix elements outside of this band are more ssgpd than for the UCOM
with variationally determined correlators, but comparedhie SRG-transformed interactions the
band is significantly broader.

The apparent dierences between the SRG- and the UCOM(SRG)-transformed nederix
ments show that, despite the construction of the UCOM cdrogldunctions using input from
the SRG evolution, the transformed interactions are verylairfor /g2 + o2 < 2fm™, but are
quite diferent above. The origin of this fierences is the limited flexibility of the UCOM gen-
erator, which is determined from the eigenstates with tixe#h energy and does not allow for a
perfect band-diagonalization of the high-momentum matlements. However, it does allow for
a decoupling of low- and high-momentum modes, which willf@artant for the convergence of
shell-model-like many-body calculation as discussed eétftilowing section.
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Figure 15: Momentum-space matrix elements (in units of MeW)fof the UCOM and SRG-transformed Argonne
V18 potential in the'Sy, 2S;, and3S;-2D; partial waves. First row: initial Argonne V18 matrix elentericharge
indeFendent terms only). Second row: UCOM transformedimatements using UCOM(var.) correlation functions
for | ﬂlo) = 0.09fm®. Third row: UCOM transformed matrix elements using UCOM®Rorrelation functions for
a = 0.04 fm®*. Fourth row: SRG-transformed matrix elementsdot 0.03 fm’.
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4. No-Core Shell M odel

The No-Core Shell Model (NCSM) is a powerful and well estaldsimany-body technique
that has been used successfully in a wide range of nucleatste calculations in light nuclei
[70, 71, 72]. It provides a perfect framework for assessirggroperties of nuclear interactions,
both from the technical perspective, e.g., regarding tbenvergence properties, and from the
experimental view, e.g., regarding the agreement of predicbservables with experiment.

In this section we discuss NCSM calculations using the UCOMradtion with correlation
functions determined variationally (cf. Sec. 2) and the UC@Mraction using SRG-generated
correlation functions (cf. Sec. 3). For comparison we alsmsresults with the SRG interaction.
All UCOM and SRG interactions are derived from the Argonne Vagriaction. The matrix
elements are calculated without approximation as expiaim&ec. 2.10 and Sec. 3.2 including all
electromagnetic and charge dependent terms.

Using exact calculations in the three- and four-body systeainvestigate the convergence
properties and the role of induced three-body interactasriee UCOM and SRG interactions as
a function of tensor correlation range or flow parameter. Bineling energies in the three- and
four-body system map out the so-called Tjon-line. By chagpgarticular values for the tensor
correlation range and the flow parameters, respectivelypltain UCOM and SRG two-body
interactions that provide binding energies very close &dkperimental results in the three- and
four-body system.

The UCOM and SRG interactions selected by this choice are thethin NCSM calculations
of ®He, SLi and “Li. Although we are not able to reach full convergence, bigdénergies can
be obtained by extrapolation. A better convergence beh&ifound for the excitation energies.
The spectra provide some insight about the spin dependénice COM and SRG interactions.
Additional hints are provided by electromagnetic promsriike radii, magnetic dipole moments
and electric quadrupole moments.

4.1. Benchmarking Yowm in ab initio few-body calculations

For the NCSM calculations in the three- and four-body systesruse the MnyErr code by
Petr Navatil [11]. It employs a translationally invariant oscilketbasis in Jacobi coordinates. The
model space is defined by the oscillator frequeh€yand the total numbeN,,x of excitations
with respect to the &2 configuration. The interaction is provided in form of relatiharmonic-
oscillator matrix elements. In the standard NCSM approacddffective interaction adapted to the
model spaceNmax 7€) is derived using the Lee-Suzuki transformation. For tHeutations pre-
sented here we directly use the “bare” UCOM and SRG matrix elesmerhich do not depend on
the model space sizé,.x. Within this procedure, the NCSM provides a variational apph for
the energy. The energy eigenvalues will converge from abmtee exact solution for sticiently
large model spaces. The converged results should also paendent of the oscillator frequency
hQ, although the rate of convergence will béfdrent for diterent oscillator frequencies.

Before presenting results with UCOM and SRG interactions wstilate that it is not possi-
ble to reach full convergence with the bare Argonne V18 attgon, even within the huge model
spaces possible féH and*He. As can be seen in Fig. 16 it is already very hard to obtaioua
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Figure 16: NCSM calculations with the bare Argonne V18 iattion for®H and“He. The ground state energy is
calculated in model space Witlnax = 0,2, ...,40 for H and withNmayx = 0,2, ..., 18 for “He. The exact binding
energies [10] are indicated by horizontal lines.
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Figure 17: NCSM calculations for the ground-state energjtbin model spaces WittNyx = 0,2,...,40. The
tensor correlation range for the UCOM(var.) interactiongis= 0.09 fm®. The flow parameters awe = 0.04 fm*

for the UCOM(SRG) and = 0.03 f* for the SRG interaction. The experimental binding energpndscated by a
horizontal line.

nucleus. One can also observe that the lowest energies tieedbfor very large oscillator fre-
guencies. With these narrow oscillator wave functions ddmes eventually possible to explicitly
describe the short-range correlations for very laxgg..

We can compare these results with calculations with the UCBW#/GRG interactions as shown
in Fig. 17 and Fig. 18. We use our “standard” choices givea 2%} for the tensor correlation range
Iy and flow parameters as explained later in this section. For all interactions wed f« bound
minimum already in the X2 space. The minima are at oscillator frequencies that qoores
roughly to the experimental sizes of the nuclei. With insieg model-space si2é,,,x we observe
a fast convergence for all interactions. In direct compearisthe UCOM(SRG) and SRG inter-
actions converge faster than the UCOM(var.) interactiom wéspect to both, model space size
Nmax @nd oscillator frequenciQ. It is important to note that the converged energy, whilegei
close to the experimental binding energy, is lower than ¥ateresult for the bare Argonne V18
interaction by about.@ MeV in case ofH and by about 4 MeV in case ofHe. This overbind-
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Figure 18: NCSM calculations for the ground-state energ§Hs in model spaces witNy. = 0,2, ..., 18. The
tensor correlation range for the UCOM(var.) interactiongis= 0.09 fm®. The flow parameters awe = 0.04 fm*
for the UCOM(SRG) and = 0.03 f* for the SRG interaction. The experimental binding energpndscated by a
horizontal line.
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Figure 19: NCSM calculations for the ground statéldé with UCOM(SRG) interactions atfiierent flow parameters
(e = 0.01,0.04,0.08 fm“) in model spaces witiNyax = 0,2,...,18. The horizontal line indicates the experimental
binding energy.

ing of UCOM and SRG interactions with respect to the bare ioteya is caused by the missing
three- and four-body contributions — UCOM and SRG interasteme only calculated in two-body
approximation. This point will be discussed in detail in S&@.

The convergence pattern and the converged energy depetiusmerameters of the tensor cor-
relation range or the flow parameter respectively. Thigustitated in Fig. 19 for the UCOM(SRG)
interaction using three fierent flow parameters. With increasing flow parameter theuéaions
converge faster and to a lower energy. This is analyzed iildatFig. 20, where we compare
the energy minima in the/@ model spaces and the converged energies as a functigroot.
The hQ results are getting closer to the converged results witfelacorrelation ranges or flow
parameters, i.e., the interactions become “softer”. No#¢ the converged UCOM(var.) results
decrease monotonically with increasing tensor corratatemge, whereas the UCOM(SRG) and
SRG interactions both show a minimum in the converged energiofv parameters ~ 0.10 fm’.
This indicates that the tensor correlation range and the plmameter in UCOM(SRG) and SRG

53



“He — UCOM(var) “He — UCOM(SRG “He - SRC

—5F —5f -5
\\
-10 \\ —10t -10
< 15 > < —15p < -15
3 \ 3 TN 3 N
2 90 > DY S Z o0 ™
woF e w T e w " e,
—25t - = —25t R T—— —25} e
\\‘ g SRS R —
-30} \\,\ -30} ] -30} ]
0.0% 0.1C 0.15 0.2C 0.25 0.3C 0.0 0.1C O0.15 0.2C 0.0 0.1C 0.15 0.2C
lo[fm3] a[fm?] a[fm*]

Figure 20:*He ground-state energy calculated fitDspace (dotted lines) and converged NCSM results (solid)ine
as a function of correlation range or flow parameter. The tevemult for the bare Argonne V18 interaction and the
experimental binding energy are indicated by horizonteddi

interactions play a somewhatfldirent role. In the case of the UCOM(var.) interactidp®nly
affects the range of the tensor correlator in the deuteron ehaimthe case of UCOM(SRG) and
SRG interactiong affects also the central correlations in all channels. Beyoneriia point,
stronger central correlations actually result in less inigdrom the central part of the interaction
and the interaction becomes less attractive.

4.2. Tjon-line and the role of three-body interactions

As has already been observed by Tjon for local interactiarerrelation exists between the
3H and“*He binding energies [73]. When the binding energytéé is plotted against the binding
energy of*H the results for dferent interactions fall essentially onto a single line, $becalled
Tjon-line. This has been confirmed also for modern inteoasti Typically the binding energies
for bare two-body forces are too small compared to experimgms can be corrected by adding
an appropriate three-body force. In Fig. 21 results from R&6; 8] for realistic two-body interac-
tions and combinations of two- plus three-body forces aosvsh In addition we show the results
with UCOM and SRG interactions for which the binding energiasyvas a function of tensor
correlation rangé, or flow parametew and continue more or less on the Tjon-line obtained from
bare realistic two-body forces. The results obtained with YCOM and SRG interactions are
very similar and the trajectories of all interactions pasg/\close (within 200 keV) to the exper-
imental binding energies dH and*He. The results closest to the experimental binding engrgie
are obtained for the parameters:

UCOM(var.): |y = 0.09 fm®
UCOM(SRG): «a = 0.04fm". (125)
SRG: a = 0.03fm’

This is a remarkable result. By choosing a particular tensoretation range or particular
flow parameters the two-body UCOM or SRG interactions not oapraduce the experimental
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Figure 21: Binding energy dfHe versus binding energy 8H calculated with UCOM(var.), UCOM(SRG) and SRG
interactions. Also included are results with bare two-béatges (black diamonds) and combinations of two- and
three-body forces (grey diamonds) taken from [10] and [8].

nucleon-nucleon scattering data but also give the coriiadirg energies in the three- and four-
body systems. In this calculation we neither evaluate thaed four-body contributions from the
correlated two-body interaction nor do we include genuhred- and four-body forces. At this
point all three- and four-body contributions have to caratdéast on the level of the expectation
value. As explained by Polyzou anddgkle [14] a unitary transformation exists betweeffietent
combinations of on-shell equivalent two- and three-bodgraxctions. UCOM and SRG interac-
tions provide a particular realization of such a transfdroma The three-body contributions of
SRG interactions have been studied explicitly in [69] by ewd the three-body matrix elements
in the harmonic oscillator basis.

We will use UCOM and SRG interactions with tensor correlatiange and flow parameters
optimized for three- and four-body systems as describedeatmy NCSM calculations inp-shell
nuclei in Sec. 4.3 and for exploratory studies using Haffreek and many-body perturbation
theory for doubly magic nuclei up f3%Pb in Sec. 5.

4.3. Properties of A= 6, 7 nuclei

In this section we study properties of the lighthell nuclefHe,°Li and ’Li using the NCSM
code AvtoiNe [74, 75]. Matrix elements of UCOM and SRG interactions are jgled asjj-
coupled matrix elements generated from the relative matarments using the Talmi-Moshinsky
transformation. Again we do not employ the Lee-Suzuki tiamsation.

Like for the three- and four-body systems the results ardiestuas a function of oscillator
frequencyhQ2 and model space sidé, .. We do not reach full convergence in the accessible model
spaces for these nuclei, even with the UCOM or SRG interactibosground-state energies we
can use extrapolations to estimate the converged bindiagygn An error estimate is provided
by comparing results from fierent oscillator parameters. For observables like the aadi the
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| UCOM(var) UCOM(SRG) SRG| Experiment

SHe | 27.9(4) 28.4(3) 28.8(4) 29.269
OLi 30.9(4) 31.6(3) 32.0(4) 31.995
Li 37.4(6) 38.7(4) 39.6(5) 39.245

Table 3: Experimental and extrapolated calculated binddngrgies (in MeV) obtained with UCOM(var.),
UCOM(SRG) and SRG interactions. Error estimates are obdllly comparing extrapolated energies fdfedent
oscillator frequencies.

quadrupole moment ofLi the results show a strong dependence on the model spaeasiz
extrapolated results are not reliable. Spectra on the b#eat appear to be much better converged
and can be compared with experiment.

The convergence problems are to a large extend not causepgrpes of the interactions
but by the cluster or halo nature of these nuclei. To propéescribe the asymptotics of wave
functions with a neutron halo like ffHe, or an underlying cluster structures in case of the lithiu
isotopes, large model spaces are needed in the oscillatis. ba

Ground-state energies

We calculate the ground-state energies in model spaces Np.jo= 14 for ®He and®Li and
up toNmay = 12 for ’Li for oscillator frequencesQ = 12 16,...,28 MeV. For all interactions the
lowest energy in the/X2 space is obtained for an oscillator frequency of 16 MeV. mldrgest
model spaces lowest energies are found for oscillator aotsbetween 24 MeV and 28 MeV for
the UCOM(var.) interaction and between 20 MeV and 24 MeV for WESRG) and SRG inter-
actions. To estimate the converged ground-state energypmmential extrapolation is performed
using the results obtained in the four largest model spaaesstimate of the error can be obtained
by comparing the extrapolated energies fdfatent oscillator frequencies. In Figs. 22,23,24 the
calculated energies are shown as a function of the modeéspaeN.x together with the fitted
exponentials. Both UCOM(SRG) and SRG interactions providepgtated binding energies that
are close to the experimental values, whereas the bindiegies with the UCOM(var.) interac-
tion are somewhat underestimated for all nuclei. The resaar¢ summarized in Table 3. Note
that we use the interaction parameters (125) as obtainedtfie Tjon-line analysis—no further
adjustments are made here or in the following.

Radii, magnetic dipole moments and quadrupole moments

Electromagnetic properties provide important tests ofwlaee function beyond the simple
binding energy. We calculate the point proton radii for altkei and the magnetic dipole moment
as well as the electric quadrupole moment§orand ’Li. The results are very similar for the
different UCOM and SRG interactions and we only show results fad@@M(SRG) interaction.
The results are also very similar to results from NCSM caloutes using the CD Bonn and INOY
interactions [76, 77].

The point radii shown in Fig. 25 are calculated for the oatolf frequenciegQ = 16, 20, and
24 MeV. There still is a strong dependence of the calculad€eld on the model space size. We
do not believe that the extrapolation of the radii is rekgldut the results indicate that the radii
are slightly too small when compared to experiment. It falilt to draw conclusions regarding
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Figure 22: Energy of théHe 0" state as a function of model space size fdfadent oscillator frequencies obtained
with UCOM(var.), UCOM(SRG) and SRG interactions. Expoiedrextrapolations are fitted to the results from the
four largest model spaces.

O® 0 0
6Li — UCOM(var) t i — UCOM(SRG E 8Li — SRCG
-5t o ® 20 MeV -5 16 MeV -5 16 MeV
_10t § u 24 MeV _10t ® 20 MeV _10t ® 20 MeV
. + 28 MeV _ . m 24 MeV . s m 24 MeV
g —15} ‘ é —15f g —15}f
= 20t = 20t = _20t
w L w e w e
-25 \K -25 & —25} e
30} ~30} e . | 3 N,
=35t =35 =35
02 46 8101214161820 02 46 810121416182C 02 46 8101214161820
Nmax Nmax Nmax

Figure 23: Energy of théLi 1* state as a function of model space size fdfedent oscillator frequencies obtained
with UCOM(var.), UCOM(SRG) and SRG interactions. Exporedréxtrapolations are fitted to the results from the
four largest model spaces.
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Figure 24: Energy of théLi 3/2" state as a function of model space size fdfaent oscillator frequencies obtained
with UCOM(var.), UCOM(SRG) and SRG interactions. Expoiedrextrapolations are fitted to the results from the
four largest model spaces.
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Figure 25: Point proton radii dHe, °Li and ’Li as a function of model space size foffdrent oscillator frequencies
using the UCOM(SRG) interaction. Experimental values f{@8] and [79].

[ 3.4F
0.9¢ i — UCOM(SRG
16 MeV
0.88 ® 20 MeV 3.9
m 24 MeV
— 0.8€ _
=z | ]
= . S300 ?2eaaea
2084 "faanne =
16 MeV
0.82F 2.8 @ 20 MeV
m 24 MeV
osct ., . . ., ... ., 2l "Li - UCOM(SRG
0 2 4 6 810121416182C 0 5 A 6 810121416183¢
Nnax Nimax

Figure 26: Magnetic dipole moment 8ifi and ’Li as a function of model space size calculated with UCOM($RG
Experimental values from [80].

the saturation properties of the interaction as the radiiliese nuclei depend strongly on the
asymptotic behavior of the wave function due to their haloloster nature.

The magnetic dipole moments %ifi and ’Li shown in Fig. 26 agree reasonably well with the
experiment. The quadrupole moment®af is correctly predicted to be very small and negative,
which confirms the!He plus deuteron picture. For the quadrupole momentiive find a sim-
ilar behavior as for the radii. There is still a strong depsra® on the model space size. The
extrapolated results underestimate the experimenta¢valu

Spectra

Further information about the interaction can be obtainechfthe spectra of excited states.
The spectra are calculated in7/&2 and 13:Q2 model spaces for th& = 6 andA = 7 nuclei
respectively. We show here the results for the oscillatoampater 16 MeV which corresponds to
the ground state minimum in théiQ model space and which shows the fastest convergence for
the spectra. For other oscillator constants the spectyaware rapidly when enlarging the model
space but the converged results depend only very weaklyeoodtillator parameter.

The results are very similar for all three interactions. ig9.R28 the results are summarized.
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Figure 27: Quadrupole moment i and ‘Li ground state as a function of model space size for UCOM(BRG
Experimental values from [80].

For the UCOM(var.) interaction the results are shown stgiftiom the Q2 model space. For the
UCOM(SRG) and SRG interactions we only show the results frontetfgest model spaces.

In ®He the energy of the*Xstate is well converged. This is not true for the secondr®tl the 1
state. These states are well above the two-neutron sepaeatergy and there is no experimental
confirmation for the existence of these states.

For ®Li the T = O states are well converged in contrast to the: 1 states (2 and 0). We
also find the excitation energy of thé 8tate to be too high. This indicates that tHigetive spin-
orbit force in the UCOM and SRG interactions is too weak. A samdbservation can be made in
the spectrum ofLi. Here the splittings between the¢ 3 and 1/2- states as well as between the
7/2- and 52 states are too small compared to the experimental valuegelasin that respect
the UCOM and SRG interactions perform similarly to other tvaahp interactions. It has been
observed in GFMC calculations [17] that three-body foraa#igbute significantly to thefeective
spin-orbit strength. NCSM calculations with chiral two- ahdee-body forces [81] also show a
strong dependence of these splittings on the parametens tfitee-body force.

59



of 6He
#iQ) = 16 MeV
8t 1+
7+ —_—
2+ / \ \_\
6l ‘\— N e
% 5 S——— e
=
w4t
3' I’_‘\
2+ / h - S~
i S e 2t
UCOM UCOM ;
1+ (var) (SRG SRC Experimen
oLO o
070 270 4hQ 64O 870 10AQ 1240 1270, 1270
o ®Li
1+ #iQ) = 16 MeV
/R
6F —_— Tne v
> 5L /
[) —
s m——————— 2t
0 41 - o [ e — 0"
— e
—— -
2+ 3* ,” / I
/ UcoMm UCOM
o / s .
11— (var) (SRG SRC Experimen
olbL 1+
070 270 4rQ 640 840 10AQ 1240 1270 1270
13 7 Li
12[ 7Q = 16MeV
11+ —
1o =
a2 {—.
; 8t 5{2’ /
v 7L
= —
w Ops2 /
5+ F _—
4127/
! UCOM UCOM
2r (var) (SRG SRC Experimen
r v S—— o
O 0ra Zm amn 6h0 8mn 10A0 1040 1040

Figure 28: Spectra of low lying states ke, 6Li and “Li calculated with UCOM(var.), UCOM(SRG) and SRG

interactions in comparison with experiment [80].
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5. Hartree-Fock and beyond

For nuclei beyond the p-shell, many-body calculations inhoés like the full NCSM are
not feasible anymore, because the dimension of the many{mxis at a giveiN,.2Q truncation
level grows factorially with the particle number. One cateex] the domain of NCSM calculations
to larger particle numbers and model space sizes by usingrtane truncation methods, as
discussed in Refs. [82, 83, 84]. For the description of graiateés of closed-shell and neighboring
nuclei, coupled cluster methods have been employed quiteessfully [85, 86, 87, 88, 89, 90, 91].
These methods are able to cover the majority of correlatiortse nuclear many-body system,
however, they are computationally demanding as well.

At the opposite end of the scale regarding the computaticostl and the ability the describe
correlations is the Hartree-Fock approach [92]. A simpletida-Fock calculation—based on
a single Slater determinant for the description of the gdostate—can be done easily for any
isotope throughout the nuclear chart. Obviously, the ldarffock approach does not allow for
the description of any correlations and, therefore, capnotide a quantitative approximation
for nuclear observables when using realistic nuclear acteyns. It does, however, provide a
variational upper bound for the exact ground-state enenglyas such can be used to assess the
gualitative systematics, e.g., of the binding energiesuuastfon of mass number, throughout the
whole nuclear chart. Furthermore, the Hartree-Fock smiutian serve as a starting point for
improved approximations that take the missing correlatimo account. In the simplest case,
low-order many-body perturbation theory can be used tonasé the &ect of correlations on
the energy or other observables. Alternative methods ferirthlusion of correlations beyond
Hartree-Fock, such as ring-, ladder-, or Badsummed perturbation theory [93, 94] as well as
Brueckner-Hartree-Fock schemes and Green’s function rdstf8b, 96] are also feasible. The
Hartree-Fock or the corresponding Hartree-Fock-BogoljBa, 98] solutions also form the basis
for the description of collective excitations in the Randamage Approximation at tferent orders
[52, 99, 100].

In the following we will use the Hartree-Fock scheme as wsllsacond-order many-body
perturbation theory to study the systematics of bindinggee and charge radii resulting from
the UCOM- and SRG-transformed interactions. The aim is notawige a precise prediction of
the ground state energy for heavy nuclei, but to assess stensgtic behavior of the transformed
two-body interactions with increasing mass number.

5.1. Hartree-Fock with UCOM- and SRG-transformed interacsio

In the simplest formulation of a Hartree-Fock (HF) scherhe, many-body state is approxi-
mated by a single Slater determinant

|HF> = |(D[v]> =A (|¢v1> ® |¢v2> Q- ® |¢VA>)’ (126)

whereA is the antisymmetrization operator acting onfabody product state. The single-particle
states|¢,) are used as variational degrees of freedom in a minimizatiadhe expectation value
of the many-body Hamiltonian. The formal variational smatof the many-body problem using
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the trial state (126) leads to the well known HF equationsHersingle-particle states, which have
to be solved self-consistently [92, 101].

The Hamiltonian itself is the same as it was used in Sec. 4hi@MNCSM calculations. It
consists of the intrinsic kinetic energy, = T — T.» and the transformed two-body interaction
Vn including Coulomb and charge-dependent terms

Hint =T- Tcm + VNN = Tint + VNN s (127)

Unlike the NCSM, the use of this translational invariant Hiéomian does not guarantee that the
HF ground state is free of spurious center-of-mass contoims. The Slater determinant form of
the many-body state does not allow a separation of intrensitcenter-of-mass motion for general
single-particle states. However, for the purpose of thegmediscussion, thefect of center-of-
mass contaminations on the ground-state energy is irmr@le¥amore stringent but computation-
ally expensive treatment of the center-of-mass problemlavigquire an explicit center-of-mass
projection [102, 103].

We formulate the HF scheme in a basis representation usmgoméc oscillator single-particle
states. Thus the matrix elements entering HF equationdarsaime as in the NCSM calculations
of Sec. 4. The HF single particle statgs) are written as

6,) = leljmmy = > CEIm™|nljmm) , (128)

n

where |nljmm) denotes a harmonic oscillator single-particle state vathal quantum numbaer,
orbital angular momentum) total angular momentumwith projectionm, and isospin projection
guantum numbem,. Assuming spherical symmetry, only oscillator states whsame quantum
numberd, j, andm can contribute in the expansion. In the following, we wilktréct ourselves
to constrained or closed-shell calculations, whef@™™ = ci™ is independent ofn. The
details of the resulting HF equations for the expansiorifmjentscﬁ,“”mt) and of their solution are
discussed in Ref. [101].

Within the HF approximation, we consider the ground-statergies and the charge radii for
a sequence of nuclei with closgeshells from*He t02°®Pb using the dferent UCOM- and SRG-
transformed interactions adopted in Sec. 4. For these leitmos the harmonic oscillator single-
particle basis includes 15 major shells, i.e., the sum i8)1&2limited to 2 + | < 14, which is
suficient to guarantee full convergence of the HF states forwadlen under consideration. We
use a sequence of oscillator lengthg from 1.3 fm to 24 fm for the underlying oscillator basis.
In accord with the variational principle, we adopt the vatfi¢he oscillator length that yields the
minimal ground-state energy, though, for the basis sized bsre, the energies and radii obtained
on the HF level are largely independent of the oscillatogten

A summary of the HF ground-state energies and charge ratiireda with the UCOM and
SRG-transformed potentials is given in Fig. 29. Here we atltoptUCOM-correlators obtained
variationally and through the SRG-mapping with the range @w fpbarameters determined by
fitting to the experimentalHe ground-state energy in converged NCSM calculations. |&ilyi
the flow parameter for the SRG-evolved interaction is deteeshthrough théHe binding energy
(cf. Sec. 4.2). The HF approximation, therefore, yieldsilsimesults for the ground-state energy
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Figure 29: Ground-state energies per nucleon (a) and chadije(b) for a sequence of nuclei with closg¢ehells
obtained at the Hartree-Fock level. The data sets correlsgmtCOM(var.) interactiond), the UCOM(SRG)
interaction W), and the SRG interactior®]. The range or flow parameter of theférent transformations is fixed
such that the experiment&He ground-state energy is reproduced in NCSM calculatiohsSec. 4.2). The black
bars indicate experimental values [104].

of “He with all three interactions—UCOM(var.), UCOM(SRG), and SRiGwever, the HF energy
is above the experimental and the converged NCSM ground-stegrgy, which is expected—the
single determinant describing the HF ground state corregpto a @Q NCSM eigenstate and
cannot describe any of the correlations that the NCSM modedespiill capture with increasing
model space SizBna1 Q.

With increasing mass number the behavior of the UCOM and the-B&Gformed interac-
tions difers dramatically. The UCOM interactions, both UCOM(var.) &I€@OM(SRG), lead to
HF ground-state energies per nucleon that are of the ordérof5 MeV throughout the whole
mass range. Especially for the UCOM(var.) interaction there practically constantftset of
about 4 MeV per nucleon between the HF energies and expetrifRenthe case dfHe we know
from the NCSM calculations in Sec. 4 that the missing bindingrgy resides in correlation en-
ergy, because the sam#eztive interaction reproduced the experimental valuesiigel model
spaces. We expect that the inclusion of correlations beythavill also lower the ground-state
energies of the heavier nuclei and bring them closer to axgert.

The SRG-transformed interaction exhibits a verffatent trend: The HF binding energy per
nucleon increases rapidly with increasing mass numbeeadly for intermediate masses, the HF
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energy drops below the experimental ground-state eneiggn@at the HF energy gives an upper
bound for the exact energy eigenvalue of the Hamiltoniais, discrepancy cannot be remedied
through the inclusion of beyond-HF correlations, but hattshe induced many-body forces (see
discussion in Secs. 1 and 2.6 that are left out in this calomaln the SRG they have an over-all

repulsive éect.

This intrinsic diference between UCOM and SRG interactions is also reflecte@ iohtarge
radii depicted in Fig. 29(b). The charge radii obtained viite UCOM interaction show a sys-
tematic deviation form the experimental trend. The predictdii are too small and theftirence
to experiment increases linearly with increasing mass raumgmaching a deviation of about 1 fm
for 2°8Pb. For the SRG interaction, the deviation is even more pnoced, the radius of’®Pb is
underestimated by about 2 fm.

There are two main élierences between the UCOM-transformed and the SRG-transforme
two-body interactions which cause thefdrent behavior when going to heavier nucle). The
UCOM interactions use a unitary transformation that is ot to account for short-range cor-
relations in the lowest partial wave of each spin-isospinciel only. Thus, higher partial waves,
whose impact grows with increasing mass number, are notlipgenalized in an optimal way
by the UCOM transformation. However, because the wave fonstior larger. are suppressed
at short distances by the centrifugal barrier, this is a mafiiect. The SRG transformation, in
contrast, handles each partial wave separately and thds teaan optimal pre-diagonalization
for all. (ii) Even for the lowest partial waves the UCOM transformatioesdaot provide the
same perfect pre-diagonalization in the high-momenturtoses the SRG transformation, as dis-
cussed in Sec. 3.7. The residudl-diagonal high-momentum matrix elements together with the
less pronounced pre-diagonalization of the higher pantéales stabilize the UCOM interactions
against the overbinding observed in the SRG calculationsth®wther hand this leads to slower
convergence of the UCOM interactions as compared to the SRG.

One can view the dlierence between SRG and UCOM from yet another perspective. Both
approaches use a unitary transformation, which preseheesigenvalues of the Hamiltonian in
many-body space, provided the transformation is done withay additional truncations. How-
ever, here we use the cluster expansion and truncate atddypdbvel, i.e., we discard all the
induced many-body forces. Thus, if we observe a systemétierence in an exact many-body
calculation using two-body part of the transformed intéoas only, we can conclude that the
omitted many-body forces behave systematicalfiedent in SRG and UCOM, because the trans-
formed Hamiltonians in their complete form i&body space have to yield the same result. In
this view, the simplistic HF calculations already show ttha&t induced three-body and many-body
interactions in the SRG framework must have a much larger fifietteon binding energies and
wave functions—and thus on radii—than in the UCOM framework.

5.2. Low-order many-body perturbation theory

The simplest way to estimate thé&exct of correlations beyond HF is low-order many-body
perturbation theory. Many-body perturbation theory (MBRrting from the HF solution is a
standard technique in many fields of quantum many-body physanging from quantum chem-
istry [105] to nuclear physics [106, 107, 108, 109, 101, 9%]is straightforward to apply and
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Figure 30: Ground-state energies for a sequence of nudleiclasedj-shells obtained at the HF level (open symbols)
and in second-order MBPT (filled symbols) using the UCOMjvanteraction. The dferent curves correspond to
different model spaces built from 1é)( 13 (@), and 15 ¢) major oscillator shells. The oscillator length for each
nucleus is chosen according to the HF root-mean-squaresréali or according to the experimental charge radius (b).
The black bars indicate the experimental binding enerdi@4][

computationally simple, but has inherent limitationssiwiell known that the convergence of suc-
cessive orders of perturbation theory is not guaranteedh®wcontrary [110, 94]. Nevertheless,
low-order MBPT provides at least a qualitative measure ferefect of correlations beyond HF.
We will restrict ourselves to second-order calculationsaio order-of-magnitude estimate of
the correlation energy, i.e., the change in the grounc&aérgy resulting from beyond-HF cor-
relations. The second order contribution involves antisyatrized two-body matrix elements of
the intrinsic Hamiltonian kg; containing two HF single-particle states below the Fernargn
(denoted by, v") and two HF single-particle states above the Fermi energgdtbd by, ):

£@ _ 157N Kedo [ Hinldud )

4 S e te &

(129)

Note that the full two-body part of the many-body Hamiltanenters, which includes the intrinsic
kinetic energy in our case.

The starting point for the evaluation of the correlationrggevia perturbation theory is the
HF solution yielding a finite set of single-particle state¢s) and the corresponding single-particle
energies;, for the respective nucleus. As discussed before, we usestiiéator basis including a
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Figure 31: Ground-state energies for a sequence of nudleiclasedj-shells obtained at the HF level (open symbols)
and in second-order MBPT (filled symbols) using the UCOM(S$Ri&eraction. The dferent curves correspond to
different model spaces built from 1@)( 13 (@), and 15 ¢) major oscillator shells. The oscillator length for each
nucleus is chosen according to the HF root-mean-squaresréali or according to the experimental charge radius (b).
The black bars indicate the experimental binding enerdi@4][

certain number of major shells for a specific oscillator lBngecause perturbation theory is not a
variational approach, we cannot use variational argunterftad an optimal oscillator length, but
have to resort to other prescriptions. We adopt twitedent schemes for choosing the oscillator
lengthayo for each nucleus: Using either the root-mean-square rpdadcted by the HF solution
or the experimental charge radius we optimize the oscillatogth such that a naive shell-model
Slater determinant built from harmonic oscillator singlticle states approximately reproduces
the respective radius. Because the HF solutions for the UCQ#faation underestimate the
charge radii, the oscillator lengths obtained from the Hkus are smaller than the ones obtained
from the experimental radius.

The ground-state energies obtained by including the seoahet MBPT contribution on top
of the HF energy are presented in Figs. 30 and 31 for the UC@Nkformed interactions with the
UCOM(var.) and the UCOM(SRG) correlators, respectively. Tpeew and lower panels in each
figure are obtained using the HF radii and the experimenthil r@spectively, to fix the oscillator
length. For each case we show a sequence of calculationsdelrepaces consisting of 11, 13,
and 15 major oscillator shells in order to assess the coamesgbehavior. The HF energies are
fully converged and independent of the model space size.s&bend-order MBPT estimate of
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the correlation energy (129) shows signatures of convergenly for light isotopes, for heavier
isotopes there still is a significant change of typicalfy eV per nucleon when going from 13 to
15 shells. Uncertainties of a similar order of magnitudeiitsfsom the dependence of the second-
order energy on the oscillator length, with decreasing the second-order energy contribution
|[E®@)| is increasing. Finally, one should keep in mind that secomi&r MBPT provides only a
crude approximation for the correlation energy. As showrRef. [94] the deviations of the
second-order estimate to the exact eigenvalue in the sardel isigace can be sizable.

Despite the uncertainties associated with the second-8&T calculation regarding con-
vergence, choice of the oscillator length, and quality ef-lrder MBPT as such, the results in
Figs. 30 and 31 prove that the correlations beyond HF causssentially constant shift of the
ground state energy per nucleon across the whole mass r&ngéhe UCOM interactions, this
brings the ground state energies into the same regime agpleemental binding energies. The
over-all systematics of binding energies obtained witHi®M interactions is in agreement with
experiment, already at the level of a pure two-body intévactT he role of three-body interactions
is reduced to providing corrections, e.g., regarding treagd radii, on top of an already reason-
able trend. For the standard SRG-transformed interactiensituation is dferent: The two-body
component alone cannot provide the correct systematicthaee-body interaction have to have a
strong impact on the binding-energy systematics already.
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6. Conclusion

The Unitary Correlation Operator Method (UCOM) provides avarsal tool to account for
short-range interaction-induced correlations in the eaichhany-body problem. The correlations
can be either imprinted into many-body states that otherwsuld not contain these correlations,
like Slater determinants, or they can be absorbedfacttve operators that are defined through an
explicit similarity transformation. Thefiective interactions obtained in this way are well suited
for low-momentum Hilbert spaces, because, unlike bareant®mns, they do not scatter strongly
to high momenta. UCOM is very transparent and intuitive agjlieitly introduces correlation
functions for the description of short-range central anisoe correlations. These correlation
functions play the role of variational degrees of freedomtfie@ many-body states. We propose
two methods to find optimal correlation functions for a giveare Hamiltonian: One is energy
minimization in two-body space; the other employs the cledationship to the SRG approach,
which also aims at separating low- and high-momentum scales

UCOM has been developed for both, matrix representation pedcator representation. The
matrix representation in the harmonic oscillator basissisdufor NCSM calculatiorts We show
that binding energies and spectra converge much more yapith increasing size of the Hilbert
space when usingfiective UCOM-transformed interactions rather than the bateraction. It
is even possible to do Hartree-Fock calculations and olfitaimd nuclei throughout the nuclear
chart. We show that thib initio Hartree-Fock method can only account for about half theiband
energy, the other half is correlation energy that cannotidtained by a single Slater determinant.

Especially the operator representation of UCOM explains/rg transparent way, why strong
short-range correlations and long mean free path or the 1fieldrshell model are not contradict-
ing each other. There is a separation of length scales, wedlldped for the central correlations
and less well for the tensor correlations, which allows teorenalize the bare Hamiltonian to
an dfective one appropriate for low-momentum Hilbert spaces.e @nght be tempted to be-
lieve that short-range correlations are not real, as sas@tshift equivalent interactions with a
modified df-shell behavior describe the asymptotic properties ofwwenucleon system and are
successfully used for the description of many-body systelH®vever, short-range correlations
are revealed by the fliness of nuclear matter against compression or the high-miometails of
nucleon momentum distributions that are presently gainemgwed interest [48, 50, 111, 112].
Around the Fermi edge the momentum distribution$edlifrom the mean-field ones also due to
long-range correlations that are not accounted for by UCONMSE correlations have to be treated
by configuration mixing.

As the short-range correlations are, to a large extendg stdependent and can be treated
by a unitary transformation, one can work in the indepenganticle basis using a transformed
Hamiltonian. Also electric and magnetic observables aggganainly the low-momentum nature
of the states and change little by the UCOM transformation. eAception are Gamow-Teller
transitions, which are sensitive to tensor correlationis.well known that a quenching of typically
0.8 occurs for Hilbert spaces that do not contain these letioas.

2The UCOM two-body matrix elements in the harmonic oscilldtasis (relativeLS- or jj-coupling for various
frequencies and model-space sizes) suitable for no-ctoelations are available from the authors upon request.
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It turns out that &ects from UCOM-induced three-body interactions cancel terean extend
those from the original three-body force. The partial cHlatien effect is not yet understood.
Heavier nuclei and the saturation properties of nucleatanatdicate that three-body forces can-
not be substituted completely. The short-range repulsidgheonuclear interaction is essential for
describing the correct saturation properties. In pardicwhen increasing the density above twice
nuclear saturation density, the short-range repulsiveetairons are expected to become so strong
that they cannot be treated anymore by a two-body approxamé&br the dfective interaction.
From the above arguments it is clear that abyinitio treatment of nuclear matter at higher densi-
ties based on Slater determinants of single-particle plawes demands a sophisticateletive
interaction with many-body forces.

The Unitary Correlation Operator Method has been formulatedomentum representation,
in harmonic oscillator basis and in operator represemafibe latter can be used in any represen-
tation for example in Fermionic Molecular Dynamics (FMDieh provides many-body Hilbert
spaces especially suited for cluster structures in nuot#i discussed in this paper). UCOM is a
very versatile approach that provide$eetive interactions as well as the correspondifigative
operators.
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